Intention prediction of cyclist based on their orientation angles as vulnerable road users in autonomous driving environments
dc.contributor.advisor | Ballesteros Parra, John Robert | |
dc.contributor.advisor | Branch Bedoya, John William | |
dc.contributor.advisor | Madrigal González, Carlos Andrés | |
dc.contributor.author | Arias Correa, Alberto Mauricio | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000268046 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=0XMAvosAAAAJ&hl=es&oi=ao | spa |
dc.contributor.orcid | Arias Correa, Alberto Mauricio [0000-0003-0619-235X] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Mauricio-Correa-8 | spa |
dc.contributor.researchgroup | Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial | spa |
dc.date.accessioned | 2024-07-12T13:31:19Z | |
dc.date.available | 2024-07-12T13:31:19Z | |
dc.date.issued | 2024-05-16 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | Traffic accidents are currently the eighth leading cause of death, according to the World Health Organization (WHO). Of these deaths, 71% are vulnerable road users (VRUs), with cyclists accounting for 3%. In an environment where autonomous vehicles (AVs) are the most prominent non-vulnerable road actors, VRUS must be effectively and swiftly detected by these AVs. This task remains an open challenge, as cyclists exhibit highly complex movement patterns, and occlusions and lighting issues in urban roads hinder their detection. In this doctoral thesis, we propose predicting the intentions of cyclists on urban roads by estimating both their orientation and inclination during movement near AVs. Due to the lack of hardware and software for the data acquisition systems, containing images associated with cyclists' orientation angles, a system was designed, and a dataset called Cyclops was compiled. This dataset was then used to train an effective cyclist detector using the YOLOv8 architecture. A refined subset of the dataset enabled the training of a model based on modified VGG16 for angular regression and another with similar features based on EfficientNetV2-s. Both models showed better cyclist orientation estimation results than those currently found in the state-of-the-art. Finally, we trained an LSTM network to predict two subsequent periods of angular change (for orientation and inclination) from six previous states, maintaining a prediction sequence and achieving the proposed objective. (Tomado de la fuente) | eng |
dc.description.abstract | Las muertes por accidentes de tránsito son actualmente la octava causa de muerte según la Organización Mundial de la Salud (OMS). El 71% de esas muertes corresponde a usuarios vulnerables de la vía (VRU), en particular el 3% son ciclistas. En un entorno en el cual los vehículos autónomos (AV) son los actores viales no vulnerables de mayor presencia, será de gran importancia que los VRU sean detectados por dichos AV de forma efectiva y en el menor tiempo posible. Esta tarea aún es un desafío abierto, debido a que los ciclistas tienen patrones de movimiento altamente complejos y su detección se ve afectada por oclusiones y problemas asociados a la iluminación cuando se desplazan sobre vías urbana. En esta tesis doctoral, se propone predecir la intención de los ciclistas en vías urbanas a partir de la estimación tanto de su orientación como de su inclinación durante el movimiento en cercanías de AVs. Debido a la falta de datasets que contengan imágenes asociadas a ángulos de orientación de ciclistas, se diseñó un sistema y se construyó un dataset denominado Cyclops. Posteriormente el dataset fue utilizado para entrenar un detector de ciclistas efectivo utilizando la arquitectura YOLOv8. Un subconjunto depurado del dataset permitió entrenar un modelo basado en VGG16 modificado para regresión angular y otro con las mismas características, pero basado en EfficientNetV2-s. Ambos modelos presentaron resultados de estimación de orientación de ciclistas mejores a los actualmente encontrados en el estado del arte. Finalmente se entrenó una red LSTM que permitía para predecir dos periodos posteriores de cambio angular (para orientación e inclinación) a partir de seis estados anteriores y mantener una secuencia de predicción, logrando así el objetivo propuesto. | spa |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.format.extent | 83 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86436 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abadi, A. D., Gu, Y., Goncharenko, I., & Kamijo, S. (2022). Detection of Cyclists’ Crossing Intentions for Autonomous Vehicles. Digest of Technical Papers - IEEE International Conference on Consumer Electronics, 2022-Janua. https://doi.org/10.1109/ICCE53296.2022.9730559 | spa |
dc.relation.references | Ahmed, H. E., Sahandabadi, S., Bhawya, & Ahamed, M. J. (2023). Application of MEMS Accelerometers in Dynamic Vibration Monitoring of a Vehicle. Micromachines, 14(5). https://doi.org/10.3390/mi14050923 | spa |
dc.relation.references | Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701 | spa |
dc.relation.references | Alhajyaseen, W. K. M., Asano, M., & Nakamura, H. (2012). Estimation of left-turning vehicle maneuvers for the assessment of pedestrian safety at intersections. IATSS Research, 36(1), 66–74. https://doi.org/10.1016/j.iatssr.2012.03.002 | spa |
dc.relation.references | Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 | spa |
dc.relation.references | Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T., Mutz, F., Veronese, L., Oliveira-Santos, T., & De Souza, A. F. (2019). Self-Driving Cars: A Survey. http://arxiv.org/abs/1901.04407 | spa |
dc.relation.references | Benarbia, T., Kyamakya, K., Al Machot, F., & Kambale, W. V. (2023). Modeling and Simulation of Shared Electric Automated and Connected Mobility Systems with Autonomous Repositioning: Performance Evaluation and Deployment. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010881 | spa |
dc.relation.references | Betancur-Vásquez, D., Mejia-Herrera, M., & Botero-Valencia, J. S. (2021). Open source and open hardware mobile robot for developing applications in education and research. https://doi.org/10.17605/OSF.IO/KQ3EW | spa |
dc.relation.references | Beyer, L., Hermans, A., & Leibe, B. (2015). Biternion nets: Continuous head pose regression from discrete training labels. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9358, 157–168. https://doi.org/10.1007/978-3-319-24947-6_13 | spa |
dc.relation.references | Bieshaar, M., Depping, M., Schneegans, J., & Sick, B. (2019). Starting movement detection of cyclists using smart devices. Proceedings - 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018, 313–322. https://doi.org/10.1109/DSAA.2018.00042 | spa |
dc.relation.references | Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934 | spa |
dc.relation.references | Bolaños, Y. H., Rengifo, C. F., Caicedo, P. E., Rodriguez, L. E., & Sierra, W. A. (2020). Electronic system for step width estimation using programmable system-on-chip technology and time of flight cameras. HardwareX, 8. https://doi.org/10.1016/j.ohx.2020.e00126 | spa |
dc.relation.references | Botero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Design of a low-cost mobile multispectral albedometer with geopositioning and absolute orientation. HardwareX, 12, e00324. https://doi.org/10.1016/j.ohx.2022.e00324 | spa |
dc.relation.references | Brohm, T., Haupt, K., & Thiel, R. (2019). Pedestrian Intention and Gesture Classification Using Neural Networks. ATZ Worldwide, 121(4), 26–31. https://doi.org/10.1007/s38311-019-0006-6 | spa |
dc.relation.references | Brown, B., & Laurier, E. (2017). The trouble with autopilots: Assisted and autonomous driving on the social road. Conference on Human Factors in Computing Systems - Proceedings, 2017-May, 416–429. https://doi.org/10.1145/3025453.3025462 | spa |
dc.relation.references | Casas, E., Ramos, L., Bendek, E., & Rivas-Echeverria, F. (2023). Assessing the Effectiveness of YOLO Architectures for Smoke and Wildfire Detection. IEEE Access, 11, 96554–96583. https://doi.org/10.1109/ACCESS.2023.3312217 | spa |
dc.relation.references | Dávila García, A. (2024). BOLETÍN ESTADÍSTICO COLOMBIA Fallecidos y Lesionados por Siniestros Viales. https://ansv.gov.co/es/node/11124 | spa |
dc.relation.references | DIng, Y., Zhou, X., Bao, H., Li, Y., Hamann, C., Spears, S., & Yuan, Z. (2020). Cycling-Net: A Deep Learning Approach to Predicting Cyclist Behaviors from Geo-Referenced Egocentric Video Data. GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 337–346. https://doi.org/10.1145/3397536.3422258 | spa |
dc.relation.references | Dung, C. V., Sekiya, H., Hirano, S., Okatani, T., & Miki, C. (2019). A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Automation in Construction, 102, 217–229. https://doi.org/10.1016/j.autcon.2019.02.013 | spa |
dc.relation.references | Dwijayanti, S., Iqbal, M., & Suprapto, B. Y. (2022). Real-time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3200762 | spa |
dc.relation.references | Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C., Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., Mccauley, A., Shlens, J., Anguelov, D., Llc, W., & Brain, G. (n.d.). Large Scale Interactive Motion Forecasting for Autonomous Driving : The WAYMO OPEN MOTION DATASET. | spa |
dc.relation.references | Fairley, P. (2017). Self-driving cars have a bicycle problem [News]. IEEE Spectrum, 54(3), 12–13. https://doi.org/10.1109/mspec.2017.7864743 | spa |
dc.relation.references | Flohr, F. (2018). Vulnerable Road User Detection and Orientation Estimation for Context-Aware Automated Driving. | spa |
dc.relation.references | Gao, H., Su, H., Cai, Y., Wu, R., Hao, Z., Xu, Y., Wu, W., Wang, J., Li, Z., & Kan, Z. (2021). Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections. Science China Information Sciences, 64(7). https://doi.org/10.1007/s11432-020-3071-8 | spa |
dc.relation.references | García-Venegas, M., Mercado-Ravell, D. A., Pinedo-Sánchez, L. A., & Carballo-Monsivais, C. A. (2021a). On the safety of vulnerable road users by cyclist detection and tracking. Machine Vision and Applications, 32(5), 1–16. https://doi.org/10.1007/s00138-021-01231-4 | spa |
dc.relation.references | Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. International Journal of Robotics Research, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297 | spa |
dc.relation.references | Gillani, I. S., Munawar, M. R., Talha, M., Azhar, S., Mashkoor, Y., uddin, M. S., & Zafar, U. (2022). Yolov5, Yolo-x, Yolo-r, Yolov7 Performance Comparison: A Survey. 17–28. https://doi.org/10.5121/csit.2022.121602 | spa |
dc.relation.references | Girinath, N., Ganesh Babu, C., Chandru, Surendar, R., Sabarish, V., & Abhirooban, T. (2022). Arduino nano based Smart Glasses. Proceedings - 2022 6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022, 118–120. https://doi.org/10.1109/ICICCS53718.2022.9788117 | spa |
dc.relation.references | Girshick, R. (2015). Fast R-CNN. http://arxiv.org/abs/1504.08083 | spa |
dc.relation.references | Goldhammer, M., Kohler, S., Zernetsch, S., Doll, K., Sick, B., & Dietmayer, K. (2019). Intentions of Vulnerable Road Users--Detection and Forecasting by Means of Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 1–11. https://doi.org/10.1109/tits.2019.2923319 | spa |
dc.relation.references | He, C., & Saha, P. (2023a). Investigating YOLO Models Towards Outdoor Obstacle Detection For Visually Impaired People. http://arxiv.org/abs/2312.07571 | spa |
dc.relation.references | He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 2980–2988. https://doi.org/10.1109/ICCV.2017.322 | spa |
dc.relation.references | Held, P., Steinhauser, D., Kamann, A., Koch, A., Brandmeier, T., & Schwarz, U. T. (n.d.). Micro-doppler extraction of bicycle pedaling movements using automotive radar. | spa |
dc.relation.references | Heo, D., Nam, J. Y., & Ko, B. C. (2019). Estimation of pedestrian pose orientation using soft target training based on teacher-student framework. Sensors (Switzerland), 19(5). https://doi.org/10.3390/s19051147 | spa |
dc.relation.references | Hochreiter, & Schmidhuber. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. | spa |
dc.relation.references | Huang, Z., Wang, J., Pi, L., Song, X., & Yang, L. (2021). LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment. Pattern Recognition, 112. https://doi.org/10.1016/j.patcog.2020.107800 | spa |
dc.relation.references | Hubert, A., Zernetsch, S., Doll, K., & Sick, B. (2017). Cyclists’ starting behavior at intersections. IEEE Intelligent Vehicles Symposium, Proceedings, Iv, 1071–1077. https://doi.org/10.1109/IVS.2017.7995856 | spa |
dc.relation.references | ITF (IRTAD). OECD Publishing. (2023). Road Safety Annual Report 2023. https://www.itf-oecd.org/road-safety-annual-report-2023 | spa |
dc.relation.references | Kooij, J. F. P., Flohr, F., Pool, E. A. I., & Gavrila, D. M. (2019). Context-Based Path Prediction for Targets with Switching Dynamics. International Journal of Computer Vision, 127(3), 239–262. https://doi.org/10.1007/s11263-018-1104-4 | spa |
dc.relation.references | Kress, V., Jung, J., Zernetsch, S., Doll, K., & Sick, B. (2019a). Pose Based Start Intention Detection of Cyclists. 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, 2381–2386. https://doi.org/10.1109/ITSC.2019.8917215 | spa |
dc.relation.references | Kress, V., Jung, J., Zernetsch, S., Doll, K., & Sick, B. (2019b). Start intention detection of cyclists using an lstm network. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI), 295, 219–228. https://doi.org/10.18420/inf2019_ws25 | spa |
dc.relation.references | Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian detection based on yolo network model. Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018, 1547–1551. https://doi.org/10.1109/ICMA.2018.8484698 | spa |
dc.relation.references | Lee, J., Lee, M. S., Jang, M., Lim, J. M., & Lee, J. (2022). Comparison of Arduino Nano and Due processors for time-based data acquisition for low-cost mobile radiation detection system. Journal of Instrumentation, 17(3). https://doi.org/10.1088/1748-0221/17/03/P03015 | spa |
dc.relation.references | Lei, T., Mohamed, A. A., & Claudel, C. (2018). An IMU-based traffic and road condition monitoring system. HardwareX, 4, e00045. https://doi.org/10.1016/j.ohx.2018.e00045 | spa |
dc.relation.references | Lewandowski, B., Seichter, D., Wengefeld, T., Pfennig, L., Drumm, H., & Gross, H. M. (2019). Deep orientation: Fast and Robust Upper Body orientation Estimation for Mobile Robotic Applications. IEEE International Conference on Intelligent Robots and Systems, 2(03), 441–448. https://doi.org/10.1109/IROS40897.2019.8968506 | spa |
dc.relation.references | Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. http://arxiv.org/abs/2209.02976 | spa |
dc.relation.references | Li, X., Flohr, F., Yang, Y., Xiong, H., Braun, M., Pan, S., Li, K., & Gavrila, D. M. (2016). A new benchmark for vision-based cyclist detection. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), 1028–1033. https://doi.org/10.1109/IVS.2016.7535515 | spa |
dc.relation.references | Li, X., Li, L., Flohr, F., Wang, J., Xiong, H., Bernhard, M., Pan, S., Gavrila, D. M., & Li, K. (2017). A unified framework for concurrent pedestrian and cyclist detection. IEEE Transactions on Intelligent Transportation Systems, 18(2), 269–281. https://doi.org/10.1109/TITS.2016.2567418 | spa |
dc.relation.references | Lin, Y., Wang, P., & Ma, M. (2017). Intelligent Transportation System(ITS): Concept, Challenge and Opportunity. Proceedings - 3rd IEEE International Conference on Big Data Security on Cloud, BigDataSecurity 2017, 3rd IEEE International Conference on High Performance and Smart Computing, HPSC 2017 and 2nd IEEE International Conference on Intelligent Data and Securit, 167–172. https://doi.org/10.1109/BigDataSecurity.2017.50 | spa |
dc.relation.references | Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2015). SSD: Single Shot MultiBox Detector. https://doi.org/10.1007/978-3-319-46448-0_2 | spa |
dc.relation.references | Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Tan, K. C. (2023). A Survey on Evolutionary Neural Architecture Search. IEEE Transactions on Neural Networks and Learning Systems, 34(2), 550–570. https://doi.org/10.1109/TNNLS.2021.3100554 | spa |
dc.relation.references | Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. In International Journal of Advanced Manufacturing Technology (Vol. 102, Issues 9–12, pp. 2877–2889). Springer London. https://doi.org/10.1007/s00170-019-03332-x | spa |
dc.relation.references | Mandal, S., Biswas, S., Balas, V. E., Shaw, R. N., & Ghosh, A. (2020). Motion Prediction for Autonomous Vehicles from Lyft Dataset using Deep Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation, ICCCA 2020, 768–773. https://doi.org/10.1109/ICCCA49541.2020.9250790 | spa |
dc.relation.references | Mannion, P. (2019a). Vulnerable road user detection: state-of-the-art and open challenges. 1–5. http://arxiv.org/abs/1902.03601 | spa |
dc.relation.references | Masalov, A., Matrenin, P., Ota, J., Wirth, F., Stiller, C., Corbet, H., & Lee, E. (2019). Specialized cyclist detection dataset: Challenging real-world computer vision dataset for cyclist detection using a monocular RGB camera. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 114–118. https://doi.org/10.1109/IVS.2019.8813814 | spa |
dc.relation.references | Mathanlal, T., Vakkada Ramachandran, A., Zorzano, M. P., & Martin-Torres, J. (2021). PACKMAN – A portable instrument to investigate space weather. HardwareX, 9. https://doi.org/10.1016/j.ohx.2020.e00169 | spa |
dc.relation.references | Morimoto, A. (2019). Traffic and Safety Sciences: Interdisciplinary Wisdom of IATSS (Fisrt, Vol. 53, Issue 9). The Japan Times. https://www.iatss.or.jp/common/pdf/en/publication/commemorative-publication/iatss40.pdf | spa |
dc.relation.references | Murphey, Y. L., Liu, C., Tayyab, M., & Narayan, D. (2018). Accurate pedestrian path prediction using neural networks. 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings, 2018-Janua, 1–7. https://doi.org/10.1109/SSCI.2017.8285398 | spa |
dc.relation.references | Oehlberg, L. (2020). Autonomous Vehicle-Cyclist Interaction : Peril and Promise. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–12. Olah, C. (2025). Understanding LSTM Networks. URL: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ | spa |
dc.relation.references | Padilla, R., Netto, S. L., & da Silva, E. (2020). A survey on performance metrics for object-detection algorithms. (IEEE IWSSIP2020). | spa |
dc.relation.references | Pan, D., Han, Y., Jin, Q., Kan, J., Huang, H., Mizuno, K., & Thomson, R. (2023). Probabilistic Prediction of Collisions between Cyclists and Vehicles Based on Uncertainty of Cyclists’ Movements. Transportation Research Record, 2677(3), 1151–1164. https://doi.org/10.1177/03611981221121270 | spa |
dc.relation.references | Pool, E. A. I., Kooij, J. F. P., & Gavrila, D. M. (2017). Using road topology to improve cyclist path prediction. IEEE Intelligent Vehicles Symposium, Proceedings, Iv, 289–296. https://doi.org/10.1109/IVS.2017.7995734 | spa |
dc.relation.references | Pool, E. A. I., Kooij, J. F. P., & Gavrila, D. M. (2019). Context-based cyclist path prediction using Recurrent Neural Networks. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 824–830. https://doi.org/10.1109/IVS.2019.8813889 | spa |
dc.relation.references | Prokudin, S., Gehler, P., & Nowozin, S. (2018). Deep Directional Statistics: Pose Estimation with Uncertainty Quantification. http://arxiv.org/abs/1805.03430 | spa |
dc.relation.references | Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. http://arxiv.org/abs/1506.02640 | spa |
dc.relation.references | Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. http://pjreddie.com/yolo9000/ | spa |
dc.relation.references | Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767 | spa |
dc.relation.references | Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. http://arxiv.org/abs/1506.01497 | spa |
dc.relation.references | SAE. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road moto vehicles. In Technical Report SAE International. | spa |
dc.relation.references | Saini, M., & Susan, S. (2023). VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(1), 752–762. https://doi.org/10.1109/TCBB.2022.3163277 | spa |
dc.relation.references | Saleh, K., Hossny, M., Hossny, A., & Nahavandi, S. (2018). Cyclist detection in LIDAR scans using faster R-CNN and synthetic depth images. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317599 | spa |
dc.relation.references | Saleh, K., Hossny, M., Nahavandi, S. (2018). Cyclist Trajectory Prediction Using Bidirectional Recurrent Neural Networks. In Australasian Joint Conference on Artificial Intelligence (Vol. 11320, Issue 61773242, pp. 284–295). Springer International Publishing. https://doi.org/10.1007/978-3-030-03991-2 | spa |
dc.relation.references | Saun, T. J., & Grantcharov, T. P. (2021). Design and validation of an inertial measurement unit (IMU)-based sensor for capturing camera movement in the operating room. HardwareX, 9, e00179. https://doi.org/10.1016/j.ohx.2021.e00179 | spa |
dc.relation.references | Schieben, A., Wilbrink, M., Kettwich, C., Madigan, R., Louw, T., & Merat, N. (2019). Designing the interaction of automated vehicles with other traffic participants: design considerations based on human needs and expectations. Cognition, Technology and Work, 21(1), 69–85. https://doi.org/10.1007/s10111-018-0521-z | spa |
dc.relation.references | Schneemann, F., & Heinemann, P. (2016). Context-based detection of pedestrian crossing intention for autonomous driving in urban environments. IEEE International Conference on Intelligent Robots and Systems, 2016-Novem, 2243–2248. https://doi.org/10.1109/IROS.2016.7759351 | spa |
dc.relation.references | SENSORTEC-BOSCH. (2014). BNO055 Intelligent 9-axis absolute orientation sensor. https://www.bosch-sensortec.com/products/smart-sensors/bno055/ | spa |
dc.relation.references | Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14. | spa |
dc.relation.references | Sohan, M., Sai Ram, T., & Rami Reddy, Ch. V. (2024). A Review on YOLOv8 and Its Advancements (pp. 529–545). https://doi.org/10.1007/978-981-99-7962-2_39 | spa |
dc.relation.references | Stayton, E., & Stilgoe, J. (2020). It’s Time to Rethink Levels of Automation for Self-Driving Vehicles. SSRN Electronic Journal, 2019(2016), 391–397. https://doi.org/10.2139/ssrn.3579386 | spa |
dc.relation.references | Suwandi, B., Kitasuka, T., & Aritsugi, M. (2019). Vehicle vibration error compensation on IMU-accelerometer sensor using adaptive filter and low-pass filter approaches. Journal of Information Processing, 27, 33–40. https://doi.org/10.2197/ipsjjip.27.33 | spa |
dc.relation.references | Talpaert, V., Sobh, I., Ravi Kiran, B., Mannion, P., Yogamani, S., El-Sallab, A., & Perez, P. (2019). Exploring Applications of Deep Reinforcement Learning for Real-world Autonomous Driving Systems. VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5, 564–572. https://doi.org/10.5220/0007520305640572 | spa |
dc.relation.references | Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. http://arxiv.org/abs/2104.00298 | spa |
dc.relation.references | Teng, R. (2022). Prevention Detection for Cyclists based on Faster R-CNN. Proceedings - 2022 International Conference on Networks, Communications and Information Technology, CNCIT 2022, 142–148. https://doi.org/10.1109/CNCIT56797.2022.00030 | spa |
dc.relation.references | Terven, J., & Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.3390/make5040083 | spa |
dc.relation.references | Thrun, S. (2010). Toward robotic cars. Communications of the ACM, 53(4), 99–106. https://doi.org/10.1145/1721654.1721679 | spa |
dc.relation.references | Toy, I., Durdu, A., & Yusefi, A. (2022). Improved Dead Reckoning Localization using IMU Sensor. 2022 15th International Symposium on Electronics and Telecommunications, ISETC 2022 - Conference Proceedings. https://doi.org/10.1109/ISETC56213.2022.10010239 | spa |
dc.relation.references | Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. | spa |
dc.relation.references | Wang, K., & Zhou, W. (2019). Pedestrian and cyclist detection based on deep neural network fast R-CNN. International Journal of Advanced Robotic Systems, 16(2). https://doi.org/10.1177/1729881419829651 | spa |
dc.relation.references | Wang, L., Schmidt, B., & Nee, A. Y. C. (2013). Vision-guided active collision avoidance for human-robot collaborations. Manufacturing Letters, 1(1), 5–8. https://doi.org/https://doi.org/10.1016/j.mfglet.2013.08.001 | spa |
dc.relation.references | Wells, J. (2018). A SENSOR BASED APPROACH TO ANALYZING MOTION IN MEDICAL APPLICATIONS: AV FISTULA CANNULATION AND RETT SYNDROME. https://doi.org/10.13140/RG.2.2.29733.93929 | spa |
dc.relation.references | Wengefeld, T., Lewandowski, B., Seichter, D., Pfennig, L., & Gross, H. M. (2019). Real-time person orientation estimation using colored pointclouds. 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings, 2(03). https://doi.org/10.1109/ECMR.2019.8870914 | spa |
dc.relation.references | Westerhuis, F., & De Waard, D. (2017). Reading cyclist intentions: Can a lead cyclist’s behaviour be predicted? Accident Analysis and Prevention, 105, 146–155. https://doi.org/10.1016/j.aap.2016.06.026 | spa |
dc.relation.references | Wickramanayake, S., Li, M., & Hsu, L. W. (n.d.). Explanation-based Data Augmentation for Image Classification. | spa |
dc.relation.references | World Health Organization. (2023). Global status report on road safety 2023. https://www.who.int/publications/i/item/9789240086517 | spa |
dc.relation.references | Xia, K., Lv, Z., Zhou, C., Gu, G., Zhao, Z., Liu, K., & Li, Z. (2023). Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection. Sensors, 23(11). https://doi.org/10.3390/s23115114 | spa |
dc.relation.references | Ximena González-Cely, A., Callejas-Cuervo, M., & Bastos-Filho, T. (2022). Wheelchair prototype controlled by position, speed and orientation using head movement. https://doi.org/10.17632/ys9s9pgvbg.2 | spa |
dc.relation.references | Xu, Y., Liang, X., Dong, X., & Chen, W. (2019). Intelligent Transportation System and Future of Road Safety. Proceedings - 4th IEEE International Conference on Smart Cloud, SmartCloud 2019 and 3rd International Symposium on Reinforcement Learning, ISRL 2019, 209–214. https://doi.org/10.1109/SmartCloud.2019.00043 | spa |
dc.relation.references | Yasir, M., Zhan, L., Liu, S., Wan, J., Hossain, M. S., Isiacik Colak, A. T., Liu, M., Islam, Q. U., Raza Mehdi, S., & Yang, Q. (2023). Instance segmentation ship detection based on improved Yolov7 using complex background SAR images. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1113669 | spa |
dc.relation.references | Zernetsch, S., Kohnen, S., Goldhammer, M., Doll, K., & Sick, B. (2016). Trajectory prediction of cyclists using a physical model and an artificial neural network. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), 833–838. https://doi.org/10.1109/IVS.2016.7535484 | spa |
dc.relation.references | Zernetsch, S., Kress, V., Sick, B., & Doll, K. (2018). Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network. IEEE Intelligent Vehicles Symposium, Proceedings, 2018-June(Iv), 2036–2041. https://doi.org/10.1109/IVS.2018.8500428 | spa |
dc.relation.references | Shijie, J., Ping, W., Peiyi, J., & Siping, H. (2017, October). Research on data augmentation for image classification based on convolution neural networks. In 2017 Chinese automation congress (CAC) (pp. 4165-4170). IEEE. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::003 - Sistemas | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.lemb | Seguridad vial | |
dc.subject.lemb | Ciclistas - Medidas de seguridad | |
dc.subject.lemb | Accidentes de tránsito - Medidas de seguridad | |
dc.subject.lemb | Redes neurales (Computadores) | |
dc.subject.lemb | Tráfico urbano - Medidas de seguridad | |
dc.subject.lemb | Flujo de tráfico | |
dc.subject.lemb | Transporte - Planificación - Procesamiento de datos | |
dc.subject.proposal | Vulnerable Road User | eng |
dc.subject.proposal | Intention prediction | eng |
dc.subject.proposal | Autonomous Driving Environments | eng |
dc.subject.proposal | Convolutional Neural Networks | eng |
dc.subject.proposal | Inertial Measurement Unit | eng |
dc.subject.proposal | LSTM networks | eng |
dc.subject.proposal | Orientation estimation | eng |
dc.subject.proposal | Usuarios vulnerables de la vía | spa |
dc.subject.proposal | Predicción de intención | spa |
dc.subject.proposal | Redes neuronales convolucionales | spa |
dc.subject.proposal | Redes LSTM | spa |
dc.subject.proposal | Estimación de orientación | spa |
dc.title | Intention prediction of cyclist based on their orientation angles as vulnerable road users in autonomous driving environments | eng |
dc.title.translated | Predicción de intención de ciclista basada en sus ángulos de orientación como usuario vulnerable de la vía en entornos de conducción autónoma | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71726659.2024.pdf
- Tamaño:
- 5.18 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: