Evaluación del efecto de la temperatura de deshidratación sobre la capacidad antioxidante y el contenido de metabolitos antioxidantes en hojas de Moringa oleifera e incorporación en una bebida láctea

dc.contributor.advisorRojano, Benjamin Alberto
dc.contributor.advisorAlzate Arbeláez, Andrés Felipe
dc.contributor.authorZapata Giraldo, Santiago
dc.contributor.researchgroupQuímica de Los Productos Naturales y Los Alimentosspa
dc.date.accessioned2024-12-16T13:46:20Z
dc.date.available2024-12-16T13:46:20Z
dc.date.issued2022
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLas hojas de Moringa oleífera son reconocidas por su elevado valor nutricional y de componentes bioactivos, sin embargo, son altamente perecederas debido a su alto contenido de humedad. El secado es un proceso que favorece la conservación, reduciendo la actividad de agua e inhibiendo las reacciones de deterioro asociadas a esta, pero puede ocasionar pérdidas en la calidad nutraceútica de las hojas. Por esto, la evaluación de diferentes tecnologías (térmicas y no térmicas) y los parámetros de secado es de importancia para obtener una mayor estabilidad, minimizando la pérdida de compuestos antioxidantes en las hojas de moringa. En este trabajo, se colectaron hojas de moringa frescas y fueron sometidas a cuatro métodos de secado: liofilización, solar, convectivo (40, 50, 60, 70 y 80 °C) y microondas (360, 540, 720 y 900 W). Las cinéticas de secado, el ajuste a modelos semi empíricos y otros parámetros fueron evaluados. Los metabolitos antioxidantes fueron cuantificados por el método de polifenoles totales y flavonoides, mientras que la capacidad antioxidante fue evaluada por los métodos ABTS y FRAP. Adicionalmente, se elaboró un producto en polvo a partir del extracto seco de Moringa y se empleó como suplemento en una bebida láctea. El modelo con mejor ajuste a las cinéticas de secado fue Logistics con valores de 0.9987< R2, respectivamente, seguido de liofilización permitiendo una conservación del 81% y 95%. En el secado en microondas la mayor retención se presentó a 900 W, con valores de 72% y 82% para ABTS y FRAP respectivamente, para el secado convectivo no se presentaron diferencias significativas con la temperatura. El extracto seco con 5% de maltodextrina (MD) evidenció buenas características físicas y un alto contenido de polifenoles, que incorporado a una bebida láctea causó un aumento del 114% en la capacidad reductora FRAP (a 2 g/L), con respecto al control. Además, su incorporación mantuvo una muy buena aceptación sensorial de la bebida láctea, evidenciando un gran potencial para ser incluido en otras matrices alimenticias. (Tomado de la fuente)spa
dc.description.abstractMoringa oleífera leaves are recognized for their high nutritional value and high bioactive components, however, they are highly perishable due to their high moisture content. Drying is a process that allows preservation, reducing water activity and inhibiting deleterious reactions associated with this, but could cause losses in leave’s nutraceutical quality. For that, evaluating different drying technologies (thermal and non-thermal) and their parameters is important for obtaining a greater quality, and minimizing losses in antioxidant compounds of moringa leaves. In this work, fresh moringa leaves were collected and treated with four drying methods: lyophilization, sun-drying, convective (40, 50, 60, 70, and 80 °C), and microwave (360, 540, 720 y 900 W). Drying kinetics, semi-empirical model fitting, and other parameters were evaluated. Antioxidant metabolites were quantified by total polyphenols and flavonoid methods, and antioxidant capacity was evaluated by ABTS and FRAP methods. Additionally, a powder product was elaborated through moringa’s dry extract and used as a milk drink supplement. The Logistics model presented the best fit for kinetics drying with 0.9987 < R2 < 0.9998 values. The shortest drying time was obtained by microwave at 900 W (2.7 min) presenting high values for drying velocity (3.29 kg water/kg dry matter*min) and effective diffusivity (7.900 x 10-10 m2 /s). Additionally, polyphenols’ greater content was obtained for fresh leaves with a value of 2357.48 ± 95.02 mg AGE/100g DB, followed by lyophilization and 900 W with preservation values of 98% and 76%, respectively, with a similar trend observed for flavonoids. For ABTS and FRAP methods, fresh leaves registered the highest values of 63934.97 and 15197.40 µmol TE/100 g DB, respectively, followed by lyophilization, allowing the preservation of 81% and 95%. In microwave drying, the greater retention was presented at 900 W, with values of 72% and 82% for ABTS and FRAP, respectively, for convective drying significant differences were not presented with drying temperature. Dry extract with 5% maltodextrin (MD) showed good physical characteristics and a high polyphenols content, incorporated into a milk drink caused an increment of 114% in FRAP reduction capacity (with 2 g/L), concerning control. Also, its incorporation kept a very good milk drink’s sensorial acceptation, showing great potential to be included in other food matrices.eng
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación de Colombia (MINCIENCIAS) mediante la convocatoria 891 de 2020: “Vocaciones y formación en CTeI para la reactivación económica en el marco de la postpandemia 2020”.spa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87302
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdulalim, T. S., Zayan, A. F., Campelo, P. H., & Bakry, A. M. (2018). Development of new functional fermented product: mulberry-whey beverage. Journal of Nutrition, Food Research and Technology, 1(3), 64–69. https://doi.org/10.30881/jnfrt.00013spa
dc.relation.referencesAbdullah, S., Shaari, A. R., & Azimi, A. (2012). Effect of Drying Methods on Metabolites Composition of Misai Kucing (Orthosiphon stamineus) Leaves. APCBEE Procedia, 2, 178–182. https://doi.org/10.1016/j.apcbee.2012.06.032spa
dc.relation.referencesAdemiluyi, A. O., Aladeselu, O. H., Oboh, G., & Boligon, A. A. (2018). Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6(8), 2123 2133. https://doi.org/10.1002/fsn3.770spa
dc.relation.referencesAli, M. A., Yusof, Y. A., Chin, N. L., Ibrahim, M. N., & Basra, S. M. A. (2014). Drying Kinetics and Colour Analysis of Moringa Oleifera Leaves. Italian Oral Surgery, 2, 394–400. https://doi.org/10.1016/j.aaspro.2014.11.055spa
dc.relation.referencesAmaglo, N. K., Bennett, R. N., Lo Curto, R. B., Rosa, E. A. S., Lo Turco, V., Giuffrida, A., Curto, A. Lo, Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, https://doi.org/10.1016/j.foodchem.2010.03.073spa
dc.relation.referencesAmini, G., Salehi, F., & Rasouli, M. (2022). Color changes and drying kinetics modeling of basil seed mucilage during infrared drying process. Information Processing in Agriculture, 9(3), 397–405. https://doi.org/10.1016/j.inpa.2021.07.001spa
dc.relation.referencesAnwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. https://doi.org/10.1002/ptr.2023spa
dc.relation.referencesAOAC. (2005). AOAC-Association of official analytical chemists. Official Methods of Analysis of AOAC International 18th Ed, Gaithersburg, Maryland, USA, 45, 75–76.spa
dc.relation.referencesAtaei, A., Sadeghi, M., Beheshti, B., Minaei, S., & Hamdami, N. (2015). Vibro-fluidized bed heat pump drying of mint leaves with respect to phenolic content, antioxidant activity, and color indices. Chemical Industry and Chemical Engineering Quarterly, 21(2), 239 247. https://doi.org/10.2298/CICEQ131206021Aspa
dc.relation.referencesBabiker, E. E., Juhaimi, F. A. L., Ghafoor, K., & Abdoun, K. A. (2016). Effect of drying methods on nutritional quality of young shoots and leaves of two Moringa species as non-conventional fodders. Agroforestry https://doi.org/10.1007/s10457-016-0043-8spa
dc.relation.referencesBélanger, J. M. R., Paré, J. R. J., Poon, O., Fairbridge, C., Ng, S., Mutyala, S., & Hawkins, R. (2008). Remarks on various applications of microwave energy. Journal of Microwave Power and Electromagnetic https://doi.org/10.1080/08327823.2007.11688597spa
dc.relation.referencesBensebia, O., & Allia, K. (2015). Drying and extraction kinetics of rosemary leaves: Experiments and modeling. Journal of Essential Oil-Bearing Plants, 18(1), 99–111. https://doi.org/10.1080/0972060X.2014.901620spa
dc.relation.referencesBenzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6spa
dc.relation.referencesBhatta, S., Janezic, T. S., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 1–22. https://doi.org/10.3390/foods9010087spa
dc.relation.referencesBiswas, A., Hoque, T., & Abedin, M. (2016). Effects of moringa leaf extract on growth and yield maize. Progressive https://doi.org/10.3329/pa.v27i2.29322spa
dc.relation.referencesCaccavale, P., De Bonis, M. V., & Ruocco, G. (2016). Conjugate heat and mass transfer in drying: A modeling review. Journal of Food Engineering, 176, 28–35. https://doi.org/10.1016/j.jfoodeng.2015.08.031spa
dc.relation.referencesCarrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in food dehydration. CRC Press, Boca Raton.spa
dc.relation.referencesCastells, M. L., González, M., Mattos, C., Juliano, P., Mellinger, C., Sepulveda, J. U., Jorcín, S., Krolow, A. C., Di Risio, J., & López, T. (2017). Valorización del lactosuero. In Alternativas de valorización de sueros de quesería.spa
dc.relation.referencesCastro Márquez, A. M. (2013). El árbol moringa (Moringa oleífera Lam.): una alternativa renovable para el desarrollo de los sectores económicos y ambientales de Colombia. Universidad Militar Nueva Granada.spa
dc.relation.referencesChandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International, https://doi.org/10.1016/j.foodres.2013.02.033spa
dc.relation.referencesCoppin, J. P., Xu, Y., Chen, H., Pan, M. H., Ho, C. T., Juliani, R., Simon, J. E., & Wu, Q. (2013). Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. Journal of Functional Foods, 5(4), 1892–1899. https://doi.org/10.1016/j.jff.2013.09.010spa
dc.relation.referencesCory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5(September), 1–9. https://doi.org/10.3389/fnut.2018.00087spa
dc.relation.referencesCosta-Pinto, R., & Gantner, D. (2020). Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care https://doi.org/10.1016/j.mpaic.2019.12.006spa
dc.relation.referencesCrank, J. (1975). the Mathematics of Diffusion Clarendon Press Oxford 1975. 3–4.spa
dc.relation.referencesDamodaran, S., & Parkin, K. L. (2017). Fennema’s Food Chemistry, Fifth Edition. In Fennema’s Food Chemistry, https://doi.org/10.1201/9781315372914spa
dc.relation.referencesDania, Oladebeye, Olukoya, & Adejumo, P. O. (2018). Effect of Different Drying Methods on Proximate Composition of Moringa Oleifera Leaves. Management, Science & Technology (JAMST), 5(1).spa
dc.relation.referencesDas, S., Mukhopadhyay, A. K., Datta, S., & Basu, D. (2009). Prospects of microwave processing: An overview. Bulletin of Materials Science, 32(1), 1–13. https://doi.org/10.1007/s12034-009-0001-4spa
dc.relation.referencesDegot, P., Huber, V., Hofmann, E., Hahn, M., Touraud, D., & Kunz, W. (2021). Solubilization and extraction of curcumin from Curcuma longa using green, sustainable, and food approved surfactant-free microemulsions. Food Chemistry, 336, 127660. https://doi.org/10.1016/j.foodchem.2020.127660spa
dc.relation.referencesDemirhan, E., & Özbek, B. (2011). Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 198(7), 957–975. https://doi.org/10.1080/00986445.2011.545298spa
dc.relation.referencesDent, M., Dragović-Uzelac, V., Penić, M., Brñić, M., Bosiljkov, T., & Levaj, B. (2013). The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology, 51(1), 84–91spa
dc.relation.referencesDev, S. R. S., Geetha, P., Orsat, V., Gariépy, Y., & Raghavan, G. S. V. (2011). Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29(12), 1452–1458. https://doi.org/10.1080/07373937.2011.587926spa
dc.relation.referencesDomínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 1–31. https://doi.org/10.3390/antiox8100429spa
dc.relation.referencesDong, J., Ma, X., Fu, Z., & Guo, Y. (2011). Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Industrial Crops and Products, 34(1), 1102–1110. https://doi.org/10.1016/j.indcrop.2011.03.026spa
dc.relation.referencesDoymaz, İ. (2017a). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8spa
dc.relation.referencesDoymaz, I., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves (Salvia officinalis). Quality Assurance and Safety of Crops and Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257spa
dc.relation.referencesDoymaz, İ., Tugrul, N., & Pala, M. (2006). Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77(3), 559–565. https://doi.org/10.1016/j.jfoodeng.2005.06.070spa
dc.relation.referencesErbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533–541. https://doi.org/10.1016/j.jfoodeng.2008.10.004spa
dc.relation.referencesErbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063spa
dc.relation.referencesFang, S., Wang, Z., & Hu, X. (2009). Hot air drying of whole fruit Chinese jujube ( Zizyphus jujuba Miller): thin-layer mathematical modelling. International Journal of Food Science & Technology, 44(9), 1818–1824. https://doi.org/10.1111/j.1365-2621.2009.02005.xspa
dc.relation.referencesFeng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89 106. https://doi.org/10.1007/s12393-012-9048-xspa
dc.relation.referencesFoidl, N., Makkar, H., & Becker, K. (2001). the Potential of Moringa oleifera. Dar Es Salaam, 20.spa
dc.relation.referencesGandji, K., Chadare, F. J., Idohou, R., Salako, V. K., Assogbadjo, A. E., & Kakaï, R. L. G. (2018). Status and utilisation of Moringa oleifera Lam: A review. African Crop Science Journal, 26(1), 137. https://doi.org/10.4314/acsj.v26i1.10spa
dc.relation.referencesGaniari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science and Technology, 68, 70–82. https://doi.org/10.1016/j.tifs.2017.08.009spa
dc.relation.referencesGiri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512–521. https://doi.org/10.1016/j.jfoodeng.2005.10.021spa
dc.relation.referencesGlover-Amengor, M., & Mensah, F. (2012). Nutritional evaluation of Moringa oleifera leaves using three drying methods. Journal of Research in Biology, 2(5), 469–473.spa
dc.relation.referencesGonzález-Romero, J., Arranz-Arranz, S., Verardo, V., García-Villanova, B., & Guerra - Hernández, E. J. (2020). Bioactive compounds and antioxidant capacity of moringa leaves grown in Spain versus 28 leaves commonly consumed in pre-packaged salads. Processes, 8(10), 1–20. https://doi.org/10.3390/pr8101297spa
dc.relation.referencesGriesbach, R. J. (2010). Biochemistry and genetics of flower color.spa
dc.relation.referencesGulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. In Archives of Toxicology (Vol. 94, Issue 3). https://doi.org/10.1007/s00204-020-02689-3spa
dc.relation.referencesHatch, M., & de Silva, C. (2013). Handbook of food powders: Processes and properties. Woodhead Publishing Limited. https://doi.org/10.1201/9781420053203.bmattspa
dc.relation.referencesHihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509.spa
dc.relation.referencesInyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques— Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003spa
dc.relation.referencesJayawardana, B. C., Liyanage, R., Lalantha, N., Iddamalgoda, S., & Weththasinghe, P. (2015). Antioxidant and antimicrobial activity of drumstick (Moringa oleifera) leaves in herbal chicken sausages. LWT - Food Science and Technology, 64(2), 1204–1208. https://doi.org/10.1016/j.lwt.2015.07.028spa
dc.relation.referencesJeni, K., Yapa, M., & Rattanadecho, P. (2010). Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves). Chemical Engineering and Processing: Process Intensification, 49(4), 389–395. https://doi.org/10.1016/j.cep.2010.03.003spa
dc.relation.referencesJu, H. Y., El-Mashad, H. M., Fang, X. M., Pan, Z., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2016). Drying characteristics and modeling of yam slices under different relative humidity conditions. Drying Technology, https://doi.org/10.1080/07373937.2015.1052082spa
dc.relation.referencesKaleta, A., Górnicki, K., Winiczenko, R., & Chojnacka, A. (2013). Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67, 179–185. https://doi.org/10.1016/j.enconman.2012.11.011spa
dc.relation.referencesKarimi, F., Rafiee, S., Taheri-Garavand, A., & Karimi, M. (2012). Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 29–39. https://doi.org/10.1016/j.jtice.2011.04.005spa
dc.relation.referencesKhodja, Y. K., Dahmoune, F., Bey, M. B., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: Effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419spa
dc.relation.referencesKomonsing, N., Khuwijitjaru, P., Nagle, M., Müller, J., & Mahayothee, B. (2022). Effect of drying temperature together with light on drying characteristics and bioactive compounds in turmeric slice. Journal of Food Engineering, 317(November 2020), 110695. https://doi.org/10.1016/j.jfoodeng.2021.110695spa
dc.relation.referencesKrólczyk, J. B., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry - A Review. Polish Journal of Food and Nutrition Sciences, 66(3), 157–165. https://doi.org/10.1515/pjfns-2015-0052spa
dc.relation.referencesKubra, I. R., & Rao, L. J. M. (2012). Microwave drying of ginger ( Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity. International Journal of Food Science & Technology, 47(11), 2311–2317. https://doi.org/10.1111/j.1365 2621.2012.03104.xspa
dc.relation.referencesKumar, C., & Karim, M. A. (2019). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59(3), 379–394. https://doi.org/10.1080/10408398.2017.1373269spa
dc.relation.referencesKumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific https://doi.org/10.1155/2013/162750spa
dc.relation.referencesLakey-Beitia, J., Burillo, A. M., La Penna, G., Hegde, M. L., & Rao, K. S. (2020). Polyphenols as Potential Metal Chelation Compounds Against Alzheimer’s Disease. Journal of Alzheimer’s Disease, 1–23. https://doi.org/10.3233/jad-200185spa
dc.relation.referencesLeJeune, T. M., Tsui, H. Y., Parsons, L. B., Miller, G. E., Whitted, C., Lynch, K. E., Ramsauer, R. E., Patel, J. U., Wyatt, J. E., Street, D. S., Adams, C. B., McPherson,B., Tsui, H. M., Evans, J. A., Livesay, C., Torrenegra, R. D., & Palau, V. E. (2015). Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142928spa
dc.relation.referencesLeone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2015). Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences, 16(6), 12791 - 12835. https://doi.org/10.3390/ijms160612791spa
dc.relation.referencesLimon, D. I., Mendieta, L., & Luna, F. (2010). Los Flavonoides : Mecanismo De Acción , Neuroprotección Y Efectos. Mensaje Bioquímico, XXXIV(March), 143–154.spa
dc.relation.referencesLiñan Tobias, F. (2010). Moringa oleifera el árbol de la nutrición. Ciencia y Salud Virtual, 2(1), 130–138.spa
dc.relation.referencesLiu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371–378. https://doi.org/10.1016/j.chmed.2018.09.002spa
dc.relation.referencesLópez-Vidaña, E. C., Pilatowsky Figueroa, I., Cortés, F. B., Rojano, B. A., & Navarro Ocaña, A. (2017). Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium meridionale Swartz). International Journal of Food Properties, 20(2), 294–305. https://doi.org/10.1080/10942912.2016.1155601spa
dc.relation.referencesLosada-Barreiro, S., & Bravo-Díaz, C. (2017). Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry, 133, 379–402. https://doi.org/10.1016/j.ejmech.2017.03.061spa
dc.relation.referencesLozano-Castellanos, L. F. (2019). Composición del aceite de semilla de Moringa oleifera y evaluación de la sostenibilidad para su implementación como cultivo agroforestal en Colombia. Universidad de Valladolid.spa
dc.relation.referencesMadi, N., Dany, M., Abdoun, S., & Usta, J. (2016). Moringa oleifera ’s Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner. Journal of the American College of Nutrition, 35(7), 604 613. https://doi.org/10.1080/07315724.2015.1080128spa
dc.relation.referencesMaleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299(July). https://doi.org/10.1016/j.foodchem.2019.125124spa
dc.relation.referencesMallenakuppe, R., Homabalegowda, H., Gouri, M. D., Basavaraju, P. S., & Chandrashekharaiah, U. B. (2019). History, Taxonomy and Propagation of Moringa oleifera-A Review. SSR Institute of International Journal of Life Sciences, 5(3), 2322 - 2327. https://doi.org/10.21276/ssr-iijls.2019.5.3.7spa
dc.relation.referencesManach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727 747. https://doi.org/10.1093/ajcn/79.5.727spa
dc.relation.referencesMarinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260.spa
dc.relation.referencesMcBurney, R. P. H., Griffin, C., Paul, A. A., & Greenberg, D. C. (2004). The nutritional composition of African wild food plants: From compilation to utilization. Journal of Food Composition and Analysis, https://doi.org/10.1016/j.jfca.2004.03.008spa
dc.relation.referencesMeda, V., Orsat, V., & Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100528-6.00002-4spa
dc.relation.referencesMello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978-0-444-59420-4.00002-7spa
dc.relation.referencesMishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035spa
dc.relation.referencesMolero-Méndez, M. S., Flores-Rondón, C., Leal-Ramírez, M., & Briñez-Zambrano, W. J. (2017). Sensory evaluation of probiotic fermented beverges based on whey. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 27(2), 70–77.spa
dc.relation.referencesMouhoubi, K., Boulekbache-Makhlouf, L., Mehaba, W., Himed-Idir, H., & Madani, K. (2022). Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. Journal of Food Process Engineering, 45(1), 1–13. https://doi.org/10.1111/jfpe.13932spa
dc.relation.referencesMujumdar, A. S. (2014). Handbook of industrial drying, fourth edition. In Handbook of Industrial Drying, Fourth Edition. https://doi.org/10.1201/b17208spa
dc.relation.referencesMujumdar, A. S., & Law, C. L. (2010). Drying Technology: Trends and Applications in Postharvest Processing. Food and Bioprocess Technology, 3(6), 843–852. https://doi.org/10.1007/s11947-010-0353-1spa
dc.relation.referencesMukhopadhyay, S., & Siebenmorgen, T. J. (2018). Effect of airflow rate on drying air and moisture content profiles inside a cross-flow drying column. Drying Technology, 36(11), 1326–1341. https://doi.org/10.1080/07373937.2017.1402024spa
dc.relation.referencesNaikwade, P. (2015). Effect of drying methods on nutritional value of some vegetables. Bioscience Discovery, 6(January 2015), 80–84.spa
dc.relation.referencesNail, S. L., Jiang, S., Chongprasert, S., & Knopp, S. A. (2002). Fundamentals of Freeze Drying BT - Development and Manufacture of Protein Pharmaceuticals. Development and Manufacture of Protein Pharmaceuticals, 14(Chapter 6), 281–360.spa
dc.relation.referencesNanda, A., Mohapatra, D. B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59–65. https://doi.org/10.22271/maths.2021.v6.i1a.636spa
dc.relation.referencesNasri, M. Y., & Belhamri, A. (2018). Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potato-case of Maghreb’s region. Journal of Cleaner Production, 183, 1241–1251. https://doi.org/10.1016/j.jclepro.2018.02.103spa
dc.relation.referencesNg, Z. X., Yong, P. H., & Lim, S. Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155(April), 112815. https://doi.org/10.1242/jeb.02490spa
dc.relation.referencesNireesha, G., Divya, L., Sowmya, C., Venkateshan, N., Niranjan Babu, M., & Lavakumar, V. (2013). Lyophilization/Freeze Drying -An Review. Ijntps, 3(4), 87–98.spa
dc.relation.referencesNobossé, P., Fombang, E. N., & Mbofung, C. M. F. (2018). Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Science and Nutrition, 6(8), 2188–2198. https://doi.org/10.1002/fsn3.783spa
dc.relation.referencesNouman, W., Basra, S. M. A., Siddiqui, M. T., Yasmeen, A., Gull, T., & Alcayde, M. A. C. (2014). Potential of Moringa oleifera L. as livestock fodder crop: A review. Turkish Journal of Agriculture and Forestry, 38(1), 1–14. https://doi.org/10.3906/tar-1211-66spa
dc.relation.referencesNourhène, B., Mohammed, K., & Nabil, K. (2008). Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food and Bioproducts Processing, 86(3), 176–184. https://doi.org/10.1016/j.fbp.2007.10.001spa
dc.relation.referencesOldoni, T. L. C., dos Santos, S., Mitterer-Daltoé, M. L., Pizone, L. H. I., & Lima, V. A. de. (2022). Moringa oleifera leaves from Brazil: Influence of seasonality, regrowth age and, region in biochemical markers and antioxidant potential. Arabian Journal of Chemistry, 15(11), 104206. https://doi.org/10.1016/j.arabjc.2022.104206spa
dc.relation.referencesOlson, M. E., & Fahey, J. W. (2011). Moringa oleifera: Un árbol multiusos para las zonas tropicales secas. Revista Mexicana de Biodiversidad, 82(4), 1071–1082. https://doi.org/10.22201/ib.20078706e.2011.4.678spa
dc.relation.referencesOnwude, D. I., Hashim, N., Janius, R., Nawi, N. M., & Abdan, K. (2017). Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature. Italian Journal of Food Science, 29(1), 1–18. https://doi.org/10.14674/1120 1770/ijfs.v398spa
dc.relation.referencesOnwude, Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196spa
dc.relation.referencesOrphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9spa
dc.relation.referencesOyeyinka, A. T., & Oyeyinka, S. A. (2018). Moringa oleifera as a food fortificant : Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, 17(2), 127–136. https://doi.org/10.1016/j.jssas.2016.02.002spa
dc.relation.referencesPakade, V., Cukrowska, E., & Chimuka, L. (2013). Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science, 109(3–4), 1–5. https://doi.org/10.1590/sajs.2013/1154spa
dc.relation.referencesPanche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41spa
dc.relation.referencesPereira, J. M. G., Viell, F. L. G., de Lima, P. C., Silva, E., Pilau, E. J., Corrêa, R. C. G., Bona, E., & Vieira, A. M. S. (2021). Optimization of the extraction of antioxidants from Moringa leaves: A comparative study between ultrasound- and ultra-homogenizer assisted extractions. Journal of Food Processing and Preservation, 45(6), 1–14. https://doi.org/10.1111/jfpp.15512spa
dc.relation.referencesPirbalouti, A. G., Salehi, S., & Craker, L. (2017). Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 35–40. https://doi.org/10.1016/j.jarmap.2016.07.006spa
dc.relation.referencesPotisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. So01.Tci-Thaijo.Org, 20(1), 12–25.spa
dc.relation.referencesPremi, M., Sharma, H., & Upadhyay, A. (2012). Effect of air velocity and temperature on the drying kinetics of drumstick leaves (Moringa oleifera). International Journal of Food Engineering, 8(4). https://doi.org/10.1515/1556-3758.1986spa
dc.relation.referencesPu, H., Li, Z., Hui, J., & Raghavan, G. S. V. (2016). Effect of relative humidity on microwave drying carrot. Journal of Food https://doi.org/10.1016/j.jfoodeng.2016.06.027spa
dc.relation.referencesPutra, R. N., & Ajiwiguna, T. A. (2017). Influence of Air Temperature and Velocity for Drying Process. Procedia Engineering, 170, 516–519. https://doi.org/10.1016/j.proeng.2017.03.082spa
dc.relation.referencesPuttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054spa
dc.relation.referencesRababah, T. M., Al-U’ Datt, M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150. https://doi.org/10.3965/j.ijabe.20150802.1496spa
dc.relation.referencesRamírez-Navas, J. S. (2012). Análisis sensorial: pruebas orientadas al consumidor. Revista RECITEIA, 12(1), 83–102.spa
dc.relation.referencesRamsumair, A., Mlambo, V., & Lallo, C. H. O. (2014). Effect of drying method on the chemical composition of leaves from four tropical tree species. Tropical Agriculture, 91(3), 179–186.spa
dc.relation.referencesRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3spa
dc.relation.referencesRibaudo, G., Povolo, C., & Zagotto, G. (2019). Moringa oleifera Lam.: A Rich Source of Phytoactives for the Health of Human Being. In Studies in Natural Products Chemistry (1st ed., Vol. 62). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64185-4.00005-8spa
dc.relation.referencesRocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001spa
dc.relation.referencesRodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002spa
dc.relation.referencesSaini, R. K., Shetty, N. P., Prakash, M., & Giridhar, P. (2014). Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of Food Science and Technology, 51(9), 2176–2182. https://doi.org/10.1007/s13197-014-1264-3spa
dc.relation.referencesSantos, A., Argolo, A. C. C., Paiva, P. M. G., & Coelho, L. C. B. B. (2012). Antioxidant activity of Moringa oleifera tissue extracts. Phytotherapy Research : PTR, 26(9), 1366 1370. https://doi.org/10.1002/ptr.4591spa
dc.relation.referencesSantos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão ( Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057spa
dc.relation.referencesSaucedo-Pompa, S., Torres-Castillo, J. A., Castro-López, C., Rojas, R., Sánchez-Alejo, E. J., Ngangyo-Heya, M., & Martínez-Ávila, G. C. G. (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111(May), 438–450. https://doi.org/10.1016/j.foodres.2018.05.062spa
dc.relation.referencesSelvi, K. Ç. (2020). Investigating the influence of infrared drying method on linden (Tilia platyphyllos scop.) leaves: Kinetics, color, projected area, modeling, total phenolic, and flavonoid content. Plants, 9(7), 1–17. https://doi.org/10.3390/plants9070916spa
dc.relation.referencesŞevik, S. (2014). Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy, 105, 190–205. https://doi.org/10.1016/j.solener.2014.03.037spa
dc.relation.referencesShahidi, F. (2015). Handbook of Antioxidants for Food Preservation. In B. J. F. Hudson (Ed.), Handbook of Antioxidants for Food Preservation (Vol. 162, Issue 1). Elsevier. https://doi.org/10.1016/C2013-0-16454-9spa
dc.relation.referencesShinde, A., Das, S., & Datta, A. K. (2013). Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air-radio frequency (RF) dryer. Journal of Food Engineering, 116(2), 444–449. https://doi.org/10.1016/j.jfoodeng.2012.12.001spa
dc.relation.referencesShivanna, V. B., & Subban, N. (2014). Effect of Various Drying Methods on Flavor Characteristics and Physicochemical Properties of Dried Curry Leaves (Murraya koenigii L. Spreng). Drying Technology, 32(8), 882–890. https://doi.org/10.1080/07373937.2013.871727spa
dc.relation.referencesShukla, S. (2011). Freeze drying process: A review. International Journal of Pharmaceutical Sciences and Research, 2(12), 3061.spa
dc.relation.referencesSingleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158.spa
dc.relation.referencesSiqueira, V. C., Resende, O., & Chaves, T. H. (2012). Drying kinetics of jatropha seeds. Revista Ceres, 59(2), 171–177. https://doi.org/10.1590/S0034-737X2012000200004spa
dc.relation.referencesŚledź, M., Nowacka, M., Wiktor, A., & Witrowa-Rajchert, D. (2013). Selected chemical and physico-chemical properties of microwave-convective dried herbs. Food and Bioproducts Processing, 91(4), 421–428. https://doi.org/10.1016/j.fbp.2013.02.010spa
dc.relation.referencesSreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64(4), 303–311. https://doi.org/10.1007/s11130-009-0141-0spa
dc.relation.referencesSrivastava, N., & Bezwada, R. (2015). Flavonoids: The Health Boosters. White Paper. Hillsborough NJ: Indofine Chemical Company.spa
dc.relation.referencesTafesse, A., Goshu, D., Gelaw, F., & Ademe, A. (2020). Commercialization of Moringa: Evidence from Southern Ethiopia. Cogent Economics and Finance, 8(1), 1–15. https://doi.org/10.1080/23322039.2020.1783909spa
dc.relation.referencesTelfser, A., & Galindo, F. G. (2019). Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT, 99(April 2018), 148–155. https://doi.org/10.1016/j.lwt.2018.09.062spa
dc.relation.referencesThamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309spa
dc.relation.referencesThangaraj, P. (2016). Proximate Composition Analysis. In Progress in Drug Research (Vol. 71, pp. 21–31). https://doi.org/10.1007/978-3-319-26811-8_5spa
dc.relation.referencesTiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and Pharmacotherapy, 108(September), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060spa
dc.relation.referencesTorki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A., & Sadeghi, M. (2016). Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews, 58, 407–418. https://doi.org/10.1016/j.rser.2015.12.078spa
dc.relation.referencesTzempelikos, D. A., Vouros, A. P., Bardakas, A. V., Filios, A. E., & Margaris, D. P. (2014). Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Engineering, 3, 79–85. https://doi.org/10.1016/j.csite.2014.05.001spa
dc.relation.referencesUdikala, M., Verma, Y., Sushma, S., & Lal, S. (2017). Phytonutrient and Pharmacological Significance of Moringa oleifera. International Journal of Life-Sciences Scientific Research, 3(5), 1387–1391. https://doi.org/10.21276/ijlssr.2017.3.5.21spa
dc.relation.referencesUllah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243spa
dc.relation.referencesValadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science and Emerging Technologies, 41(October 2016), 378–386. https://doi.org/10.1016/j.ifset.2017.04.012spa
dc.relation.referencesVongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44(November 2017), 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021spa
dc.relation.referencesYildiz, G., Wehling, R. L., & Cuppett, S. L. (2001). Method for determining oxidation of vegetable oils by near-infrared spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society, 78(5), 495–502. https://doi.org/10.1007/s11746-001-0292-1spa
dc.relation.referencesYilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831spa
dc.relation.referencesZapata, K., Rojano, B. A., & Cortés, F. B. (2015). Effect of Relative Humidity on the Antioxidant Activity of Spray-Dried Banana Passion Fruit (Passiflora mollisima Baley) Coated Pulp: Measurement of the Thermodynamic Properties of Sorption. Chemical Engineering Communications, 202(3), 269–278. https://doi.org/10.1080/00986445.2013.840829spa
dc.relation.referencesZeece, M. (2020). Food colorants. In Introduction to the Chemistry of Food (pp. 313–344). Elsevier. https://doi.org/10.1016/B978-0-12-809434-1.00008-6spa
dc.relation.referencesZhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science and Technology, 17(10), 524 - 534. https://doi.org/10.1016/j.tifs.2006.04.011spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocMoringa oleifera
dc.subject.ddc660 - Ingeniería química::663 - Tecnología de bebidasspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembTecnología de alimentos
dc.subject.lembDesarrollo de productos
dc.subject.lembPlantas oleaginosas
dc.subject.lembDeshidratación de alimentos
dc.subject.lembPlantas oleaginosas - Deshidratación
dc.subject.lembIndustrias alimenticias
dc.subject.lembProductos lácteos
dc.subject.proposalLactosuerospa
dc.subject.proposalextracto de moringaspa
dc.subject.proposalcinéticas de secadospa
dc.subject.proposalmicroondasspa
dc.subject.proposalpolifenolesspa
dc.subject.proposalwheyeng
dc.subject.proposalmoringa’s extracteng
dc.subject.proposaldrying kineticseng
dc.subject.proposalmicrowaveeng
dc.subject.proposalpolyphenolseng
dc.titleEvaluación del efecto de la temperatura de deshidratación sobre la capacidad antioxidante y el contenido de metabolitos antioxidantes en hojas de Moringa oleifera e incorporación en una bebida lácteaspa
dc.title.translatedEvaluation of temperature effect of drying on antioxidant capacity and antioxidant metabolites content of Moringa oleifera leaves and incorporation into a milk drinkeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1214732085.2022.pdf
Tamaño:
2.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: