Intention prediction of cyclist based on their orientation angles as vulnerable road users in autonomous driving environments

dc.contributor.advisorBallesteros Parra, John Robert
dc.contributor.advisorBranch Bedoya, John William
dc.contributor.advisorMadrigal González, Carlos Andrés
dc.contributor.authorArias Correa, Alberto Mauricio
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000268046spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=0XMAvosAAAAJ&hl=es&oi=aospa
dc.contributor.orcidArias Correa, Alberto Mauricio [0000-0003-0619-235X]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Mauricio-Correa-8spa
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.date.accessioned2024-07-12T13:31:19Z
dc.date.available2024-07-12T13:31:19Z
dc.date.issued2024-05-16
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractTraffic accidents are currently the eighth leading cause of death, according to the World Health Organization (WHO). Of these deaths, 71% are vulnerable road users (VRUs), with cyclists accounting for 3%. In an environment where autonomous vehicles (AVs) are the most prominent non-vulnerable road actors, VRUS must be effectively and swiftly detected by these AVs. This task remains an open challenge, as cyclists exhibit highly complex movement patterns, and occlusions and lighting issues in urban roads hinder their detection. In this doctoral thesis, we propose predicting the intentions of cyclists on urban roads by estimating both their orientation and inclination during movement near AVs. Due to the lack of hardware and software for the data acquisition systems, containing images associated with cyclists' orientation angles, a system was designed, and a dataset called Cyclops was compiled. This dataset was then used to train an effective cyclist detector using the YOLOv8 architecture. A refined subset of the dataset enabled the training of a model based on modified VGG16 for angular regression and another with similar features based on EfficientNetV2-s. Both models showed better cyclist orientation estimation results than those currently found in the state-of-the-art. Finally, we trained an LSTM network to predict two subsequent periods of angular change (for orientation and inclination) from six previous states, maintaining a prediction sequence and achieving the proposed objective. (Tomado de la fuente)eng
dc.description.abstractLas muertes por accidentes de tránsito son actualmente la octava causa de muerte según la Organización Mundial de la Salud (OMS). El 71% de esas muertes corresponde a usuarios vulnerables de la vía (VRU), en particular el 3% son ciclistas. En un entorno en el cual los vehículos autónomos (AV) son los actores viales no vulnerables de mayor presencia, será de gran importancia que los VRU sean detectados por dichos AV de forma efectiva y en el menor tiempo posible. Esta tarea aún es un desafío abierto, debido a que los ciclistas tienen patrones de movimiento altamente complejos y su detección se ve afectada por oclusiones y problemas asociados a la iluminación cuando se desplazan sobre vías urbana. En esta tesis doctoral, se propone predecir la intención de los ciclistas en vías urbanas a partir de la estimación tanto de su orientación como de su inclinación durante el movimiento en cercanías de AVs. Debido a la falta de datasets que contengan imágenes asociadas a ángulos de orientación de ciclistas, se diseñó un sistema y se construyó un dataset denominado Cyclops. Posteriormente el dataset fue utilizado para entrenar un detector de ciclistas efectivo utilizando la arquitectura YOLOv8. Un subconjunto depurado del dataset permitió entrenar un modelo basado en VGG16 modificado para regresión angular y otro con las mismas características, pero basado en EfficientNetV2-s. Ambos modelos presentaron resultados de estimación de orientación de ciclistas mejores a los actualmente encontrados en el estado del arte. Finalmente se entrenó una red LSTM que permitía para predecir dos periodos posteriores de cambio angular (para orientación e inclinación) a partir de seis estados anteriores y mantener una secuencia de predicción, logrando así el objetivo propuesto.spa
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extent83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86436
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbadi, A. D., Gu, Y., Goncharenko, I., & Kamijo, S. (2022). Detection of Cyclists’ Crossing Intentions for Autonomous Vehicles. Digest of Technical Papers - IEEE International Conference on Consumer Electronics, 2022-Janua. https://doi.org/10.1109/ICCE53296.2022.9730559spa
dc.relation.referencesAhmed, H. E., Sahandabadi, S., Bhawya, & Ahamed, M. J. (2023). Application of MEMS Accelerometers in Dynamic Vibration Monitoring of a Vehicle. Micromachines, 14(5). https://doi.org/10.3390/mi14050923spa
dc.relation.referencesAkiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701spa
dc.relation.referencesAlhajyaseen, W. K. M., Asano, M., & Nakamura, H. (2012). Estimation of left-turning vehicle maneuvers for the assessment of pedestrian safety at intersections. IATSS Research, 36(1), 66–74. https://doi.org/10.1016/j.iatssr.2012.03.002spa
dc.relation.referencesBadrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615spa
dc.relation.referencesBadue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T., Mutz, F., Veronese, L., Oliveira-Santos, T., & De Souza, A. F. (2019). Self-Driving Cars: A Survey. http://arxiv.org/abs/1901.04407spa
dc.relation.referencesBenarbia, T., Kyamakya, K., Al Machot, F., & Kambale, W. V. (2023). Modeling and Simulation of Shared Electric Automated and Connected Mobility Systems with Autonomous Repositioning: Performance Evaluation and Deployment. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010881spa
dc.relation.referencesBetancur-Vásquez, D., Mejia-Herrera, M., & Botero-Valencia, J. S. (2021). Open source and open hardware mobile robot for developing applications in education and research. https://doi.org/10.17605/OSF.IO/KQ3EWspa
dc.relation.referencesBeyer, L., Hermans, A., & Leibe, B. (2015). Biternion nets: Continuous head pose regression from discrete training labels. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9358, 157–168. https://doi.org/10.1007/978-3-319-24947-6_13spa
dc.relation.referencesBieshaar, M., Depping, M., Schneegans, J., & Sick, B. (2019). Starting movement detection of cyclists using smart devices. Proceedings - 2018 IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018, 313–322. https://doi.org/10.1109/DSAA.2018.00042spa
dc.relation.referencesBochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934spa
dc.relation.referencesBolaños, Y. H., Rengifo, C. F., Caicedo, P. E., Rodriguez, L. E., & Sierra, W. A. (2020). Electronic system for step width estimation using programmable system-on-chip technology and time of flight cameras. HardwareX, 8. https://doi.org/10.1016/j.ohx.2020.e00126spa
dc.relation.referencesBotero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Design of a low-cost mobile multispectral albedometer with geopositioning and absolute orientation. HardwareX, 12, e00324. https://doi.org/10.1016/j.ohx.2022.e00324spa
dc.relation.referencesBrohm, T., Haupt, K., & Thiel, R. (2019). Pedestrian Intention and Gesture Classification Using Neural Networks. ATZ Worldwide, 121(4), 26–31. https://doi.org/10.1007/s38311-019-0006-6spa
dc.relation.referencesBrown, B., & Laurier, E. (2017). The trouble with autopilots: Assisted and autonomous driving on the social road. Conference on Human Factors in Computing Systems - Proceedings, 2017-May, 416–429. https://doi.org/10.1145/3025453.3025462spa
dc.relation.referencesCasas, E., Ramos, L., Bendek, E., & Rivas-Echeverria, F. (2023). Assessing the Effectiveness of YOLO Architectures for Smoke and Wildfire Detection. IEEE Access, 11, 96554–96583. https://doi.org/10.1109/ACCESS.2023.3312217spa
dc.relation.referencesDávila García, A. (2024). BOLETÍN ESTADÍSTICO COLOMBIA Fallecidos y Lesionados por Siniestros Viales. https://ansv.gov.co/es/node/11124spa
dc.relation.referencesDIng, Y., Zhou, X., Bao, H., Li, Y., Hamann, C., Spears, S., & Yuan, Z. (2020). Cycling-Net: A Deep Learning Approach to Predicting Cyclist Behaviors from Geo-Referenced Egocentric Video Data. GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 337–346. https://doi.org/10.1145/3397536.3422258spa
dc.relation.referencesDung, C. V., Sekiya, H., Hirano, S., Okatani, T., & Miki, C. (2019). A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Automation in Construction, 102, 217–229. https://doi.org/10.1016/j.autcon.2019.02.013spa
dc.relation.referencesDwijayanti, S., Iqbal, M., & Suprapto, B. Y. (2022). Real-time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3200762spa
dc.relation.referencesEttinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C., Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., Mccauley, A., Shlens, J., Anguelov, D., Llc, W., & Brain, G. (n.d.). Large Scale Interactive Motion Forecasting for Autonomous Driving : The WAYMO OPEN MOTION DATASET.spa
dc.relation.referencesFairley, P. (2017). Self-driving cars have a bicycle problem [News]. IEEE Spectrum, 54(3), 12–13. https://doi.org/10.1109/mspec.2017.7864743spa
dc.relation.referencesFlohr, F. (2018). Vulnerable Road User Detection and Orientation Estimation for Context-Aware Automated Driving.spa
dc.relation.referencesGao, H., Su, H., Cai, Y., Wu, R., Hao, Z., Xu, Y., Wu, W., Wang, J., Li, Z., & Kan, Z. (2021). Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections. Science China Information Sciences, 64(7). https://doi.org/10.1007/s11432-020-3071-8spa
dc.relation.referencesGarcía-Venegas, M., Mercado-Ravell, D. A., Pinedo-Sánchez, L. A., & Carballo-Monsivais, C. A. (2021a). On the safety of vulnerable road users by cyclist detection and tracking. Machine Vision and Applications, 32(5), 1–16. https://doi.org/10.1007/s00138-021-01231-4spa
dc.relation.referencesGeiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. International Journal of Robotics Research, 32(11), 1231–1237. https://doi.org/10.1177/0278364913491297spa
dc.relation.referencesGillani, I. S., Munawar, M. R., Talha, M., Azhar, S., Mashkoor, Y., uddin, M. S., & Zafar, U. (2022). Yolov5, Yolo-x, Yolo-r, Yolov7 Performance Comparison: A Survey. 17–28. https://doi.org/10.5121/csit.2022.121602spa
dc.relation.referencesGirinath, N., Ganesh Babu, C., Chandru, Surendar, R., Sabarish, V., & Abhirooban, T. (2022). Arduino nano based Smart Glasses. Proceedings - 2022 6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022, 118–120. https://doi.org/10.1109/ICICCS53718.2022.9788117spa
dc.relation.referencesGirshick, R. (2015). Fast R-CNN. http://arxiv.org/abs/1504.08083spa
dc.relation.referencesGoldhammer, M., Kohler, S., Zernetsch, S., Doll, K., Sick, B., & Dietmayer, K. (2019). Intentions of Vulnerable Road Users--Detection and Forecasting by Means of Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 1–11. https://doi.org/10.1109/tits.2019.2923319spa
dc.relation.referencesHe, C., & Saha, P. (2023a). Investigating YOLO Models Towards Outdoor Obstacle Detection For Visually Impaired People. http://arxiv.org/abs/2312.07571spa
dc.relation.referencesHe, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 2980–2988. https://doi.org/10.1109/ICCV.2017.322spa
dc.relation.referencesHeld, P., Steinhauser, D., Kamann, A., Koch, A., Brandmeier, T., & Schwarz, U. T. (n.d.). Micro-doppler extraction of bicycle pedaling movements using automotive radar.spa
dc.relation.referencesHeo, D., Nam, J. Y., & Ko, B. C. (2019). Estimation of pedestrian pose orientation using soft target training based on teacher-student framework. Sensors (Switzerland), 19(5). https://doi.org/10.3390/s19051147spa
dc.relation.referencesHochreiter, & Schmidhuber. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.spa
dc.relation.referencesHuang, Z., Wang, J., Pi, L., Song, X., & Yang, L. (2021). LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment. Pattern Recognition, 112. https://doi.org/10.1016/j.patcog.2020.107800spa
dc.relation.referencesHubert, A., Zernetsch, S., Doll, K., & Sick, B. (2017). Cyclists’ starting behavior at intersections. IEEE Intelligent Vehicles Symposium, Proceedings, Iv, 1071–1077. https://doi.org/10.1109/IVS.2017.7995856spa
dc.relation.referencesITF (IRTAD). OECD Publishing. (2023). Road Safety Annual Report 2023. https://www.itf-oecd.org/road-safety-annual-report-2023spa
dc.relation.referencesKooij, J. F. P., Flohr, F., Pool, E. A. I., & Gavrila, D. M. (2019). Context-Based Path Prediction for Targets with Switching Dynamics. International Journal of Computer Vision, 127(3), 239–262. https://doi.org/10.1007/s11263-018-1104-4spa
dc.relation.referencesKress, V., Jung, J., Zernetsch, S., Doll, K., & Sick, B. (2019a). Pose Based Start Intention Detection of Cyclists. 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, 2381–2386. https://doi.org/10.1109/ITSC.2019.8917215spa
dc.relation.referencesKress, V., Jung, J., Zernetsch, S., Doll, K., & Sick, B. (2019b). Start intention detection of cyclists using an lstm network. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI), 295, 219–228. https://doi.org/10.18420/inf2019_ws25spa
dc.relation.referencesLan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian detection based on yolo network model. Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018, 1547–1551. https://doi.org/10.1109/ICMA.2018.8484698spa
dc.relation.referencesLee, J., Lee, M. S., Jang, M., Lim, J. M., & Lee, J. (2022). Comparison of Arduino Nano and Due processors for time-based data acquisition for low-cost mobile radiation detection system. Journal of Instrumentation, 17(3). https://doi.org/10.1088/1748-0221/17/03/P03015spa
dc.relation.referencesLei, T., Mohamed, A. A., & Claudel, C. (2018). An IMU-based traffic and road condition monitoring system. HardwareX, 4, e00045. https://doi.org/10.1016/j.ohx.2018.e00045spa
dc.relation.referencesLewandowski, B., Seichter, D., Wengefeld, T., Pfennig, L., Drumm, H., & Gross, H. M. (2019). Deep orientation: Fast and Robust Upper Body orientation Estimation for Mobile Robotic Applications. IEEE International Conference on Intelligent Robots and Systems, 2(03), 441–448. https://doi.org/10.1109/IROS40897.2019.8968506spa
dc.relation.referencesLi, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. http://arxiv.org/abs/2209.02976spa
dc.relation.referencesLi, X., Flohr, F., Yang, Y., Xiong, H., Braun, M., Pan, S., Li, K., & Gavrila, D. M. (2016). A new benchmark for vision-based cyclist detection. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), 1028–1033. https://doi.org/10.1109/IVS.2016.7535515spa
dc.relation.referencesLi, X., Li, L., Flohr, F., Wang, J., Xiong, H., Bernhard, M., Pan, S., Gavrila, D. M., & Li, K. (2017). A unified framework for concurrent pedestrian and cyclist detection. IEEE Transactions on Intelligent Transportation Systems, 18(2), 269–281. https://doi.org/10.1109/TITS.2016.2567418spa
dc.relation.referencesLin, Y., Wang, P., & Ma, M. (2017). Intelligent Transportation System(ITS): Concept, Challenge and Opportunity. Proceedings - 3rd IEEE International Conference on Big Data Security on Cloud, BigDataSecurity 2017, 3rd IEEE International Conference on High Performance and Smart Computing, HPSC 2017 and 2nd IEEE International Conference on Intelligent Data and Securit, 167–172. https://doi.org/10.1109/BigDataSecurity.2017.50spa
dc.relation.referencesLiu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2015). SSD: Single Shot MultiBox Detector. https://doi.org/10.1007/978-3-319-46448-0_2spa
dc.relation.referencesLiu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Tan, K. C. (2023). A Survey on Evolutionary Neural Architecture Search. IEEE Transactions on Neural Networks and Learning Systems, 34(2), 550–570. https://doi.org/10.1109/TNNLS.2021.3100554spa
dc.relation.referencesLiu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., & Yan, C. (2019). A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. In International Journal of Advanced Manufacturing Technology (Vol. 102, Issues 9–12, pp. 2877–2889). Springer London. https://doi.org/10.1007/s00170-019-03332-xspa
dc.relation.referencesMandal, S., Biswas, S., Balas, V. E., Shaw, R. N., & Ghosh, A. (2020). Motion Prediction for Autonomous Vehicles from Lyft Dataset using Deep Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation, ICCCA 2020, 768–773. https://doi.org/10.1109/ICCCA49541.2020.9250790spa
dc.relation.referencesMannion, P. (2019a). Vulnerable road user detection: state-of-the-art and open challenges. 1–5. http://arxiv.org/abs/1902.03601spa
dc.relation.referencesMasalov, A., Matrenin, P., Ota, J., Wirth, F., Stiller, C., Corbet, H., & Lee, E. (2019). Specialized cyclist detection dataset: Challenging real-world computer vision dataset for cyclist detection using a monocular RGB camera. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 114–118. https://doi.org/10.1109/IVS.2019.8813814spa
dc.relation.referencesMathanlal, T., Vakkada Ramachandran, A., Zorzano, M. P., & Martin-Torres, J. (2021). PACKMAN – A portable instrument to investigate space weather. HardwareX, 9. https://doi.org/10.1016/j.ohx.2020.e00169spa
dc.relation.referencesMorimoto, A. (2019). Traffic and Safety Sciences: Interdisciplinary Wisdom of IATSS (Fisrt, Vol. 53, Issue 9). The Japan Times. https://www.iatss.or.jp/common/pdf/en/publication/commemorative-publication/iatss40.pdfspa
dc.relation.referencesMurphey, Y. L., Liu, C., Tayyab, M., & Narayan, D. (2018). Accurate pedestrian path prediction using neural networks. 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings, 2018-Janua, 1–7. https://doi.org/10.1109/SSCI.2017.8285398spa
dc.relation.referencesOehlberg, L. (2020). Autonomous Vehicle-Cyclist Interaction : Peril and Promise. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–12. Olah, C. (2025). Understanding LSTM Networks. URL: https://colah.github.io/posts/2015-08-Understanding-LSTMs/spa
dc.relation.referencesPadilla, R., Netto, S. L., & da Silva, E. (2020). A survey on performance metrics for object-detection algorithms. (IEEE IWSSIP2020).spa
dc.relation.referencesPan, D., Han, Y., Jin, Q., Kan, J., Huang, H., Mizuno, K., & Thomson, R. (2023). Probabilistic Prediction of Collisions between Cyclists and Vehicles Based on Uncertainty of Cyclists’ Movements. Transportation Research Record, 2677(3), 1151–1164. https://doi.org/10.1177/03611981221121270spa
dc.relation.referencesPool, E. A. I., Kooij, J. F. P., & Gavrila, D. M. (2017). Using road topology to improve cyclist path prediction. IEEE Intelligent Vehicles Symposium, Proceedings, Iv, 289–296. https://doi.org/10.1109/IVS.2017.7995734spa
dc.relation.referencesPool, E. A. I., Kooij, J. F. P., & Gavrila, D. M. (2019). Context-based cyclist path prediction using Recurrent Neural Networks. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 824–830. https://doi.org/10.1109/IVS.2019.8813889spa
dc.relation.referencesProkudin, S., Gehler, P., & Nowozin, S. (2018). Deep Directional Statistics: Pose Estimation with Uncertainty Quantification. http://arxiv.org/abs/1805.03430spa
dc.relation.referencesRedmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. http://arxiv.org/abs/1506.02640spa
dc.relation.referencesRedmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. http://pjreddie.com/yolo9000/spa
dc.relation.referencesRedmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767spa
dc.relation.referencesRen, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. http://arxiv.org/abs/1506.01497spa
dc.relation.referencesSAE. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road moto vehicles. In Technical Report SAE International.spa
dc.relation.referencesSaini, M., & Susan, S. (2023). VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(1), 752–762. https://doi.org/10.1109/TCBB.2022.3163277spa
dc.relation.referencesSaleh, K., Hossny, M., Hossny, A., & Nahavandi, S. (2018). Cyclist detection in LIDAR scans using faster R-CNN and synthetic depth images. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317599spa
dc.relation.referencesSaleh, K., Hossny, M., Nahavandi, S. (2018). Cyclist Trajectory Prediction Using Bidirectional Recurrent Neural Networks. In Australasian Joint Conference on Artificial Intelligence (Vol. 11320, Issue 61773242, pp. 284–295). Springer International Publishing. https://doi.org/10.1007/978-3-030-03991-2spa
dc.relation.referencesSaun, T. J., & Grantcharov, T. P. (2021). Design and validation of an inertial measurement unit (IMU)-based sensor for capturing camera movement in the operating room. HardwareX, 9, e00179. https://doi.org/10.1016/j.ohx.2021.e00179spa
dc.relation.referencesSchieben, A., Wilbrink, M., Kettwich, C., Madigan, R., Louw, T., & Merat, N. (2019). Designing the interaction of automated vehicles with other traffic participants: design considerations based on human needs and expectations. Cognition, Technology and Work, 21(1), 69–85. https://doi.org/10.1007/s10111-018-0521-zspa
dc.relation.referencesSchneemann, F., & Heinemann, P. (2016). Context-based detection of pedestrian crossing intention for autonomous driving in urban environments. IEEE International Conference on Intelligent Robots and Systems, 2016-Novem, 2243–2248. https://doi.org/10.1109/IROS.2016.7759351spa
dc.relation.referencesSENSORTEC-BOSCH. (2014). BNO055 Intelligent 9-axis absolute orientation sensor. https://www.bosch-sensortec.com/products/smart-sensors/bno055/spa
dc.relation.referencesSimonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.spa
dc.relation.referencesSohan, M., Sai Ram, T., & Rami Reddy, Ch. V. (2024). A Review on YOLOv8 and Its Advancements (pp. 529–545). https://doi.org/10.1007/978-981-99-7962-2_39spa
dc.relation.referencesStayton, E., & Stilgoe, J. (2020). It’s Time to Rethink Levels of Automation for Self-Driving Vehicles. SSRN Electronic Journal, 2019(2016), 391–397. https://doi.org/10.2139/ssrn.3579386spa
dc.relation.referencesSuwandi, B., Kitasuka, T., & Aritsugi, M. (2019). Vehicle vibration error compensation on IMU-accelerometer sensor using adaptive filter and low-pass filter approaches. Journal of Information Processing, 27, 33–40. https://doi.org/10.2197/ipsjjip.27.33spa
dc.relation.referencesTalpaert, V., Sobh, I., Ravi Kiran, B., Mannion, P., Yogamani, S., El-Sallab, A., & Perez, P. (2019). Exploring Applications of Deep Reinforcement Learning for Real-world Autonomous Driving Systems. VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5, 564–572. https://doi.org/10.5220/0007520305640572spa
dc.relation.referencesTan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. http://arxiv.org/abs/2104.00298spa
dc.relation.referencesTeng, R. (2022). Prevention Detection for Cyclists based on Faster R-CNN. Proceedings - 2022 International Conference on Networks, Communications and Information Technology, CNCIT 2022, 142–148. https://doi.org/10.1109/CNCIT56797.2022.00030spa
dc.relation.referencesTerven, J., & Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.3390/make5040083spa
dc.relation.referencesThrun, S. (2010). Toward robotic cars. Communications of the ACM, 53(4), 99–106. https://doi.org/10.1145/1721654.1721679spa
dc.relation.referencesToy, I., Durdu, A., & Yusefi, A. (2022). Improved Dead Reckoning Localization using IMU Sensor. 2022 15th International Symposium on Electronics and Telecommunications, ISETC 2022 - Conference Proceedings. https://doi.org/10.1109/ISETC56213.2022.10010239spa
dc.relation.referencesWang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.spa
dc.relation.referencesWang, K., & Zhou, W. (2019). Pedestrian and cyclist detection based on deep neural network fast R-CNN. International Journal of Advanced Robotic Systems, 16(2). https://doi.org/10.1177/1729881419829651spa
dc.relation.referencesWang, L., Schmidt, B., & Nee, A. Y. C. (2013). Vision-guided active collision avoidance for human-robot collaborations. Manufacturing Letters, 1(1), 5–8. https://doi.org/https://doi.org/10.1016/j.mfglet.2013.08.001spa
dc.relation.referencesWells, J. (2018). A SENSOR BASED APPROACH TO ANALYZING MOTION IN MEDICAL APPLICATIONS: AV FISTULA CANNULATION AND RETT SYNDROME. https://doi.org/10.13140/RG.2.2.29733.93929spa
dc.relation.referencesWengefeld, T., Lewandowski, B., Seichter, D., Pfennig, L., & Gross, H. M. (2019). Real-time person orientation estimation using colored pointclouds. 2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings, 2(03). https://doi.org/10.1109/ECMR.2019.8870914spa
dc.relation.referencesWesterhuis, F., & De Waard, D. (2017). Reading cyclist intentions: Can a lead cyclist’s behaviour be predicted? Accident Analysis and Prevention, 105, 146–155. https://doi.org/10.1016/j.aap.2016.06.026spa
dc.relation.referencesWickramanayake, S., Li, M., & Hsu, L. W. (n.d.). Explanation-based Data Augmentation for Image Classification.spa
dc.relation.referencesWorld Health Organization. (2023). Global status report on road safety 2023. https://www.who.int/publications/i/item/9789240086517spa
dc.relation.referencesXia, K., Lv, Z., Zhou, C., Gu, G., Zhao, Z., Liu, K., & Li, Z. (2023). Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection. Sensors, 23(11). https://doi.org/10.3390/s23115114spa
dc.relation.referencesXimena González-Cely, A., Callejas-Cuervo, M., & Bastos-Filho, T. (2022). Wheelchair prototype controlled by position, speed and orientation using head movement. https://doi.org/10.17632/ys9s9pgvbg.2spa
dc.relation.referencesXu, Y., Liang, X., Dong, X., & Chen, W. (2019). Intelligent Transportation System and Future of Road Safety. Proceedings - 4th IEEE International Conference on Smart Cloud, SmartCloud 2019 and 3rd International Symposium on Reinforcement Learning, ISRL 2019, 209–214. https://doi.org/10.1109/SmartCloud.2019.00043spa
dc.relation.referencesYasir, M., Zhan, L., Liu, S., Wan, J., Hossain, M. S., Isiacik Colak, A. T., Liu, M., Islam, Q. U., Raza Mehdi, S., & Yang, Q. (2023). Instance segmentation ship detection based on improved Yolov7 using complex background SAR images. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1113669spa
dc.relation.referencesZernetsch, S., Kohnen, S., Goldhammer, M., Doll, K., & Sick, B. (2016). Trajectory prediction of cyclists using a physical model and an artificial neural network. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), 833–838. https://doi.org/10.1109/IVS.2016.7535484spa
dc.relation.referencesZernetsch, S., Kress, V., Sick, B., & Doll, K. (2018). Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network. IEEE Intelligent Vehicles Symposium, Proceedings, 2018-June(Iv), 2036–2041. https://doi.org/10.1109/IVS.2018.8500428spa
dc.relation.referencesShijie, J., Ping, W., Peiyi, J., & Siping, H. (2017, October). Research on data augmentation for image classification based on convolution neural networks. In 2017 Chinese automation congress (CAC) (pp. 4165-4170). IEEE.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.lembSeguridad vial
dc.subject.lembCiclistas - Medidas de seguridad
dc.subject.lembAccidentes de tránsito - Medidas de seguridad
dc.subject.lembRedes neurales (Computadores)
dc.subject.lembTráfico urbano - Medidas de seguridad
dc.subject.lembFlujo de tráfico
dc.subject.lembTransporte - Planificación - Procesamiento de datos
dc.subject.proposalVulnerable Road Usereng
dc.subject.proposalIntention predictioneng
dc.subject.proposalAutonomous Driving Environmentseng
dc.subject.proposalConvolutional Neural Networkseng
dc.subject.proposalInertial Measurement Uniteng
dc.subject.proposalLSTM networkseng
dc.subject.proposalOrientation estimationeng
dc.subject.proposalUsuarios vulnerables de la víaspa
dc.subject.proposalPredicción de intenciónspa
dc.subject.proposalRedes neuronales convolucionalesspa
dc.subject.proposalRedes LSTMspa
dc.subject.proposalEstimación de orientaciónspa
dc.titleIntention prediction of cyclist based on their orientation angles as vulnerable road users in autonomous driving environmentseng
dc.title.translatedPredicción de intención de ciclista basada en sus ángulos de orientación como usuario vulnerable de la vía en entornos de conducción autónomaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71726659.2024.pdf
Tamaño:
5.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: