Comportamiento mecánico de la piel en función del espesor de las capas que la componen

dc.contributor.advisorRamirez Patiño, Juan Fernandospa
dc.contributor.authorIsaza López, Jesica Andreaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (GIBIR)spa
dc.date.accessioned2020-06-03T16:51:14Zspa
dc.date.available2020-06-03T16:51:14Zspa
dc.date.issued2020spa
dc.description.abstractIdentification of the mechanical behavior of the skin is important in the clinical, cosmetic, ergonomic, and others fields. The wide range of properties reported in the literature limits the identification of constitutive equations that should be applied in complex numerical models or for the identification of disease progress or treatment efficacy. Being a multilayer material, the behavior of the skin, depends on the thickness of its layers and the properties of each of them. Initially, the most appropriate technique for the measurement of the layers is identified, between biopsy, OCT, US, MRI and CLSM. The measurement of the main layers (cutis and hypodermis) is reliably measured by MRI for 32 patients between 18 and 54 years old. The percentage of the cutis corresponding to the epidermis (6%) is established by comparison with histological images. MRI images are taken under indentation conditions to measure the deformation of the layers. Additionally, an indentation system was developed to obtain the force vs. displacement curves for 24 patients. Finally, computational models (monolayer and multilayer) are developed with reconstructed MRI geometry, the properties of the skin are optimized by comparing experimental and computational curves. Neo Hookean and Ogden properties were found using iFEM, which define the multilayer tissue. In conclusion, a regression analysis allows to predict the mechanical behavior of the multilayer tissue (skin) from the thickness and mechanical properties of the layers. Additioonaly, the constitive equation coefficients for Ogden model can be predicted by some population and experimental parameters, which allow the equation to be used in subsequent numerical models.spa
dc.description.abstractLa identificación del comportamiento mecánico de la piel es importante en el campo clínico, cosmético, ergonómico, entre otros. El amplio rango de propiedades reportadas en la literatura limita la identificación de ecuaciones constitutivas que deben aplicarse en modelos numéricos complejos o como base para la identificación de progreso de enfermedades o eficacia de tratamientos. Al tratarse de un material multicapa, el comportamiento del conjunto (piel), depende del espesor de sus capas y las propiedades de cada una de ellas., Inicialmente se identifica la técnica más adecuada para la medición de las capas, entre biopsia, OCT, US, MRI y CLSM. Se reliaza la medición de las capas principales (cutis e hipodermis) mediante MRI de 32 pacientes entre 18 y 54 años y se establece el porcentaje de la cutis que corresponde a la epidermis (6%), mediante comparación con imágenes histológicas. También se toman imágenes de MRI en condiciones de indentación para medir la deformación de las capas. Adicionalmente, se desarrolló un sistema de indentación que permite obtener las curvas de fuerza vs. desplazamiento para 24 de los pacientes. Finalmente, se desarrollan modelos computacionales (monocapa y multicapa) con las geometrías reconstruidas de MRI y se optimizan las propiedades del conjunto mediante comparación de curvas experimentales con las computacionales. Se encontraron mediante iFEM propiedades Neo Hookean y Ogden, que definen aproximadamente al conjunto multicapa., En conclusión, un análisis de regresión permite predecir el comportamiento mecánico del conjunto multicapa (piel) a partir del espesor de las capas que lo componen y las respectivas propiedades mecánicas de las mismas. A su vez, pueden predecirse los coeficientes de la ecuación constitutiva de Ogden mediante ciertos parámetros poblacionales y experimentales, que permiten usar la ecuación en posteriores modelos numéricos.spa
dc.description.degreelevelDoctoradospa
dc.format.extent187spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77605
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesJ.-M. Schwartz, M. Denninger, D. Rancourt, C. Moisan, and D. Laurendeau, “Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation,” Med. Image Anal., vol. 9, no. 2, pp. 103–112, Jun. 2005.spa
dc.relation.referencesP. A. Forbes, D. S. Cronin, and Y. C. Deng, “Multi-scale human body model to predict side impact thoracic trauma,” Int. J. Crashworthiness, vol. 11, no. 3, pp. 203–216, 2006.spa
dc.relation.referencesM. Kaneko, C. Toya, and M. Okajima, “Active Strobe Imager for Visualizing Dynamic Behavior of Tumors,” in 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 3009–3014.spa
dc.relation.referencesK. Rome, “Mechanical properties of the heel pad: current theory and review of the literature,” Foot, vol. 8, no. 4, pp. 179–185, Dec. 1998.spa
dc.relation.referencesA. Sayed, G. Layne, J. Abraham, and O. Mukdadi, “Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo,” Ultrasonics, vol. 53, no. 5, pp. 979–991, Jul. 2013.spa
dc.relation.referencesW. M. Saltzman, Biomedical engineering: bridging medicine and technology. Cambridge University Press, 2009.spa
dc.relation.referencesF. M. Hendriks, D. Brokken, J. T. W. M. van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, and J. B. a. M. Horsten, “A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin,” Ski. Res. Technol., vol. 9, no. 3, pp. 274–283, 2003.spa
dc.relation.referencesH. Schmidt et al., “Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus,” Clin. Biomech., vol. 21, no. 4, pp. 337–344, May 2006spa
dc.relation.referencesC. Pailler-Mattei, S. Bec, and H. Zahouani, “In vivo measurements of the elastic mechanical properties of human skin by indentation tests,” Med. Eng. Phys., vol. 30, no. 5, pp. 599–606, Jun. 2008..spa
dc.relation.referencesA. Samani and D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast tissue samples,” Phys. Med. Biol., vol. 49, no. 18, pp. 4395–4405, Sep. 2004.spa
dc.relation.referencesA. Samani and D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast T. Kaster, I. Sack, and A. Samani, “Measurement of the hyperelastic properties of ex vivo brain tissue slices,” J. Biomech., vol. 44, no. 6, pp. 1158–1163, Apr. 2011.spa
dc.relation.referencesM. Kauer, “Inverse finite element characterization of soft tissues with aspiration experiments,” Federal Institute of Technology, Zürich, 2001.spa
dc.relation.referencesM. Farshad, M. Barbezat, P. Flüeler, F. Schmidlin, P. Graber, and P. Niederer, “Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma,” J. Biomech., vol. 32, no. 4, pp. 417–425, Apr. 1999spa
dc.relation.referencesA. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau, “Characterization of the mechanical properties of skin by inverse analysis,” J. Biomech., vol. 39, no. 9, pp. 1603–1610, 2006.spa
dc.relation.referencesR. B. Groves, S. A. Coulman, J. C. Birchall, and S. L. Evans, “Quantifying the mechanical properties of human skin to optimise future microneedle device design,” Comput. Methods Biomech. Biomed. Engin., vol. 15, no. 1, pp. 73–82, 2012spa
dc.relation.referencesD. L. Bader and P. Bowker, “Mechanical characteristics of skin and underlying tissues in vivo,” Biomaterials, vol. 4, no. 4, pp. 305–308, Oct. 1983.spa
dc.relation.referencesD. Josell, D. van Heerden, D. Shechtman, and D. Read, “Mechanical properties of multilayer materials,” Nanostructured Mater., vol. 12, no. 1–4, pp. 405–408, Jan. 1999spa
dc.relation.referencesF. M. Hendriks, “Mechanical behaviour of human epidermal and dermal layers in vivo,” Technische Universiteit Eindhoven, 2005..spa
dc.relation.referencesY. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat., vol. 24, no. 3–4, pp. 183–189, Jan. 2002.spa
dc.relation.referencesJ. C. Barbenel and J. H. Evans, “The Time-Dependent Mechanical Properties of Skin,” J. Invest. Dermatol., vol. 69, no. 3, pp. 318–320, Sep. 1977.spa
dc.relation.referencesJ. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol., vol. 83, no. 6, pp. 410–413, 2003.spa
dc.relation.referencesA. B. Cua, K.-P. Wilhelm, and H. I. Maibach, “Elastic properties of human skin: relation to age, sex, and anatomical region,” Arch. Dermatol. Res., vol. 282, no. 5, pp. 283–288, Aug. 1990spa
dc.relation.referencesL. S. Chan, “Human skin basement membrane in health and in autoimmune diseases.,” Front. Biosci., vol. 2, pp. d343-52, Jul. 1997..spa
dc.relation.referencesR. Drake, A. W. Vogl, and A. W. M. Mitchell, Gray’s Anatomy for Students. Elsevier Health Sciences, 2009.spa
dc.relation.referencesF. M. Hendriks, D. Brokken, C. W. J. Oomens, D. L. Bader, and F. P. T. Baaijens, “The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments,” Med. Eng. Phys., vol. 28, no. 3, pp. 259–266, Apr. 2006.spa
dc.relation.references. Shuster, M. M. Black, and E. McVitie, “The influence of age and sex on skin thickness, skin collagen and density,” Br. J. Dermatol., vol. 93, no. 6, pp. 639–643, Dec. 1975spa
dc.relation.referencesST. Tadokoro et al., “Mechanisms of Skin Tanning in Different Racial/Ethnic Groups in Response to Ultraviolet Radiation,” J. Invest. Dermatol., vol. 124, no. 6, pp. 1326–1332, Jun. 2005.spa
dc.relation.referencesJ. J. O’Hagan and A. Samani, “Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.,” Phys. Med. Biol., vol. 54, no. 8, pp. 2557–2569, Apr. 2009.spa
dc.relation.referencesM. J. J. Kerns, M. A. Darst, T. G. Olsen, M. Fenster, P. Hall, and S. Grevey, “Shrinkage of cutaneous specimens: formalin or other factors involved?,” J. Cutan. Pathol., vol. 35, no. 12, pp. 1093–1096, Dec. 2008.spa
dc.relation.referencesK.-P. Wilhelm, Bioengineering of the Skin : Skin Imaging and Analysis. New York: Informa Healthcare, 2006.spa
dc.relation.referencesI. Ahnlide and M. Bjellerup, “Accuracy of Clinical Skin Tumour Diagnosis in a Dermatological Setting,” Acta Derm. Venereol., vol. 93, no. 3, pp. 305–308, May 2013.spa
dc.relation.referencesH. J. Lee, K. R. Lee, J. Y. Park, M. S. Yoon, and S. E. Lee, “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin,” J. Dermatolog. Treat., vol. 26, no. 1, pp. 73–77, 2015.spa
dc.relation.referencesP. Agache and S. Diridollou, “Subcutis Metrology,” in Agache’s Measuring the Skin, Cham: Springer International Publishing, 2017, pp. 669–682.spa
dc.relation.referencesA. Mandava, P. R. Ravuri, and R. Konathan, “High-resolution ultrasound imaging of cutaneous lesions.,” Indian J. Radiol. Imaging, vol. 23, no. 3, pp. 269–77, Jul. 2013.spa
dc.relation.referencesH. Alexander and D. L. Miller, “Determining Skin Thickness with Pulsed Ultra Sound,” J. Invest. Dermatol., vol. 72, no. 1, pp. 17–19, 1979.spa
dc.relation.referencesJ. T. Iivarinen, R. K. Korhonen, P. Julkunen, and J. S. Jurvelin, “Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device.,” Med. Eng. Phys., vol. 33, no. 10, pp. 1245–53, Dec. 2011spa
dc.relation.referencesS. Diridollou et al., “In vivo model of the mechanical properties of the human skin under suction,” Ski. Res. Technol., vol. 6, no. 4, pp. 214–221, 2000.spa
dc.relation.referencesJ. Welzel, “Optical coherence tomography in dermatology : a review,” Ski. Res. Technol., vol. 7, pp. 1–9, 2001spa
dc.relation.referencesY. Pan, E. Lankenou, J. Welzel, R. Birngruber, and R. Engelhardt, “Optical coherence-gated imaging of biological tissues,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 4, pp. 1029–1034, 1996.spa
dc.relation.referencesT. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site.,” J. Dermatol. Sci., vol. 44, no. 3, pp. 145–52, Dec. 2006.spa
dc.relation.referencesS. Richard et al., “Characterization of the Skin In Vivo by High Resolution Magnetic Resonance Imaging: Water Behavior and Age-Related Effects,” J. Invest. Dermatol., vol. 100, no. 5, pp. 705–709, May 1993.spa
dc.relation.referencesD. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, “Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography,” Phys. Med. Biol., vol. 45, no. 6, pp. 1591–1610, 2000.spa
dc.relation.referencesP. Corcuff, G. Gonnord, G. E. Piérard, and J. L. Lévěque, “In vivo confocal microscopy of human skin: A new design for cosmetology and dermatology,” Scanning, vol. 18, no. 5, pp. 351–355, Dec. 2006.spa
dc.relation.referencesS. Maas and J. Weiss, FEBio User’s Manual, Version 1. Utah: Musculoskeletal Research Laboratories Department of Bioengineering, and Scientific Computing and Imaging Institute University of Utah, 2007.spa
dc.relation.referencesM. Moreno, C. Plazaola, G. González, M. Zambrano, and C. Spadafora, “Revisión de Modelos Hiperelásticos utilizados en Tejidos,” KnE Eng., vol. 3, no. 1, p. 100, 2018.spa
dc.relation.referencesB. B. Aaron and J. M. Gosline, “Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers,” Biopolymers, vol. 20, no. 6, pp. 1247–1260, Jun. 1981spa
dc.relation.referencesT. Nemoto, R. Kubota, Y. Murasawa, and Z. Isogai, “Viscoelastic Properties of the Human Dermis and Other Connective Tissues and Its Relevance to Tissue Aging and Aging–Related Disease,” in Viscoelasticity-From Theory to Biological Applications, 2012, pp. 157–170.spa
dc.relation.referencesG. Boyer, H. Zahouani, A. Le Bot, L. Laquièze, and L. Laquieze, “In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation.,” in Conference of the IEEE EMBS, 2007, no. 2, pp. 4584–4587.spa
dc.relation.referencesC. Then, B. Stassen, K. Depta, and G. Silber, “New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo,” J. Mech. Behav. Biomed. Mater., vol. 71, pp. 68–79, Jul. 2017.spa
dc.relation.referencesJ. Kim and M. A. Srinivasan, “Characterization of Viscoelastic Soft Tissue Properties from In Vivo Animal Experiments and Inverse FE Parameter Estimation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005,spa
dc.relation.referencesR. Sanders, “Torsional elasticity of human skin in vivo,” Pflügers Arch., vol. 342, no. 3, pp. 255–260, Sep. 1973.spa
dc.relation.referencesA. Ní Annaidh et al., “Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin,” Ann. Biomed. Eng., vol. 40, no. 8, pp. 1666–1678, 2012.spa
dc.relation.referencesM. Hrapko et al., “The influence of test conditions on characterization of the mechanical properties of brain tissue.,” J. Biomech. Eng., vol. 130, no. 3, pp. 31003–31010, Jun. 2008spa
dc.relation.referencesE. M. Arruda and M. C. Boyce, “A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials,” J. Mech. Phys. Solids, vol. 41, no. 2, pp. 389–412, Feb. 1993.spa
dc.relation.referencesR. Grahame and P. J. L. Holt, “The Influence of Ageing on the in vivo Elasticity of Human Skin,” Gerontology, vol. 15, no. 2–3, pp. 121–139, Jul. 1969.spa
dc.relation.referencesM. A. F. Kendall, Y.-F. Chong, and A. Cock, “The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery,” Biomaterials, vol. 28, no. 33, pp. 4968–4977, Nov. 2007spa
dc.relation.referencesA. J. Heim, W. G. Matthews, and T. J. Koob, “Determination of the elastic modulus of native collagen fibrils via radial indentation,” Appl. Phys. Lett., vol. 89, no. 18, p. 181902, Oct. 2006.spa
dc.relation.referencesJ. de Rigal, C. Escoffier, B. Querleux, B. Faivre, P. Agache, and J.-L. Leveque, “Assessment of Aging of the Human Skin by In Vivo Ultrasonic Imaging.,” J. Invest. Dermatol., vol. 93, no. 5, pp. 621–625, Nov. 1989.spa
dc.relation.referencesL. W. Marks and T. N. Gardner, “The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence,” J. Biomed. Eng., vol. 15, no. 6, pp. 474–476, Nov. 1993.spa
dc.relation.referencesM. Viceconti, C. Zannoni, D. Testi, and A. Cappello, “CT data sets surface extraction for biomechanical modeling of long bones,” Comput. Methods Programs Biomed., vol. 59, pp. 159–166, Jun. 1999.spa
dc.relation.referencesMinitab, “Regresión múltiple,” in Informe Técnico sobre el Asistente de MINITAB, 2017, p. 16.spa
dc.relation.referencesR. Akhtar, M. J. Sherratt, J. K. Cruickshank, and B. Derby, “Characterizing the elastic properties of tissues,” Mater. Today, vol. 14, no. 3, pp. 96–105, 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalconstitutive equationseng
dc.subject.proposalecuaciones constitutivasspa
dc.subject.proposalmechanical propertieseng
dc.subject.proposalpropiedades mecánicasspa
dc.subject.proposalhuman skineng
dc.subject.proposalpielspa
dc.subject.proposalmulticapaspa
dc.subject.proposalmultilayereng
dc.subject.proposalindentaciónspa
dc.subject.proposalindentationeng
dc.subject.proposalfinite element methodeng
dc.subject.proposalmétodo de elementos finitosspa
dc.titleComportamiento mecánico de la piel en función del espesor de las capas que la componenspa
dc.title.alternativeMechanical behavior of skin in function of its layers thicknessspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017155483.2020.pdf
Tamaño:
6.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: