Evaluación del efecto de la temperatura de deshidratación sobre la capacidad antioxidante y el contenido de metabolitos antioxidantes en hojas de Moringa oleifera e incorporación en una bebida láctea
dc.contributor.advisor | Rojano, Benjamin Alberto | |
dc.contributor.advisor | Alzate Arbeláez, Andrés Felipe | |
dc.contributor.author | Zapata Giraldo, Santiago | |
dc.contributor.researchgroup | Química de Los Productos Naturales y Los Alimentos | spa |
dc.date.accessioned | 2024-12-16T13:46:20Z | |
dc.date.available | 2024-12-16T13:46:20Z | |
dc.date.issued | 2022 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | Las hojas de Moringa oleífera son reconocidas por su elevado valor nutricional y de componentes bioactivos, sin embargo, son altamente perecederas debido a su alto contenido de humedad. El secado es un proceso que favorece la conservación, reduciendo la actividad de agua e inhibiendo las reacciones de deterioro asociadas a esta, pero puede ocasionar pérdidas en la calidad nutraceútica de las hojas. Por esto, la evaluación de diferentes tecnologías (térmicas y no térmicas) y los parámetros de secado es de importancia para obtener una mayor estabilidad, minimizando la pérdida de compuestos antioxidantes en las hojas de moringa. En este trabajo, se colectaron hojas de moringa frescas y fueron sometidas a cuatro métodos de secado: liofilización, solar, convectivo (40, 50, 60, 70 y 80 °C) y microondas (360, 540, 720 y 900 W). Las cinéticas de secado, el ajuste a modelos semi empíricos y otros parámetros fueron evaluados. Los metabolitos antioxidantes fueron cuantificados por el método de polifenoles totales y flavonoides, mientras que la capacidad antioxidante fue evaluada por los métodos ABTS y FRAP. Adicionalmente, se elaboró un producto en polvo a partir del extracto seco de Moringa y se empleó como suplemento en una bebida láctea. El modelo con mejor ajuste a las cinéticas de secado fue Logistics con valores de 0.9987< R2, respectivamente, seguido de liofilización permitiendo una conservación del 81% y 95%. En el secado en microondas la mayor retención se presentó a 900 W, con valores de 72% y 82% para ABTS y FRAP respectivamente, para el secado convectivo no se presentaron diferencias significativas con la temperatura. El extracto seco con 5% de maltodextrina (MD) evidenció buenas características físicas y un alto contenido de polifenoles, que incorporado a una bebida láctea causó un aumento del 114% en la capacidad reductora FRAP (a 2 g/L), con respecto al control. Además, su incorporación mantuvo una muy buena aceptación sensorial de la bebida láctea, evidenciando un gran potencial para ser incluido en otras matrices alimenticias. (Tomado de la fuente) | spa |
dc.description.abstract | Moringa oleífera leaves are recognized for their high nutritional value and high bioactive components, however, they are highly perishable due to their high moisture content. Drying is a process that allows preservation, reducing water activity and inhibiting deleterious reactions associated with this, but could cause losses in leave’s nutraceutical quality. For that, evaluating different drying technologies (thermal and non-thermal) and their parameters is important for obtaining a greater quality, and minimizing losses in antioxidant compounds of moringa leaves. In this work, fresh moringa leaves were collected and treated with four drying methods: lyophilization, sun-drying, convective (40, 50, 60, 70, and 80 °C), and microwave (360, 540, 720 y 900 W). Drying kinetics, semi-empirical model fitting, and other parameters were evaluated. Antioxidant metabolites were quantified by total polyphenols and flavonoid methods, and antioxidant capacity was evaluated by ABTS and FRAP methods. Additionally, a powder product was elaborated through moringa’s dry extract and used as a milk drink supplement. The Logistics model presented the best fit for kinetics drying with 0.9987 < R2 < 0.9998 values. The shortest drying time was obtained by microwave at 900 W (2.7 min) presenting high values for drying velocity (3.29 kg water/kg dry matter*min) and effective diffusivity (7.900 x 10-10 m2 /s). Additionally, polyphenols’ greater content was obtained for fresh leaves with a value of 2357.48 ± 95.02 mg AGE/100g DB, followed by lyophilization and 900 W with preservation values of 98% and 76%, respectively, with a similar trend observed for flavonoids. For ABTS and FRAP methods, fresh leaves registered the highest values of 63934.97 and 15197.40 µmol TE/100 g DB, respectively, followed by lyophilization, allowing the preservation of 81% and 95%. In microwave drying, the greater retention was presented at 900 W, with values of 72% and 82% for ABTS and FRAP, respectively, for convective drying significant differences were not presented with drying temperature. Dry extract with 5% maltodextrin (MD) showed good physical characteristics and a high polyphenols content, incorporated into a milk drink caused an increment of 114% in FRAP reduction capacity (with 2 g/L), concerning control. Also, its incorporation kept a very good milk drink’s sensorial acceptation, showing great potential to be included in other food matrices. | eng |
dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
dc.description.sponsorship | Ministerio de Ciencia Tecnología e Innovación de Colombia (MINCIENCIAS) mediante la convocatoria 891 de 2020: “Vocaciones y formación en CTeI para la reactivación económica en el marco de la postpandemia 2020”. | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87302 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdulalim, T. S., Zayan, A. F., Campelo, P. H., & Bakry, A. M. (2018). Development of new functional fermented product: mulberry-whey beverage. Journal of Nutrition, Food Research and Technology, 1(3), 64–69. https://doi.org/10.30881/jnfrt.00013 | spa |
dc.relation.references | Abdullah, S., Shaari, A. R., & Azimi, A. (2012). Effect of Drying Methods on Metabolites Composition of Misai Kucing (Orthosiphon stamineus) Leaves. APCBEE Procedia, 2, 178–182. https://doi.org/10.1016/j.apcbee.2012.06.032 | spa |
dc.relation.references | Ademiluyi, A. O., Aladeselu, O. H., Oboh, G., & Boligon, A. A. (2018). Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Science and Nutrition, 6(8), 2123 2133. https://doi.org/10.1002/fsn3.770 | spa |
dc.relation.references | Ali, M. A., Yusof, Y. A., Chin, N. L., Ibrahim, M. N., & Basra, S. M. A. (2014). Drying Kinetics and Colour Analysis of Moringa Oleifera Leaves. Italian Oral Surgery, 2, 394–400. https://doi.org/10.1016/j.aaspro.2014.11.055 | spa |
dc.relation.references | Amaglo, N. K., Bennett, R. N., Lo Curto, R. B., Rosa, E. A. S., Lo Turco, V., Giuffrida, A., Curto, A. Lo, Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, https://doi.org/10.1016/j.foodchem.2010.03.073 | spa |
dc.relation.references | Amini, G., Salehi, F., & Rasouli, M. (2022). Color changes and drying kinetics modeling of basil seed mucilage during infrared drying process. Information Processing in Agriculture, 9(3), 397–405. https://doi.org/10.1016/j.inpa.2021.07.001 | spa |
dc.relation.references | Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. https://doi.org/10.1002/ptr.2023 | spa |
dc.relation.references | AOAC. (2005). AOAC-Association of official analytical chemists. Official Methods of Analysis of AOAC International 18th Ed, Gaithersburg, Maryland, USA, 45, 75–76. | spa |
dc.relation.references | Ataei, A., Sadeghi, M., Beheshti, B., Minaei, S., & Hamdami, N. (2015). Vibro-fluidized bed heat pump drying of mint leaves with respect to phenolic content, antioxidant activity, and color indices. Chemical Industry and Chemical Engineering Quarterly, 21(2), 239 247. https://doi.org/10.2298/CICEQ131206021A | spa |
dc.relation.references | Babiker, E. E., Juhaimi, F. A. L., Ghafoor, K., & Abdoun, K. A. (2016). Effect of drying methods on nutritional quality of young shoots and leaves of two Moringa species as non-conventional fodders. Agroforestry https://doi.org/10.1007/s10457-016-0043-8 | spa |
dc.relation.references | Bélanger, J. M. R., Paré, J. R. J., Poon, O., Fairbridge, C., Ng, S., Mutyala, S., & Hawkins, R. (2008). Remarks on various applications of microwave energy. Journal of Microwave Power and Electromagnetic https://doi.org/10.1080/08327823.2007.11688597 | spa |
dc.relation.references | Bensebia, O., & Allia, K. (2015). Drying and extraction kinetics of rosemary leaves: Experiments and modeling. Journal of Essential Oil-Bearing Plants, 18(1), 99–111. https://doi.org/10.1080/0972060X.2014.901620 | spa |
dc.relation.references | Benzie, I. F. F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry, 29(2), 111–116. https://doi.org/https://doi.org/10.1016/0009-9120(95)02013-6 | spa |
dc.relation.references | Bhatta, S., Janezic, T. S., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 1–22. https://doi.org/10.3390/foods9010087 | spa |
dc.relation.references | Biswas, A., Hoque, T., & Abedin, M. (2016). Effects of moringa leaf extract on growth and yield maize. Progressive https://doi.org/10.3329/pa.v27i2.29322 | spa |
dc.relation.references | Caccavale, P., De Bonis, M. V., & Ruocco, G. (2016). Conjugate heat and mass transfer in drying: A modeling review. Journal of Food Engineering, 176, 28–35. https://doi.org/10.1016/j.jfoodeng.2015.08.031 | spa |
dc.relation.references | Carrín, M. E., & Crapiste, G. H. (2008). Convective drying of foods. In Advances in food dehydration. CRC Press, Boca Raton. | spa |
dc.relation.references | Castells, M. L., González, M., Mattos, C., Juliano, P., Mellinger, C., Sepulveda, J. U., Jorcín, S., Krolow, A. C., Di Risio, J., & López, T. (2017). Valorización del lactosuero. In Alternativas de valorización de sueros de quesería. | spa |
dc.relation.references | Castro Márquez, A. M. (2013). El árbol moringa (Moringa oleífera Lam.): una alternativa renovable para el desarrollo de los sectores económicos y ambientales de Colombia. Universidad Militar Nueva Granada. | spa |
dc.relation.references | Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International, https://doi.org/10.1016/j.foodres.2013.02.033 | spa |
dc.relation.references | Coppin, J. P., Xu, Y., Chen, H., Pan, M. H., Ho, C. T., Juliani, R., Simon, J. E., & Wu, Q. (2013). Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. Journal of Functional Foods, 5(4), 1892–1899. https://doi.org/10.1016/j.jff.2013.09.010 | spa |
dc.relation.references | Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5(September), 1–9. https://doi.org/10.3389/fnut.2018.00087 | spa |
dc.relation.references | Costa-Pinto, R., & Gantner, D. (2020). Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care https://doi.org/10.1016/j.mpaic.2019.12.006 | spa |
dc.relation.references | Crank, J. (1975). the Mathematics of Diffusion Clarendon Press Oxford 1975. 3–4. | spa |
dc.relation.references | Damodaran, S., & Parkin, K. L. (2017). Fennema’s Food Chemistry, Fifth Edition. In Fennema’s Food Chemistry, https://doi.org/10.1201/9781315372914 | spa |
dc.relation.references | Dania, Oladebeye, Olukoya, & Adejumo, P. O. (2018). Effect of Different Drying Methods on Proximate Composition of Moringa Oleifera Leaves. Management, Science & Technology (JAMST), 5(1). | spa |
dc.relation.references | Das, S., Mukhopadhyay, A. K., Datta, S., & Basu, D. (2009). Prospects of microwave processing: An overview. Bulletin of Materials Science, 32(1), 1–13. https://doi.org/10.1007/s12034-009-0001-4 | spa |
dc.relation.references | Degot, P., Huber, V., Hofmann, E., Hahn, M., Touraud, D., & Kunz, W. (2021). Solubilization and extraction of curcumin from Curcuma longa using green, sustainable, and food approved surfactant-free microemulsions. Food Chemistry, 336, 127660. https://doi.org/10.1016/j.foodchem.2020.127660 | spa |
dc.relation.references | Demirhan, E., & Özbek, B. (2011). Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 198(7), 957–975. https://doi.org/10.1080/00986445.2011.545298 | spa |
dc.relation.references | Dent, M., Dragović-Uzelac, V., Penić, M., Brñić, M., Bosiljkov, T., & Levaj, B. (2013). The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology, 51(1), 84–91 | spa |
dc.relation.references | Dev, S. R. S., Geetha, P., Orsat, V., Gariépy, Y., & Raghavan, G. S. V. (2011). Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29(12), 1452–1458. https://doi.org/10.1080/07373937.2011.587926 | spa |
dc.relation.references | Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 1–31. https://doi.org/10.3390/antiox8100429 | spa |
dc.relation.references | Dong, J., Ma, X., Fu, Z., & Guo, Y. (2011). Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Industrial Crops and Products, 34(1), 1102–1110. https://doi.org/10.1016/j.indcrop.2011.03.026 | spa |
dc.relation.references | Doymaz, İ. (2017a). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8 | spa |
dc.relation.references | Doymaz, I., & Karasu, S. (2018). Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves (Salvia officinalis). Quality Assurance and Safety of Crops and Foods, 10(3), 269–276. https://doi.org/10.3920/QAS2017.1257 | spa |
dc.relation.references | Doymaz, İ., Tugrul, N., & Pala, M. (2006). Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77(3), 559–565. https://doi.org/10.1016/j.jfoodeng.2005.06.070 | spa |
dc.relation.references | Erbay, Z., & Icier, F. (2009). Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 91(4), 533–541. https://doi.org/10.1016/j.jfoodeng.2008.10.004 | spa |
dc.relation.references | Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063 | spa |
dc.relation.references | Fang, S., Wang, Z., & Hu, X. (2009). Hot air drying of whole fruit Chinese jujube ( Zizyphus jujuba Miller): thin-layer mathematical modelling. International Journal of Food Science & Technology, 44(9), 1818–1824. https://doi.org/10.1111/j.1365-2621.2009.02005.x | spa |
dc.relation.references | Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89 106. https://doi.org/10.1007/s12393-012-9048-x | spa |
dc.relation.references | Foidl, N., Makkar, H., & Becker, K. (2001). the Potential of Moringa oleifera. Dar Es Salaam, 20. | spa |
dc.relation.references | Gandji, K., Chadare, F. J., Idohou, R., Salako, V. K., Assogbadjo, A. E., & Kakaï, R. L. G. (2018). Status and utilisation of Moringa oleifera Lam: A review. African Crop Science Journal, 26(1), 137. https://doi.org/10.4314/acsj.v26i1.10 | spa |
dc.relation.references | Ganiari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science and Technology, 68, 70–82. https://doi.org/10.1016/j.tifs.2017.08.009 | spa |
dc.relation.references | Giri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512–521. https://doi.org/10.1016/j.jfoodeng.2005.10.021 | spa |
dc.relation.references | Glover-Amengor, M., & Mensah, F. (2012). Nutritional evaluation of Moringa oleifera leaves using three drying methods. Journal of Research in Biology, 2(5), 469–473. | spa |
dc.relation.references | González-Romero, J., Arranz-Arranz, S., Verardo, V., García-Villanova, B., & Guerra - Hernández, E. J. (2020). Bioactive compounds and antioxidant capacity of moringa leaves grown in Spain versus 28 leaves commonly consumed in pre-packaged salads. Processes, 8(10), 1–20. https://doi.org/10.3390/pr8101297 | spa |
dc.relation.references | Griesbach, R. J. (2010). Biochemistry and genetics of flower color. | spa |
dc.relation.references | Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. In Archives of Toxicology (Vol. 94, Issue 3). https://doi.org/10.1007/s00204-020-02689-3 | spa |
dc.relation.references | Hatch, M., & de Silva, C. (2013). Handbook of food powders: Processes and properties. Woodhead Publishing Limited. https://doi.org/10.1201/9781420053203.bmatt | spa |
dc.relation.references | Hihat, S., Remini, H., & Madani, K. (2017). Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. International Food Research Journal, 24(2), 503–509. | spa |
dc.relation.references | Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic Models for Drying Techniques— Food Materials. Advances in Chemical Engineering and Science, 08(02), 27–48. https://doi.org/10.4236/aces.2018.82003 | spa |
dc.relation.references | Jayawardana, B. C., Liyanage, R., Lalantha, N., Iddamalgoda, S., & Weththasinghe, P. (2015). Antioxidant and antimicrobial activity of drumstick (Moringa oleifera) leaves in herbal chicken sausages. LWT - Food Science and Technology, 64(2), 1204–1208. https://doi.org/10.1016/j.lwt.2015.07.028 | spa |
dc.relation.references | Jeni, K., Yapa, M., & Rattanadecho, P. (2010). Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves). Chemical Engineering and Processing: Process Intensification, 49(4), 389–395. https://doi.org/10.1016/j.cep.2010.03.003 | spa |
dc.relation.references | Ju, H. Y., El-Mashad, H. M., Fang, X. M., Pan, Z., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2016). Drying characteristics and modeling of yam slices under different relative humidity conditions. Drying Technology, https://doi.org/10.1080/07373937.2015.1052082 | spa |
dc.relation.references | Kaleta, A., Górnicki, K., Winiczenko, R., & Chojnacka, A. (2013). Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67, 179–185. https://doi.org/10.1016/j.enconman.2012.11.011 | spa |
dc.relation.references | Karimi, F., Rafiee, S., Taheri-Garavand, A., & Karimi, M. (2012). Optimization of an air drying process for Artemisia absinthium leaves using response surface and artificial neural network models. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 29–39. https://doi.org/10.1016/j.jtice.2011.04.005 | spa |
dc.relation.references | Khodja, Y. K., Dahmoune, F., Bey, M. B., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: Effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, 1–10. https://doi.org/10.1590/1981-6723.21419 | spa |
dc.relation.references | Komonsing, N., Khuwijitjaru, P., Nagle, M., Müller, J., & Mahayothee, B. (2022). Effect of drying temperature together with light on drying characteristics and bioactive compounds in turmeric slice. Journal of Food Engineering, 317(November 2020), 110695. https://doi.org/10.1016/j.jfoodeng.2021.110695 | spa |
dc.relation.references | Królczyk, J. B., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. (2016). Use of Whey and Whey Preparations in the Food Industry - A Review. Polish Journal of Food and Nutrition Sciences, 66(3), 157–165. https://doi.org/10.1515/pjfns-2015-0052 | spa |
dc.relation.references | Kubra, I. R., & Rao, L. J. M. (2012). Microwave drying of ginger ( Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity. International Journal of Food Science & Technology, 47(11), 2311–2317. https://doi.org/10.1111/j.1365 2621.2012.03104.x | spa |
dc.relation.references | Kumar, C., & Karim, M. A. (2019). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59(3), 379–394. https://doi.org/10.1080/10408398.2017.1373269 | spa |
dc.relation.references | Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific https://doi.org/10.1155/2013/162750 | spa |
dc.relation.references | Lakey-Beitia, J., Burillo, A. M., La Penna, G., Hegde, M. L., & Rao, K. S. (2020). Polyphenols as Potential Metal Chelation Compounds Against Alzheimer’s Disease. Journal of Alzheimer’s Disease, 1–23. https://doi.org/10.3233/jad-200185 | spa |
dc.relation.references | LeJeune, T. M., Tsui, H. Y., Parsons, L. B., Miller, G. E., Whitted, C., Lynch, K. E., Ramsauer, R. E., Patel, J. U., Wyatt, J. E., Street, D. S., Adams, C. B., McPherson,B., Tsui, H. M., Evans, J. A., Livesay, C., Torrenegra, R. D., & Palau, V. E. (2015). Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142928 | spa |
dc.relation.references | Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2015). Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences, 16(6), 12791 - 12835. https://doi.org/10.3390/ijms160612791 | spa |
dc.relation.references | Limon, D. I., Mendieta, L., & Luna, F. (2010). Los Flavonoides : Mecanismo De Acción , Neuroprotección Y Efectos. Mensaje Bioquímico, XXXIV(March), 143–154. | spa |
dc.relation.references | Liñan Tobias, F. (2010). Moringa oleifera el árbol de la nutrición. Ciencia y Salud Virtual, 2(1), 130–138. | spa |
dc.relation.references | Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371–378. https://doi.org/10.1016/j.chmed.2018.09.002 | spa |
dc.relation.references | López-Vidaña, E. C., Pilatowsky Figueroa, I., Cortés, F. B., Rojano, B. A., & Navarro Ocaña, A. (2017). Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium meridionale Swartz). International Journal of Food Properties, 20(2), 294–305. https://doi.org/10.1080/10942912.2016.1155601 | spa |
dc.relation.references | Losada-Barreiro, S., & Bravo-Díaz, C. (2017). Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry, 133, 379–402. https://doi.org/10.1016/j.ejmech.2017.03.061 | spa |
dc.relation.references | Lozano-Castellanos, L. F. (2019). Composición del aceite de semilla de Moringa oleifera y evaluación de la sostenibilidad para su implementación como cultivo agroforestal en Colombia. Universidad de Valladolid. | spa |
dc.relation.references | Madi, N., Dany, M., Abdoun, S., & Usta, J. (2016). Moringa oleifera ’s Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner. Journal of the American College of Nutrition, 35(7), 604 613. https://doi.org/10.1080/07315724.2015.1080128 | spa |
dc.relation.references | Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299(July). https://doi.org/10.1016/j.foodchem.2019.125124 | spa |
dc.relation.references | Mallenakuppe, R., Homabalegowda, H., Gouri, M. D., Basavaraju, P. S., & Chandrashekharaiah, U. B. (2019). History, Taxonomy and Propagation of Moringa oleifera-A Review. SSR Institute of International Journal of Life Sciences, 5(3), 2322 - 2327. https://doi.org/10.21276/ssr-iijls.2019.5.3.7 | spa |
dc.relation.references | Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79(5), 727 747. https://doi.org/10.1093/ajcn/79.5.727 | spa |
dc.relation.references | Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. 255–260. | spa |
dc.relation.references | McBurney, R. P. H., Griffin, C., Paul, A. A., & Greenberg, D. C. (2004). The nutritional composition of African wild food plants: From compilation to utilization. Journal of Food Composition and Analysis, https://doi.org/10.1016/j.jfca.2004.03.008 | spa |
dc.relation.references | Meda, V., Orsat, V., & Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods: Second Edition (Second Edi). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100528-6.00002-4 | spa |
dc.relation.references | Mello, P. A., Barin, J. S., & Guarnieri, R. A. (2014). Microwave Heating. In Microwave Assisted Sample Preparation for Trace Element Determination. Elsevier. https://doi.org/10.1016/B978-0-444-59420-4.00002-7 | spa |
dc.relation.references | Mishra, R. R., & Sharma, A. K. (2016). Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97. https://doi.org/10.1016/j.compositesa.2015.10.035 | spa |
dc.relation.references | Molero-Méndez, M. S., Flores-Rondón, C., Leal-Ramírez, M., & Briñez-Zambrano, W. J. (2017). Sensory evaluation of probiotic fermented beverges based on whey. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 27(2), 70–77. | spa |
dc.relation.references | Mouhoubi, K., Boulekbache-Makhlouf, L., Mehaba, W., Himed-Idir, H., & Madani, K. (2022). Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. Journal of Food Process Engineering, 45(1), 1–13. https://doi.org/10.1111/jfpe.13932 | spa |
dc.relation.references | Mujumdar, A. S. (2014). Handbook of industrial drying, fourth edition. In Handbook of Industrial Drying, Fourth Edition. https://doi.org/10.1201/b17208 | spa |
dc.relation.references | Mujumdar, A. S., & Law, C. L. (2010). Drying Technology: Trends and Applications in Postharvest Processing. Food and Bioprocess Technology, 3(6), 843–852. https://doi.org/10.1007/s11947-010-0353-1 | spa |
dc.relation.references | Mukhopadhyay, S., & Siebenmorgen, T. J. (2018). Effect of airflow rate on drying air and moisture content profiles inside a cross-flow drying column. Drying Technology, 36(11), 1326–1341. https://doi.org/10.1080/07373937.2017.1402024 | spa |
dc.relation.references | Naikwade, P. (2015). Effect of drying methods on nutritional value of some vegetables. Bioscience Discovery, 6(January 2015), 80–84. | spa |
dc.relation.references | Nail, S. L., Jiang, S., Chongprasert, S., & Knopp, S. A. (2002). Fundamentals of Freeze Drying BT - Development and Manufacture of Protein Pharmaceuticals. Development and Manufacture of Protein Pharmaceuticals, 14(Chapter 6), 281–360. | spa |
dc.relation.references | Nanda, A., Mohapatra, D. B. B., Mahapatra, A. P. K., Mahapatra, A. P. K., & Mahapatra, A. P. K. (2021). Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics, 6(1), 59–65. https://doi.org/10.22271/maths.2021.v6.i1a.636 | spa |
dc.relation.references | Nasri, M. Y., & Belhamri, A. (2018). Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potato-case of Maghreb’s region. Journal of Cleaner Production, 183, 1241–1251. https://doi.org/10.1016/j.jclepro.2018.02.103 | spa |
dc.relation.references | Ng, Z. X., Yong, P. H., & Lim, S. Y. (2020). Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops and Products, 155(April), 112815. https://doi.org/10.1242/jeb.02490 | spa |
dc.relation.references | Nireesha, G., Divya, L., Sowmya, C., Venkateshan, N., Niranjan Babu, M., & Lavakumar, V. (2013). Lyophilization/Freeze Drying -An Review. Ijntps, 3(4), 87–98. | spa |
dc.relation.references | Nobossé, P., Fombang, E. N., & Mbofung, C. M. F. (2018). Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Science and Nutrition, 6(8), 2188–2198. https://doi.org/10.1002/fsn3.783 | spa |
dc.relation.references | Nouman, W., Basra, S. M. A., Siddiqui, M. T., Yasmeen, A., Gull, T., & Alcayde, M. A. C. (2014). Potential of Moringa oleifera L. as livestock fodder crop: A review. Turkish Journal of Agriculture and Forestry, 38(1), 1–14. https://doi.org/10.3906/tar-1211-66 | spa |
dc.relation.references | Nourhène, B., Mohammed, K., & Nabil, K. (2008). Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food and Bioproducts Processing, 86(3), 176–184. https://doi.org/10.1016/j.fbp.2007.10.001 | spa |
dc.relation.references | Oldoni, T. L. C., dos Santos, S., Mitterer-Daltoé, M. L., Pizone, L. H. I., & Lima, V. A. de. (2022). Moringa oleifera leaves from Brazil: Influence of seasonality, regrowth age and, region in biochemical markers and antioxidant potential. Arabian Journal of Chemistry, 15(11), 104206. https://doi.org/10.1016/j.arabjc.2022.104206 | spa |
dc.relation.references | Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera: Un árbol multiusos para las zonas tropicales secas. Revista Mexicana de Biodiversidad, 82(4), 1071–1082. https://doi.org/10.22201/ib.20078706e.2011.4.678 | spa |
dc.relation.references | Onwude, D. I., Hashim, N., Janius, R., Nawi, N. M., & Abdan, K. (2017). Color change kinetics and total carotenoid content of pumpkin as affected by drying temperature. Italian Journal of Food Science, 29(1), 1–18. https://doi.org/10.14674/1120 1770/ijfs.v398 | spa |
dc.relation.references | Onwude, Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196 | spa |
dc.relation.references | Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying Technologies: Vehicle to High Quality Herbs. Food Engineering Reviews, 8(2), 164–180. https://doi.org/10.1007/s12393-015-9128-9 | spa |
dc.relation.references | Oyeyinka, A. T., & Oyeyinka, S. A. (2018). Moringa oleifera as a food fortificant : Recent trends and prospects. Journal of the Saudi Society of Agricultural Sciences, 17(2), 127–136. https://doi.org/10.1016/j.jssas.2016.02.002 | spa |
dc.relation.references | Pakade, V., Cukrowska, E., & Chimuka, L. (2013). Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science, 109(3–4), 1–5. https://doi.org/10.1590/sajs.2013/1154 | spa |
dc.relation.references | Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41 | spa |
dc.relation.references | Pereira, J. M. G., Viell, F. L. G., de Lima, P. C., Silva, E., Pilau, E. J., Corrêa, R. C. G., Bona, E., & Vieira, A. M. S. (2021). Optimization of the extraction of antioxidants from Moringa leaves: A comparative study between ultrasound- and ultra-homogenizer assisted extractions. Journal of Food Processing and Preservation, 45(6), 1–14. https://doi.org/10.1111/jfpp.15512 | spa |
dc.relation.references | Pirbalouti, A. G., Salehi, S., & Craker, L. (2017). Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 35–40. https://doi.org/10.1016/j.jarmap.2016.07.006 | spa |
dc.relation.references | Potisate, Y., Science, S. P.-A.-P. J. of, & 2015, U. (2015). Microwave drying of Moringa oleifera (Lam.) leaves: drying characteristics and quality aspects. So01.Tci-Thaijo.Org, 20(1), 12–25. | spa |
dc.relation.references | Premi, M., Sharma, H., & Upadhyay, A. (2012). Effect of air velocity and temperature on the drying kinetics of drumstick leaves (Moringa oleifera). International Journal of Food Engineering, 8(4). https://doi.org/10.1515/1556-3758.1986 | spa |
dc.relation.references | Pu, H., Li, Z., Hui, J., & Raghavan, G. S. V. (2016). Effect of relative humidity on microwave drying carrot. Journal of Food https://doi.org/10.1016/j.jfoodeng.2016.06.027 | spa |
dc.relation.references | Putra, R. N., & Ajiwiguna, T. A. (2017). Influence of Air Temperature and Velocity for Drying Process. Procedia Engineering, 170, 516–519. https://doi.org/10.1016/j.proeng.2017.03.082 | spa |
dc.relation.references | Puttalingappa, Y. J., Natarajan, V., Varghese, T., & Naik, M. (2022). Effect of microwave assisted vacuum drying on the drying kinetics and quality parameters of Moringa oleifera leaves. Journal of Food Process Engineering, 45(8). https://doi.org/10.1111/jfpe.14054 | spa |
dc.relation.references | Rababah, T. M., Al-U’ Datt, M., Alhamad, M., Al-Mahasneh, M., Ereifej, K., Andrade, J., Altarifi, B., Almajwal, A., & Yang, W. (2015). Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common mediterranean herbs. International Journal of Agricultural and Biological Engineering, 8(2), 145–150. https://doi.org/10.3965/j.ijabe.20150802.1496 | spa |
dc.relation.references | Ramírez-Navas, J. S. (2012). Análisis sensorial: pruebas orientadas al consumidor. Revista RECITEIA, 12(1), 83–102. | spa |
dc.relation.references | Ramsumair, A., Mlambo, V., & Lallo, C. H. O. (2014). Effect of drying method on the chemical composition of leaves from four tropical tree species. Tropical Agriculture, 91(3), 179–186. | spa |
dc.relation.references | Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3 | spa |
dc.relation.references | Ribaudo, G., Povolo, C., & Zagotto, G. (2019). Moringa oleifera Lam.: A Rich Source of Phytoactives for the Health of Human Being. In Studies in Natural Products Chemistry (1st ed., Vol. 62). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64185-4.00005-8 | spa |
dc.relation.references | Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5(33), 7076–7084. https://doi.org/10.5897/JMPRx11.001 | spa |
dc.relation.references | Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002 | spa |
dc.relation.references | Saini, R. K., Shetty, N. P., Prakash, M., & Giridhar, P. (2014). Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of Food Science and Technology, 51(9), 2176–2182. https://doi.org/10.1007/s13197-014-1264-3 | spa |
dc.relation.references | Santos, A., Argolo, A. C. C., Paiva, P. M. G., & Coelho, L. C. B. B. (2012). Antioxidant activity of Moringa oleifera tissue extracts. Phytotherapy Research : PTR, 26(9), 1366 1370. https://doi.org/10.1002/ptr.4591 | spa |
dc.relation.references | Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão ( Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057 | spa |
dc.relation.references | Saucedo-Pompa, S., Torres-Castillo, J. A., Castro-López, C., Rojas, R., Sánchez-Alejo, E. J., Ngangyo-Heya, M., & Martínez-Ávila, G. C. G. (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111(May), 438–450. https://doi.org/10.1016/j.foodres.2018.05.062 | spa |
dc.relation.references | Selvi, K. Ç. (2020). Investigating the influence of infrared drying method on linden (Tilia platyphyllos scop.) leaves: Kinetics, color, projected area, modeling, total phenolic, and flavonoid content. Plants, 9(7), 1–17. https://doi.org/10.3390/plants9070916 | spa |
dc.relation.references | Şevik, S. (2014). Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy, 105, 190–205. https://doi.org/10.1016/j.solener.2014.03.037 | spa |
dc.relation.references | Shahidi, F. (2015). Handbook of Antioxidants for Food Preservation. In B. J. F. Hudson (Ed.), Handbook of Antioxidants for Food Preservation (Vol. 162, Issue 1). Elsevier. https://doi.org/10.1016/C2013-0-16454-9 | spa |
dc.relation.references | Shinde, A., Das, S., & Datta, A. K. (2013). Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air-radio frequency (RF) dryer. Journal of Food Engineering, 116(2), 444–449. https://doi.org/10.1016/j.jfoodeng.2012.12.001 | spa |
dc.relation.references | Shivanna, V. B., & Subban, N. (2014). Effect of Various Drying Methods on Flavor Characteristics and Physicochemical Properties of Dried Curry Leaves (Murraya koenigii L. Spreng). Drying Technology, 32(8), 882–890. https://doi.org/10.1080/07373937.2013.871727 | spa |
dc.relation.references | Shukla, S. (2011). Freeze drying process: A review. International Journal of Pharmaceutical Sciences and Research, 2(12), 3061. | spa |
dc.relation.references | Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP – 158. | spa |
dc.relation.references | Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Drying kinetics of jatropha seeds. Revista Ceres, 59(2), 171–177. https://doi.org/10.1590/S0034-737X2012000200004 | spa |
dc.relation.references | Śledź, M., Nowacka, M., Wiktor, A., & Witrowa-Rajchert, D. (2013). Selected chemical and physico-chemical properties of microwave-convective dried herbs. Food and Bioproducts Processing, 91(4), 421–428. https://doi.org/10.1016/j.fbp.2013.02.010 | spa |
dc.relation.references | Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods for Human Nutrition, 64(4), 303–311. https://doi.org/10.1007/s11130-009-0141-0 | spa |
dc.relation.references | Srivastava, N., & Bezwada, R. (2015). Flavonoids: The Health Boosters. White Paper. Hillsborough NJ: Indofine Chemical Company. | spa |
dc.relation.references | Tafesse, A., Goshu, D., Gelaw, F., & Ademe, A. (2020). Commercialization of Moringa: Evidence from Southern Ethiopia. Cogent Economics and Finance, 8(1), 1–15. https://doi.org/10.1080/23322039.2020.1783909 | spa |
dc.relation.references | Telfser, A., & Galindo, F. G. (2019). Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT, 99(April 2018), 148–155. https://doi.org/10.1016/j.lwt.2018.09.062 | spa |
dc.relation.references | Thamkaew, G., Sjöholm, I., & Galindo, F. G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786. https://doi.org/10.1080/10408398.2020.1765309 | spa |
dc.relation.references | Thangaraj, P. (2016). Proximate Composition Analysis. In Progress in Drug Research (Vol. 71, pp. 21–31). https://doi.org/10.1007/978-3-319-26811-8_5 | spa |
dc.relation.references | Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and Pharmacotherapy, 108(September), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060 | spa |
dc.relation.references | Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A., & Sadeghi, M. (2016). Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews, 58, 407–418. https://doi.org/10.1016/j.rser.2015.12.078 | spa |
dc.relation.references | Tzempelikos, D. A., Vouros, A. P., Bardakas, A. V., Filios, A. E., & Margaris, D. P. (2014). Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Studies in Thermal Engineering, 3, 79–85. https://doi.org/10.1016/j.csite.2014.05.001 | spa |
dc.relation.references | Udikala, M., Verma, Y., Sushma, S., & Lal, S. (2017). Phytonutrient and Pharmacological Significance of Moringa oleifera. International Journal of Life-Sciences Scientific Research, 3(5), 1387–1391. https://doi.org/10.21276/ijlssr.2017.3.5.21 | spa |
dc.relation.references | Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243 | spa |
dc.relation.references | Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science and Emerging Technologies, 41(October 2016), 378–386. https://doi.org/10.1016/j.ifset.2017.04.012 | spa |
dc.relation.references | Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44(November 2017), 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021 | spa |
dc.relation.references | Yildiz, G., Wehling, R. L., & Cuppett, S. L. (2001). Method for determining oxidation of vegetable oils by near-infrared spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society, 78(5), 495–502. https://doi.org/10.1007/s11746-001-0292-1 | spa |
dc.relation.references | Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), 1–21. https://doi.org/10.1111/jfpe.13831 | spa |
dc.relation.references | Zapata, K., Rojano, B. A., & Cortés, F. B. (2015). Effect of Relative Humidity on the Antioxidant Activity of Spray-Dried Banana Passion Fruit (Passiflora mollisima Baley) Coated Pulp: Measurement of the Thermodynamic Properties of Sorption. Chemical Engineering Communications, 202(3), 269–278. https://doi.org/10.1080/00986445.2013.840829 | spa |
dc.relation.references | Zeece, M. (2020). Food colorants. In Introduction to the Chemistry of Food (pp. 313–344). Elsevier. https://doi.org/10.1016/B978-0-12-809434-1.00008-6 | spa |
dc.relation.references | Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science and Technology, 17(10), 524 - 534. https://doi.org/10.1016/j.tifs.2006.04.011 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Moringa oleifera | |
dc.subject.ddc | 660 - Ingeniería química::663 - Tecnología de bebidas | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.lemb | Tecnología de alimentos | |
dc.subject.lemb | Desarrollo de productos | |
dc.subject.lemb | Plantas oleaginosas | |
dc.subject.lemb | Deshidratación de alimentos | |
dc.subject.lemb | Plantas oleaginosas - Deshidratación | |
dc.subject.lemb | Industrias alimenticias | |
dc.subject.lemb | Productos lácteos | |
dc.subject.proposal | Lactosuero | spa |
dc.subject.proposal | extracto de moringa | spa |
dc.subject.proposal | cinéticas de secado | spa |
dc.subject.proposal | microondas | spa |
dc.subject.proposal | polifenoles | spa |
dc.subject.proposal | whey | eng |
dc.subject.proposal | moringa’s extract | eng |
dc.subject.proposal | drying kinetics | eng |
dc.subject.proposal | microwave | eng |
dc.subject.proposal | polyphenols | eng |
dc.title | Evaluación del efecto de la temperatura de deshidratación sobre la capacidad antioxidante y el contenido de metabolitos antioxidantes en hojas de Moringa oleifera e incorporación en una bebida láctea | spa |
dc.title.translated | Evaluation of temperature effect of drying on antioxidant capacity and antioxidant metabolites content of Moringa oleifera leaves and incorporation into a milk drink | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1214732085.2022.pdf
- Tamaño:
- 2.45 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: