Upgrading the colombian oil weathering (COW) model-Experimental approach.

dc.contributor.advisorMolina Ochoa, Alejandro
dc.contributor.authorCelis Cataño, Cristian Yesit
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2021-10-13T20:17:58Z
dc.date.available2021-10-13T20:17:58Z
dc.date.issued2020-10
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractA sensitivity analysis was performed on the petroleum aging sub-models considered in the COW simulator designed by Ramirez et al. 2017. The sensitivity analysis determined the experimental parameters with the greatest impact on COW predictions, determining that the parameters associated with evaporation b = U(2), emulsion U(5) = 𝑌��!"#, and dispersion U(7) = b, showed greater sensitivity in predicting the aging model. In this way, the review and design of experimental setups was carried out to improve the predictions of Evaporation and emulsion. In this research, the dispersion model was not addressed by the scope of the project. Finally, a small-scale wind tunnel of 0.485 cm x 0.485 cm of cross-sectional areas and 87 cm long was designed to carry out oil evaporation experiments. The tunnel has the capacity to operate at speeds of 0.22ms-1 - 7ms-1 and temperatures of 27oC - 32oC. The tunnel will evaluate the effect of wind speed on the evaporated fraction of 4 types of Colombian crude. Regarding the emulsion, a linear shaker was used, which allowed to have an adjusted control of the temperature and the energy printed on the crude emulsion in water, in such a way that it simulated methoceanic conditions of the Colombian Caribbean Sea, to finally obtain parameters experimental tests for the emulsion model.eng
dc.description.abstractSe realizó un análisis de sensibilidad sobre los sub modelos de envejecimiento de petróleo considerados en el simulador COW diseñado por Ramírez et al. 2017. El análisis de sensibilidad determinó los parámetros experimentales de mayor impacto en las predicciones de COW, determinando que los parámetros asociados con la evaporación, b = U(2), emulsión U(5) = Y_max, y dispersión U(7) = b, presentaban una mayor sensibilidad en la predicción del modelo de envejecimiento. De esta forma se procedió a realizar la revisión y diseño de montajes experimentales para mejorar las predicciones de Evaporación y emulsión. En esta investigación el modelo de dispersión no fue abordado por los alcances del proyecto. Finalmente se diseñó un túnel de viento de pequeña escala de 0.485 cm x 0.485 cm de área transversal y 87 cm de largo para realizar experimentos de evaporación de crudo. El túnel posee la capacidad de operar a velocidades de 0.22ms-1 – 7ms-1 y temperaturas de 27ºC – 32ºC. El túnel permitió evaluar el efecto de la velocidad del viento sobre la fracción evaporada de cuatro tipos de crudos Colombianos. Para evaluar el proceso de emulificación, se utilizó un agitador lineal, el cual permitía tener un control ajustado de la temperatura y de la energía impresa sobre la emulsión crudo en agua, de forma que simulara condiciones de metoceanicas del mar Caribe Colombiano, para finalmente se obtener parámetros experimentales para el modelo de emulsión. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaHidrocarburosspa
dc.format.extentxii, 41 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80545
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] M. Ruiz-Ochoa, E. Beier, G. Bernal, and E. D. Barton, “Sea surface temperature variability in the Colombian Basin, Caribbean Sea,” Deep. Res. Part I Oceanogr. Res. Pap., vol. 64, pp. 43–53, Jun. 2012, doi: 10.1016/j.dsr.2012.01.013.spa
dc.relation.references[2] A. K. Mishra and G. S. Kumar, “ScienceDirect Weathering of Oil Spill : Modeling and Analysis,” Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 435–442, 2015, doi: 10.1016/j.aqpro.2015.02.058.spa
dc.relation.references[3] M. L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., vol. 115, no. 1–2, pp. 7–19, 2017, doi: 10.1016/j.marpolbul.2017.01.001.spa
dc.relation.references[4] M. Afenyo, F. Khan, B. Veitch, and M. Yang, “Modeling oil weathering and transport in sea ice,” MPB, vol. 107, no. 1, pp. 206–215, 2016, doi: 10.1016/j.marpolbul.2016.03.070.spa
dc.relation.references[5] Y. Cohen, D. Mackay, and W. Y. Shiu, “Mass transfer rates between oil slicks and water,” Can. J. Chem. Eng., vol. 58, no. 5, pp. 569–575, 1980, doi: 10.1002/cjce.5450580504.spa
dc.relation.references[6] M. Li and C. Garrett, “The relationship between oil droplet size and upper ocean turbulence,” Mar. Pollut. Bull., vol. 36, no. 12, pp. 961–970, 1998, doi: 10.1016/S0025-326X(98)00096-4.spa
dc.relation.references[7] P. Tkalich and E. S. Chan, “Vertical mixing of oil droplets by breaking waves,” Mar. Pollut. Bull., vol. 44, no. 11, pp. 1219–1229, 2002, doi: 10.1016/S0025-326X(02)00178-9.spa
dc.relation.references[8] H. Xie, P. D. Yapa, and K. Nakata, “Modeling emulsification after an oil spill in the sea,” J. Mar. Syst., vol. 68, no. 3–4, pp. 489–506, Dec. 2007, doi: 10.1016/J.JMARSYS.2007.02.016.spa
dc.relation.references[9] M. Reed et al., “Oil spill modeling towards the close of the 20th century: Overview of the state of the art,” Spill Sci. Technol. Bull., vol. 5, no. 1, pp. 3–16, 1999, doi: 10.1016/S1353-2561(98)00029-2.spa
dc.relation.references[10] A. K. Mishra and G. S. Kumar, “Weathering of Oil Spill: Modeling and Analysis,” Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 435–442, 2015, doi: 10.1016/j.aqpro.2015.02.058.spa
dc.relation.references[11] F. Betancourt, A. Palacio, and A. Rodriguez, “Effects of the Mass Transfer Process in Oil Spill,” Americal Journal of Applied Sciences, vol. 2, no. 5. pp. 939–946, 2005, [Online]. Available: http://thescipub.com/html/10.3844/ajassp.2005.939.946.spa
dc.relation.references12] C. Stevens, L. J. Thibodeaux, E. B. Overton, K. T. Valsaraj, and N. D. Walker, “Dissolution and Heavy Residue Sinking of Subsurface Oil Droplets: Binary Component Mixture Dissolution Theory and Model-Oil Experiments,” J. Environ. Eng., vol. 143, no. 10, p. 04017067, 2017, doi: 10.1061/(ASCE)EE.1943-7870.0001242.spa
dc.relation.references[13] J. Koyama et al., “Simulated distribution and ecotoxicity-based assessment of chemically-dispersed oil in Tokyo Bay,” Mar. Pollut. Bull., vol. 85, no. 2, pp. 487–493, 2014, doi: 10.1016/j.marpolbul.2014.04.001.spa
dc.relation.references[14] J. M. Shaw, “A microscopic view of oil slick break-up and emulsion formation in breaking waves,” Spill Sci. Technol. Bull., vol. 8, no. 5–6, pp. 491–501, 2003, doi: 10.1016/S1353-2561(03)00061-6.spa
dc.relation.references[15] M. Spaulding, A. Odulo, and V. Kolluru, “A hybrid model to predict the entrainment and subsurface transport of oil,” Fifteenth Arct. Mar. Oilspill Progr. Tech. Semin., pp. 67–92, 1992, Accessed: Oct. 18, 2017. [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:25009592.spa
dc.relation.references[16] M. Fingas, B. Fieldhouse, and J. Mullin, “Water-in-oil emulsions results of formation studies and applicability to oil spill modelling,” Spill Sci. Technol. Bull., vol. 5, no. 1, pp. 81–91, 1999, doi: 10.1016/S1353-2561(98)00016-4.spa
dc.relation.references[17] G. Delvigne, “EXPERIMENTS ON NATURAL AND CHEMICAL DISPERSION OF OIL IN LABORATORY AND FIELD CIRCUMSTANCES,” 1984.spa
dc.relation.references[18] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Mar. Pollut. Bull., 2014, doi: 10.1016/j.marpolbul.2014.03.059.spa
dc.relation.references[19] W. C. Yang and H. Wang, “MODELING OF OIL EVAPORATION IN AQUEOUS ENVIRONMENT,” vol. I, 1977.spa
dc.relation.references[20] G. T. Drozd et al., “Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways,” J. Geophys. Res. Ocean., vol. 120, no. 11, pp. 7300–7315, 2015, doi: 10.1002/2015JC011093.spa
dc.relation.references[21] K. Kotzakoulakis and S. C. George, “Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model,” Chemosphere, vol. 190, pp. 442–453, Jan. 2018, doi: 10.1016/j.chemosphere.2017.09.142.spa
dc.relation.references[22] C. K. Saha, W. Wu, G. Zhang, and B. Bjerg, “Assessing effect of wind tunnel sizes on air velocity and concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (CFD),” Comput. Electron. Agric., vol. 78, no. 1, pp. 49–60, Aug. 2011, doi: 10.1016/j.compag.2011.05.011.spa
dc.relation.references[23] A. P. Wandel, G. N. Brink, N. H. Hancock, and S. Pather, “Spreading rate and dispersion behavior of evaporation-suppressant monolayer on open water surfaces: Part 2 – Under wind stress,” Exp. Therm. Fluid Sci., vol. 87, pp. 171–181, Oct. 2017, doi: 10.1016/J.EXPTHERMFLUSCI.2017.05.006.spa
dc.relation.references[24] M. T. Pauken, “An experimental investigation of combined turbulent free and forced evaporation,” Exp. Therm. Fluid Sci., vol. 18, no. 4, pp. 334–340, 1998, doi: 10.1016/S0894-1777(98)10038-9.spa
dc.relation.references[25] D. Mackay and F. Szeto, “the Laboratory Determination of Dispersant Effectiveness: Method Development and Results,” Int. Oil Spill Conf. Proc., vol. 1981, no. 1, pp. 11–17, 1981, doi: 10.7901/2169-3358-1981-1-11.spa
dc.relation.references[26] A. D. Venosa and E. L. Holder, “Determining the dispersibility of South Louisiana crude oil by eight oil dispersant products listed on the NCP Product Schedule q,” Mar. Pollut. Bull., vol. 66, no. 1–2, pp. 73–77, 2013, doi: 10.1016/j.marpolbul.2012.11.009.spa
dc.relation.references[27] Z. Li, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa, “Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 2-Significant Factors Determining In Situ Oil Droplet Size Distribution,” Environ. Eng. Sci., vol. 26, no. 9, pp. 1407–1418, 2009, doi: 10.1089/ees.2008.0408.spa
dc.relation.references[28] J. Bonner, C. Page, and C. Fuller, “Meso-scale testing and development of test procedures to maintain mass balance,” vol. 47, pp. 406–414, 2003, doi: 10.1016/S0025-326X(03)00201-7.spa
dc.relation.references[29] Ø. Johansen, M. Reed, and N. R. Bodsberg, “Natural dispersion revisited,” Mar. Pollut. Bull., vol. 93, no. 1–2, pp. 20–26, 2015, doi: 10.1016/j.marpolbul.2015.02.026.spa
dc.relation.references[30] P. S. Daling et al., “Surface weathering and dispersibility of MC252 crude oil,” Mar. Pollut. Bull., vol. 87, no. 1–2, pp. 300–310, 2014, doi: 10.1016/j.marpolbul.2014.07.005.spa
dc.relation.references[31] P. S. Daling, D. Mackay, N. Mackay, and P. J. Brandvik, “Droplet size distributions in chemical dispersion of oil spills: Towards a mathematical model,” Oil Chem. Pollut., vol. 7, no. 3, pp. 173–198, 1990, doi: 10.1016/S0269-8579(05)80026-7.spa
dc.relation.references[32] G. J. Blondina, M. L. Sowby, M. T. Ouano, M. M. Singer, and R. S. Tjeerdema, “A modified swirling flask efficacy test for oil spill dispersants,” Spill Sci. Technol. Bull., vol. 4, no. 3, pp. 177–185, 1997, doi: 10.1016/S1353-2561(98)00014-0.spa
dc.relation.references[33] C. Bocard, G. Castaing, and C. Gatellier, “Chemical Oil Dispersion in Trials at Sea and in Laboratory Tests: The Key Role of Dilution Processes,” in Oil Spill Chemical Dispersants: Research, Experience, and Recommendations, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1984, pp. 125-125–18.spa
dc.relation.references[34] D. Sullivan, J. Farlow, and K. A. Sahatjian, “Evaluation of three oil spill laboratory dispersant effectiveness tests,” in 2005 International Oil Spill Conference, IOSC 2005, May 15, 2005 - May 19, 2005, 2005, p. 2795, doi: 10.7901/2169-3358-1993-1-515.spa
dc.relation.references[35] National Research Council, Oil Spill Dispersants. Washington, D.C.: National Academies Press, 2005.spa
dc.relation.references[36] Centre of Documentation Research and Experimentation on Accidental Water Pollution, “Flume tank - Cedre.” https://wwz.cedre.fr/en/Our-services/Our-facilities/Flume-tank (accessed Oct. 18, 2017).spa
dc.relation.references[37] Z. Li, P. Kepkay, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa, “Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves,” Mar. Pollut. Bull., vol. 54, no. 7, pp. 983–993, 2007, doi: 10.1016/j.marpolbul.2007.02.012.spa
dc.relation.references[38] T. L. King, J. A. C. Clyburne, K. Lee, and B. J. Robinson, “Interfacial film formation : Influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank,” Mar. Pollut. Bull., vol. 71, no. 1–2, pp. 83–91, 2013, doi: 10.1016/j.marpolbul.2013.03.031.spa
dc.relation.references[39] N. Afshar-Mohajer, C. Li, A. M. Rule, J. Katz, and K. Koehler, “A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves,” Atmos. Environ., vol. 179, pp. 177–186, Apr. 2018, doi: 10.1016/J.ATMOSENV.2018.02.017.spa
dc.relation.references[40] O. G. Brakstad, P. S. Daling, L. Faksness, I. K. Almås, S. Vang, and L. Syslak, “Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin,” Mar. Pollut. Bull., 2014, doi: 10.1016/j.marpolbul.2014.05.027.spa
dc.relation.references[41] P. S. Daling, M. Ø. Moldestad, Ø. Johansen, A. Lewis, and J. Rødal, “Norwegian testing of emulsion properties at sea--the importance of oil type and release conditions,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 123–136, 2003, doi: 10.1016/S1353-2561(03)00016-1.spa
dc.relation.references[42] M. Fingas, “A Survey of Tank Facilities for Testing Oil Spill Dispersants prepared,” Alaska, 2005. Accessed: Oct. 24, 2017. [Online]. Available: http://www.pwsrcac.org/wp-content/uploads/filebase/programs/environmental_monitoring/dispersants/osd_testing_survey.pdf.spa
dc.relation.references[43] P. S. Daling, M. Ø. Moldestad, Ø. Johansen, A. Lewis, and J. Rødal, “Norwegian testing of emulsion properties at sea: the importance of oil type and release conditions,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 123–136, 2003, doi: 10.1016/S1353-2561(03)00016-1.spa
dc.relation.references[44] G. A. L. Delvigne, “EXPERIMENTS ON NATURAL AND CHEMICAL DISPERSION OF OIL IN LABORATORY AND FIELD CIRCUMSTANCES,” Int. Oil Spill Conf. Proc., vol. 1985, no. 1, pp. 507–514, Feb. 1985, doi: 10.7901/2169-3358-1985-1-507.spa
dc.relation.references[45] A. D. Venosa, V. J. Kaku, and K. Lee, “Measuring Energy Dissipation Rates in a Wave Tank,” in Oil Spill Conference, 2005, pp. 1–4, doi: 10.7901/2169-3358-2005-1-183.spa
dc.relation.references[46] M. L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., vol. 115, no. 1–2, pp. 7–19, 2017, doi: 10.1016/j.marpolbul.2017.01.001.spa
dc.relation.references[47] Z. Zhong and F. You, “Oil spill response planning with consideration of physicochemical evolution of the oil slick: A multiobjective optimization approach,” Comput. Chem. Eng., vol. 35, no. 8, pp. 1614–1630, 2011, doi: 10.1016/j.compchemeng.2011.01.009.spa
dc.relation.references[48] A. M. Araujo, L. M. Santos, M. Fortuny, R. L. F. V Melo, R. C. C. Coutinho, and A. F. Santos, “Evaluation of water content and average droplet size in water-in-crude oil emulsions by means of near-infrared spectroscopy,” Energy and Fuels, vol. 22, no. 5, pp. 3450–3458, 2008, doi: 10.1021/ef800262s.spa
dc.relation.references[49] J. Ramírez, A. Merlano, J. Lacayo, A. F. Osorio, and A. Molina, “A model for the weathering of Colombian crude oils in the Colombian Caribbean Sea,” Mar. Pollut. Bull., vol. 125, no. 1–2, pp. 367–377, Dec. 2017, doi: 10.1016/j.marpolbul.2017.09.028.spa
dc.relation.references[50] M. K. Mcnutt, J. Lasheras, F. Shaffer, T. Steven, and W. J. Lehr, “Review of modeling procedures for oil spill weathering behavior.”spa
dc.relation.references[51] M. Reed et al., “Oil Spill Modeling towards the Close of the 20th Century : Overview of the State of the Art,” vol. 5, no. 1, pp. 3–16, 1999.spa
dc.relation.references[52] Ecopetrol, “Exportaciones de Crudo,” 2014. https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/productos-y-servicios/comercio-internacional/exportaciones/exportaciones-de-crudo (accessed Apr. 30, 2018).spa
dc.relation.references[53] C. K. Saha, G. Zhang, and J. Q. Ni, “Airflow and concentration characterisation and ammonia mass transfer modelling in wind tunnel studies,” Biosyst. Eng., vol. 107, no. 4, pp. 328–340, 2010, doi: 10.1016/j.biosystemseng.2010.09.007.spa
dc.relation.references[54] J. R. Payne et al., “Multivariate analysis of petroleum hydrocarbon weathering in the subarctic marine environment,” Int. Oil Spill Conf. Proc., pp. 423–434, 1983, doi: http://dx.doi.org/10.7901/2169-3358-1983-1-423.spa
dc.relation.references[55] D. Mackay and R. S. Matsugu, “Evaporation rates of liquid hydrocarbon spills on land and water,” Can. J. Chem. Eng., vol. 51, no. 4, pp. 434–439, 1973, doi: 10.1002/cjce.5450510407.spa
dc.relation.references[56] M. Reed et al., “Revision of the OCS Oil-Weathering Model: Phases II and III,” 2005. Accessed: Nov. 30, 2018. [Online]. Available: https://www.boem.gov/BOEM-Newsroom/Library/Publications/2005/2005_020.aspx.spa
dc.relation.references[57] R. Chebbi, S. E. M. Hamam, M. K. M. Al-Kubaisi, K. M. Al-Jaja, and S. A. M. Al-Shamaa, “Evaporation of complex and pure components liquid hydrocarbon mixtures,” J. Chem. Eng. Japan, vol. 36, no. 12, pp. 1510–1515, 2003, doi: 10.1252/jcej.36.1510.spa
dc.relation.references[58] W. Stiver and D. MacKay, “Evaporation rate of spills of hydrocarbons and petroleum mixtures,” Environ. Sci. Technol., vol. 18, no. 11, pp. 834–840, 1984, doi: 10.1021/es00129a006.spa
dc.relation.references[59] H. Jung, D. Kah, K. C. Lim, and J. Y. Lee, “Fate of sulfur mustard on soil : Evaporation , degradation , and vapor,” Environ. Pollut., pp. 1–9, 2016, doi: 10.1016/j.envpol.2016.09.090.spa
dc.relation.references[60] R. H. Stewart, “Introduction To Physical Oceanography,” Phys. Oceanogr., p. 354, 2008, doi: 10.1119/1.18716.spa
dc.relation.references[61] D. J. Weber, M. K. Scudder, C. S. Moury, W. J. Shuely, and J. W. Molnar, Development of the 5-cm Agent Fate Wind Tunnel. Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD. Research and Technology Directorate, 2006.spa
dc.relation.references[62] S. A. Hsu, “On the log-linear wind profile and the relationship between shear stress and stability characteristics over the sea,” Boundary-Layer Meteorol., vol. 6, no. 3–4, pp. 509–514, May 1974, doi: 10.1007/BF02137683.spa
dc.relation.references[63] B. O. Bauer, R. G. D. Davidson-Arnott, J. Ollerhead, K. F. Nordstrom, and N. L. Jackson, “Indeterminacy in Aeolian sediment transport across beaches,” J. Coast. Res., vol. 12, no. 3, pp. 641–653, 1996.spa
dc.relation.references[64] S. HAMAM, M. F. HAMODA, H. I. SHABAN, and A. S. KILANI, “Crude oil dissolution in saline water,” vol. 37, pp. 55–64, 1988.spa
dc.relation.references[65] L. Nasser, “the Dissolution and Photodegradation of Kuwait Crude Oil in Seawater,” 1994.spa
dc.relation.references[66] Z. Pan et al., “Chemosphere Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil,” Chemosphere, vol. 166, pp. 246–254, 2017, doi: 10.1016/j.chemosphere.2016.09.052.spa
dc.relation.references[67] V. B. Rewatkar, R. Rao, and J. B. Joshi, “Power Consumption in Mechanically Agitated Contactors Using Pitched Bladed Turbine Impellers,” Chem. Eng. Commun., vol. 88, no. 1, pp. 69–90, 1990, doi: 10.1080/00986449008940548.spa
dc.relation.references[68] W. A. Maher, “Preparation of water soluble fractions of crude oils for toxicity studies,” Bull. Environ. Contam. Toxicol., vol. 36, no. 1, pp. 226–229, Dec. 1986, doi: 10.1007/BF01623499.spa
dc.relation.references[69] INVERMAR, “Manual de técnicas analíticas para la determinación de parámetros fisicoquímicos y contaminantes marinos (aguas, sedimentos y organismos),” Man. Técnicas Analíticas para la Determ. Parámetros Fis. y Contam. Mar., p. 148, 2003, doi: 10.1017/CBO9781107415324.004.spa
dc.relation.references[70] M. F. Fingas, “A literature review of the physics and predictive modelling of oil spill evaporation,” vol. 42, pp. 157–175, 1995.spa
dc.relation.references[71] I. D. Nissanka and P. D. Yapa, “Oil slicks on water surface: Breakup, coalescence, and droplet formation under breaking waves,” Mar. Pollut. Bull., vol. 114, no. 1, pp. 480–493, 2017, doi: 10.1016/j.marpolbul.2016.10.006.spa
dc.relation.references[72] G. A. L. Delvigne and C. E. Sweeney, “Natural dispersion of oil,” Oil Chem. Pollut., vol. 4, no. 4, pp. 281–310, Jan. 1988, doi: 10.1016/S0269-8579(88)80003-0.spa
dc.relation.references[73] W. Stlver, W. Y. Shlu, and D. Mackay, “Evaporation Times and Rates of Specific Hydrocarbons in Oil Spills,” vol. 105, no. 27, pp. 101–105, 1989.spa
dc.relation.references[74] M. Fingas and B. Fieldhouse, “Formation of water-in-oil emulsions and application to oil spill modelling,” J. Hazard. Mater., vol. 107, no. 1–2, pp. 37–50, 2004, doi: 10.1016/j.jhazmat.2003.11.008.spa
dc.relation.references[75] A. Chaala, B. Benallal, and S. Hachelef, “Investigation on the flocculation of asphaltenes and the colloidal stability of the crude oil fraction (> 210°C),” Can. J. Chem. Eng., vol. 72, no. 6, pp. 1036–1041, 1994, doi: 10.1002/cjce.5450720614.spa
dc.relation.references[76] M. Fingas, B. Fieldhouse, and J. Mullin, “Studies of water-in-oil emulsions and techniques to measure emulsion treating agents,” in Arctic and Marine Oil Spill Program Technical Seminar, 1994, pp. 213–242, Accessed: Jan. 29, 2020. [Online]. Available: https://www.bsee.gov/sites/bsee.gov/files/osrr-oil-spill-response-research/120bi.pdf.spa
dc.relation.references[77] W. Klöckner and J. Büchs, “Advances in shaking technologies,” Trends in Biotechnology, vol. 30, no. 6. pp. 307–314, Jun. 2012, doi: 10.1016/j.tibtech.2012.03.001.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembPetróleo - Colombia
dc.subject.lembPetroleum - Colombia
dc.subject.proposalWeatheringeng
dc.subject.proposalWind tunneleng
dc.subject.proposalEmulsioneng
dc.subject.proposalColombian oileng
dc.subject.proposalTúnel de vientospa
dc.subject.proposalShakereng
dc.subject.proposalCrudo colombianospa
dc.subject.proposalEnvejecimientospa
dc.titleUpgrading the colombian oil weathering (COW) model-Experimental approach.eng
dc.title.translatedActualización del modelo de envejecimiento de crudo Colombiano (COW)-Enfoque experimental.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColciencias – ANH convocatoria 01 para formacion de capital humano 721spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036641781.2021.pdf
Tamaño:
4.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: