Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation

dc.contributorGermán Castellanos, César Germanspa
dc.contributor.advisorCárdenas Peña, David Augusto (Thesis advisor)spa
dc.contributor.authorTobar Rodríguez, Andrés Davidspa
dc.date.accessioned2020-03-30T06:26:52Zspa
dc.date.available2020-03-30T06:26:52Zspa
dc.date.issued2019-05-10spa
dc.description.abstractThe effectiveness of brain Magnetic Resonance imaging (MRI) as a useful evaluation tool strongly depends on the performed segmentation of involved tissues or anatomical structures. The traditional approach to segment structure of interest on MRI comprise manual delineation by experts, which is a very time consuming task, becoming not appropriate for employing on large datasets or in applications where time is a critical factor, such as treatment planning. Lately, Multi-Atlas Segmentation (MAS) methods have emerge, offering an efficient alternative to deal with structural anatomical variability by fusing a set of manually labeled atlases, becoming the state of the art on automatic segmentation. However, the accuracy of these approaches is essentially influenced by atlas selection and label fusion stages. Hence, choosing a set of atlases that relate better with the input image, and thus provide more appropriate segmentations, at the same time that exclude irrelevant ones that might misguide the labeling procedure, leads obtain a better segmentation estimate than one that uses the full atlas database, at the same time that improves computational efficiency. Finally, label fusion offers the possibility to combine candidate labels from a set of warped atlases into a unique final label. In this regard, strengths of patch based approaches are proposed to cope with registration errors and high uncertainty regions, improving the segmentation accuracy. This work introduces as first instance an image representation technique based on kernels that is able to code suitably intrinsic relationships within the image domain. Furthermore, two label fusion methodologies are proposed in order to enhance state of the art label fusion methods, the former based on CKA projection of intensity patches onto label space and the latter rely on Bayesian inference. Particularly, the developed methods are evaluated in two publicly available image collections, resulting in an increased performance (assessed through the Dice Index) as compared to other recent Workseng
dc.description.abstractLa efectividad de las Imágenes de Resonacia Magnética (IRM) como una herramienta útil depende en gran parte del desempeño de la segmentación los tejidos comprometidos. El enfoque tradicional para segmentar estructuras cerebrales de interés en IRM consta de segmentaciones manuales hechas por expertos, la cual es una tarea supremamente desgastante y demorada, siendo inapropiada para usarse en bases de datos grandes o en aplicaciones donde el tiempo es una limitante, por ejemplo en tratamiento y supervición de la enfermedad. Recientemente, han surguido métodos basados en mutiples atlas que ofrecen una eficiente alternativa para lidiar con la variabilidad anatómica de las estructuras mediante la fusión de un conjunto de imágenes manualmente delineadas, convirtiendose así en el estado del arte en segmentación automática. Sin embargo, el acierto de estos métodos depende esencialmente de dos etapas: la selección de los atlases que mejor representen la imagen objetivo y la metodología de fusion de las etiquetas entregadas por lo atlases. Por lo tanto, al escojer este subconjunto de atlases con segmentaciones manuales mas afines y excluyendo atlases irrelevantes que podrían entorpecer el procedimiento de etiquetado, se obtiene una mejor estimación de las etiquetas que incluyendo todos los atlases, al mismo tiempo que se mejora la eficiencia computacional. Finalmente, la fusión de etiquetas ofrece la posibilidad de combinar etiquetas candidatas de un conjunto de atlas deformados en una etiqueta final única. En este sentido, han sido propuestos enfoques basados en parches para solventar los errores de registro y lidiar con las regiones de alta incertidumbre, mejorando así la precisión de la segmentación. Este trabajo presenta como primera instancia una técnica de representación de imágenes basada en kernels que es capaz de codificar adecuadamente relaciones internas dentro del dominio de imagen. Además, se proponen dos metodologías de fusión de etiquetas con el fin de mejorar los métodos propuestos en el estado del arte, el primero basado en la proyección de parches de intensidad en el espacio de las etiquetas medinate CKA y este último basado en la inferencia Bayesiana. En particular, los métodos desarrollados se evalúan en dos colecciones de imágenes disponibles al público, lo que resulta en un mayor rendimiento (evaluado a través del índice de Dice) en comparación con otras técnicas recientesspa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/73401/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76703
dc.language.isospaspa
dc.relation.haspart62 Ingeniería y operaciones afines / Engineeringspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.ispartofDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.referencesTobar Rodríguez, Andrés David (2019) Hippocampus Segmentation Methodology From MRI Based on kernels and Local Representation. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalBrain Tissue Segmentationspa
dc.subject.proposalBayesian Segmentationspa
dc.subject.proposalInter-Slice Kernelspa
dc.subject.proposalInter-Patch Kernel, Inter-Patch Kernelspa
dc.subject.proposalSegmentación de estructuras cerebralesspa
dc.subject.proposalSegmentación Bayesianaspa
dc.subject.proposalSelección de atlasspa
dc.titleHippocampus Segmentation Methodology From MRI Based on kernels and Local Representationspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053847546.2019.pdf
Tamaño:
104.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial