The role of coherences in quantum thermodynamics

dc.contributor.advisorViviescas, Carlos Leonardo
dc.contributor.authorTorres Domínguez, Nicolás
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2024-01-30T15:46:51Z
dc.date.available2024-01-30T15:46:51Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn esta tesis presento una formulación de integrales de camino del esquema de medición Margenau-Hill, el cual permite definir un funcional de trabajo más allá del esquema de dos medidas (TPM), sirviendo como un punto de partida para el estudio del rol de las coherencias en la termodinámica cuántica lo cual ha demostrado ser un asunto apremiante en este campo. El camino hacia este resultado está enmarcado por recientes desarrollos de la física estadística fuera del equilibrio fundamentados en la conexión entre la dinámica estocástica y la termodinámica clásica por medio de la formulación de la estocástica energética y su contraparte cuántica. Resultados claves de esta área suelen expresarse como teoremas de fluctuación, versiones refinadas de la segunda ley de la termodinámica que a su vez permiten realizar predicciones experimentales. Como una contribución original en esta dirección, presento un teorema de fluctuación para el calor que en la transición entre dos estados de equilibrio, a saber, un estado microcanónico inicial que se termaliza tras entrar en contacto con un baño térmico canónico. Volviendo al ámbito cuántico, esta tesis proporciona una descripción detallada del esquema TPM, resaltando sus virtudes y limitaciones, y aclara posibles rutas para superarlas. (Texto tomado de la fuente)spa
dc.description.abstractIn this Thesis I present a path integral formulation of the Margenau-Hill scheme that allows for a definition of a work functional beyond the two point measurement (TPM) scheme, serving as a starting point to assess the role coherences play in quantum thermodynamics, which has proven to be a pressing matter in in this field. The road toward this result is framed by recent developments in statistical physics out of equilibrium, that have been fuelled by the connection achieved between stochastic dynamics and classical thermodynamics under the formulation of stochastic energetics and its quantum counterpart. Key results in this area usually come in the form of fluctuation theorems, i.e. refined versions of the Second Law of Thermodynamics allowing experimental predictions to be made. As a contribution in this direction I present the derivation a novel heat fluctuation theorem describing the transition between two equilibrium states, namely an initial microcanonical state that thermalizes after entering in contact with a canonical thermal bath. Turning to the quantum realm, the Thesis provides a detailed description and analysis of the TPM scheme with its virtues and limitations, and clearly elucidates routes to overcome them.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaTermodinámica Cuánticaspa
dc.format.extentxi, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85517
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesR. Alicki and D. Gelbwaser-Klimovsky, “Non-equilibrium quantum heat machines,” New Journal of Physics, vol. 17, no. 11, p. 115012, 2015.spa
dc.relation.referencesY.-H. Shi, H.-L. Shi, X.-H. Wang, M.-L. Hu, S.-Y. Liu, W.-L. Yang, and H. Fan, “Quantum coherence in a quantum heat engine,” Journal of Physics A: Mathematical and Theoretical, vol. 53, no. 8, p. 085301, 2020.spa
dc.relation.referencesC. L. Latune, I. Sinayskiy, and F. Petruccione, “Roles of quantum coherences in thermal machines,” The European Physical Journal Special Topics, vol. 230, no. 4, pp. 841– 850, 2021.spa
dc.relation.referencesY. Xiao, D. Liu, J. He, W.-M. Liu, and J.Wang, “Finite-time quantum otto engine with a squeezed thermal bath: Role of quantum coherence and squeezing in the performance and fluctuations,” arXiv preprint arXiv:2205.13290, 2022.spa
dc.relation.referencesR. Chetrite and K. Mallick, “Quantum fluctuation relations for the lindblad master equation,” Journal of statistical physics, vol. 148, pp. 480–501, 2012.spa
dc.relation.referencesK. Korzekwa, M. Lostaglio, D. Jennings, and T. Rudolph, “Quantum coherence, timetranslation symmetry and thermodynamics,” Bulletin of the American Physical Society, vol. 61, 2016.spa
dc.relation.referencesG. Manzano, J. M. Horowitz, and J. M. Parrondo, “Quantum fluctuation theorems for arbitrary environments: adiabatic and nonadiabatic entropy production,” Physical Review X, vol. 8, no. 3, p. 031037, 2018.spa
dc.relation.referencesJ. ˚Aberg, “Fully quantum fluctuation theorems,” Physical Review X, vol. 8, no. 1, p. 011019, 2018.spa
dc.relation.referencesM. Lostaglio, “Quantum fluctuation theorems, contextuality, and work quasiprobabilities,” Physical review letters, vol. 120, no. 4, p. 040602, 2018.spa
dc.relation.referencesM. Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics A: Mathematical and General, vol. 32, no. 7, p. 1163, 1999.spa
dc.relation.referencesL. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Advances in Physics, vol. 65, no. 3, pp. 239–362, 2016.spa
dc.relation.referencesM. Brenes, S. Pappalardi, J. Goold, and A. Silva, “Multipartite entanglement structure in the eigenstate thermalization hypothesis,” Physical Review Letters, vol. 124, no. 4, p. 040605, 2020.spa
dc.relation.referencesK. Funo and H. T. Quan, “Path integral approach to quantum thermodynamics,” Phys. Rev. Lett., vol. 121, p. 040602, Jul 2018.spa
dc.relation.referencesM. Campisi, P. H¨anggi, and P. Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Reviews of Modern Physics, vol. 83, no. 3, p. 771, 2011.spa
dc.relation.referencesM. Esposito, M. A. Ochoa, and M. Galperin, “Nature of heat in strongly coupled open quantum systems,” Physical Review B, vol. 92, no. 23, p. 235440, 2015.spa
dc.relation.referencesK. Funo and H. Quan, “Path integral approach to heat in quantum thermodynamics,” Physical Review E, vol. 98, no. 1, p. 012113, 2018.spa
dc.relation.referencesS. Deffner and S. Campbell, Quantum Thermodynamics: An introduction to the thermodynamics of quantum information. Morgan & Claypool Publishers, 2019.spa
dc.relation.referencesB. Leggio, A. Napoli, A. Messina, and H.-P. Breuer, “Entropy production and information fluctuations along quantum trajectories,” Physical Review A, vol. 88, no. 4, p. 042111, 2013.spa
dc.relation.referencesF. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, “Thermodynamics in the quantum regime,” Fundamental Theories of Physics, vol. 195, pp. 1–2, 2018.spa
dc.relation.referencesK. Sekimoto, Stochastic energetics, vol. 799. Springer, 2010.spa
dc.relation.referencesD. J. Evans and D. J. Searles, “The fluctuation theorem,” Advances in Physics, vol. 51, no. 7, pp. 1529–1585, 2002.spa
dc.relation.referencesK. Micadei, G. T. Landi, and E. Lutz, “Quantum fluctuation theorems beyond twopoint measurements,” Physical Review Letters, vol. 124, no. 9, p. 090602, 2020.spa
dc.relation.referencesG. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Physical Review E, vol. 60, no. 3, p. 2721, 1999.spa
dc.relation.referencesA. B. Adib, “Entropy and density of states from isoenergetic nonequilibrium processes,” Physical Review E, vol. 71, no. 5, p. 056128, 2005.spa
dc.relation.referencesP. Talkner, M. Morillo, J. Yi, and P. H¨anggi, “Statistics of work and fluctuation theorems for microcanonical initial states,” New Journal of Physics, vol. 15, no. 9, p. 095001, 2013.spa
dc.relation.referencesJ. D. Noh and J.-M. Park, “Fluctuation relation for heat,” Physical Review Letters, vol. 108, no. 24, p. 240603, 2012.spa
dc.relation.referencesC. Jarzynski and D. K. W´ojcik, “Classical and quantum fluctuation theorems for heat exchange,” Physical review letters, vol. 92, no. 23, p. 230602, 2004.spa
dc.relation.referencesB.-B.Wei, “Fluctuation relations for heat exchange in the generalized gibbs ensemble,” Frontiers of Physics, vol. 13, no. 5, p. 130510, 2018.spa
dc.relation.referencesR. W. Spekkens, “Contextuality for preparations, transformations, and unsharp measurements,” Physical Review A, vol. 71, no. 5, p. 052108, 2005.spa
dc.relation.referencesS. Asthana and V. Ravishankar, “Weak measurements, non-classicality and negative probability,” Quantum Information Processing, vol. 20, pp. 1–39, 2021.spa
dc.relation.referencesA. Allahverdyan and T. M. Nieuwenhuizen, “Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems,” Physical Review E, vol. 71, no. 6, p. 066102, 2005.spa
dc.relation.referencesM. Perarnau-Llobet, E. B¨aumer, K. V. Hovhannisyan, M. Huber, and A. Acin, “No-go theorem for the characterization of work fluctuations in coherent quantum systems,” Physical review letters, vol. 118, no. 7, p. 070601, 2017.spa
dc.relation.referencesA. Levy and M. Lostaglio, “Quasiprobability distribution for heat fluctuations in the quantum regime,” PRX Quantum, vol. 1, no. 1, p. 010309, 2020.spa
dc.relation.referencesP. Talkner, E. Lutz, and P. H¨anggi, “Fluctuation theorems: Work is not an observable,” Physical Review E, vol. 75, no. 5, p. 050102, 2007.spa
dc.relation.referencesJ. Kurchan, “A quantum fluctuation theorem,” 2001. eprint arXiv:cond-mat/0007360.spa
dc.relation.referencesP. Talkner and P. H¨anggi, “Aspects of quantum work,” Physical Review E, vol. 93, no. 2, p. 022131, 2016.spa
dc.relation.referencesM. G. D´ıaz, G. Guarnieri, and M. Paternostro, “Quantum work statistics with initial coherence,” Entropy, vol. 22, no. 11, p. 1223, 2020.spa
dc.relation.referencesA. E. Allahverdyan, “Nonequilibrium quantum fluctuations of work,” Physical Review E, vol. 90, no. 3, p. 032137, 2014.spa
dc.relation.referencesH. J. Miller and J. Anders, “Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework,” New Journal of Physics, vol. 19, no. 6, p. 062001, 2017.spa
dc.relation.referencesA. Barut, “Distribution functions for noncommuting operators,” Physical Review, vol. 108, no. 3, p. 565, 1957.spa
dc.relation.referencesH. Margenau and R. N. Hill, “Correlation between measurements in quantum theory,” Progress of Theoretical Physics, vol. 26, no. 5, pp. 722–738, 1961.spa
dc.relation.referencesL. Ardila, “Calor y trabajo en un oscilador armónico,” 2019.spa
dc.relation.referencesS. Carnot, “R´eflexions sur la puissance motrice du feu et sur les machines propres `a d´evelopper cette puissance,” in Annales scientifiques de l’ ´ Ecole normale sup´erieure, vol. 1, pp. 393–457, 1872.spa
dc.relation.referencesA. B. Pippard, Elements of classical thermodynamics: for advanced students of physics. Cambridge University Press, 1964.spa
dc.relation.referencesR. Clausius, “ ¨Uber eine veranderte form des zweiten hauptsatzes der mechanischen w¨armetheorie,” Annalen der Physik, vol. 169, no. 12, pp. 481–506, 1854.spa
dc.relation.referencesH. B. Callen, Thermodynamics and an Introduction to Thermostatistics. American Association of Physics Teachers, 1998.spa
dc.relation.referencesV. C. Weiss, “The uniqueness of clausius’s integrating factor,” American journal of physics, vol. 74, no. 8, pp. 699–705, 2006.spa
dc.relation.referencesP. Strasberg, Quantum Stochastic Thermodynamics: Foundations and Selected Applications. Oxford University Press, 2022.spa
dc.relation.referencesR. Brown, “Microscopical observations,” Philos. Mag, vol. 4, no. 21, pp. 161–173, 1828.spa
dc.relation.referencesB. H. Lavenda, “Brownian motion,” Scientific American, vol. 252, no. 2, pp. 70–85, 1985.spa
dc.relation.referencesA. Einstein, “¨Uber die von der molekularkinetischen theorie der w¨arme geforderte bewegung von in ruhenden fl¨ussigkeiten suspendierten teilchen,” Annalen der Physik, vol. 322, no. 8, pp. 549–560, 1905.spa
dc.relation.referencesA. Einstein, “Zur theorie der brownschen bewegung,” Annalen der Physik, vol. 324, no. 2, pp. 371–381, 1906.spa
dc.relation.referencesJ. Perrin, Brownian movement and molecular reality. Courier Corporation, 2013.spa
dc.relation.referencesP. Langevin, “Sur la th´eorie du mouvement brownien,” Compt. Rendus, vol. 146, pp. 530–533, 1908.spa
dc.relation.referencesR. Zwanzig, Nonequilibrium statistical mechanics. Oxford university press, 2001.spa
dc.relation.referencesR. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics, vol. 29, no. 1, p. 255, 1966.spa
dc.relation.referencesJ. T´othov´a and V. Lis`y, “Brownian motion in a bath affected by an external harmonic potential,” Physics Letters A, vol. 395, p. 127220, 2021.spa
dc.relation.referencesL. Ferrari, “Test particles in a gas: Markovian and non-markovian langevin dynamics,” Chemical Physics, vol. 523, pp. 42–51, 2019.spa
dc.relation.referencesP. Shea and H. J. Kreuzer, “Langevin equation for diffusion of an adsorbed molecule,” Surface science, vol. 605, no. 3-4, pp. 296–305, 2011.spa
dc.relation.referencesR. Tabar, Analysis and data-based reconstruction of complex nonlinear dynamical systems, vol. 730. Springer, 2019.spa
dc.relation.referencesY. P. Kalmykov, “Rotational brownian motion in an external potential: the langevin equation approach,” Journal of molecular liquids, vol. 69, pp. 117–131, 1996.spa
dc.relation.referencesK. Sekimoto, “Kinetic characterization of heat bath and the energetics of thermal ratchet models,” Journal of the physical society of Japan, vol. 66, no. 5, pp. 1234– 1237, 1997.spa
dc.relation.referencesT. Shimokawa, S. Sato, A. Buonocore, and L. Ricciardi, “A chemically driven fluctuating ratchet model for actomyosin interaction,” BioSystems, vol. 71, no. 1-2, pp. 179– 187, 2003.spa
dc.relation.referencesL. S. Ornstein, “Zur theorie der brown schen bewegung f¨ur systeme, worin mehrere temperaturen vorkommen,” Zeitschrift f¨ur Physik, vol. 41, pp. 848–856, apr 1927.spa
dc.relation.referencesP. H¨anggi and P. Jung, “Colored noise in dynamical systems,” Advances in chemical physics, vol. 89, pp. 239–326, 2007.spa
dc.relation.referencesJ. Luczka, “Non-markovian stochastic processes: Colored noise,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 15, no. 2, p. 026107, 2005.spa
dc.relation.referencesJ. Jim´enez-Aquino and N. S´anchez-Salas, “Thermodynamic work statistics for ornstein–uhlenbeck-type heat baths,” Physica A: Statistical Mechanics and its Applications, vol. 509, pp. 12–19, 2018.spa
dc.relation.referencesM. Ceriotti, G. Bussi, and M. Parrinello, “Langevin equation with colored noise for constant-temperature molecular dynamics simulations,” Physical review letters, vol. 102, no. 2, p. 020601, 2009.spa
dc.relation.referencesK. Sekimoto and S.-i. Sasa, “Complementarity relation for irreversible process derived from stochastic energetics,” Journal of the Physical Society of Japan, vol. 66, no. 11, pp. 3326–3328, 1997.spa
dc.relation.referencesK. Sekimoto, F. Takagi, and T. Hondou, “Carnot’s cycle for small systems: Irreversibility and cost of operations,” Physical Review E, vol. 62, no. 6, p. 7759, 2000.spa
dc.relation.referencesC. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach,” Physical Review E, vol. 56, no. 5, p. 5018, 1997.spa
dc.relation.referencesC. Jarzynski, “Hamiltonian derivation of a detailed fluctuation theorem,” Journal of Statistical Physics, vol. 98, pp. 77–102, 2000.spa
dc.relation.referencesJ. Kurchan, “Fluctuation theorem for stochastic dynamics,” Journal of Physics A: Mathematical and General, vol. 31, no. 16, p. 3719, 1998.spa
dc.relation.referencesD. J. Evans and D. J. Searles, “Equilibrium microstates which generate second law violating steady states,” Physical Review E, vol. 50, no. 2, p. 1645, 1994.spa
dc.relation.referencesK. Kraus, A. B¨ohm, J. D. Dollard, and W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, 1983.spa
dc.relation.referencesI. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 10 anv ed., 2011.spa
dc.relation.referencesH. M. Wiseman and G. J. Milburn, Quantum measurement and control. Cambridge university press, 2009.spa
dc.relation.referencesE. C. G. Sudarshan, P. M. Mathews, and J. Rau, “Stochastic dynamics of quantum mechanical systems,” Phys. Rev., vol. 121, pp. 920–924, Feb 1961.spa
dc.relation.referencesI. E. Segal, “Postulates for general quantum mechanics,” Annals of Mathematics, pp. 930–948, 1947.spa
dc.relation.referencesR. Haag and D. Kastler, “An algebraic approach to quantum field theory,” Journal of Mathematical Physics, vol. 5, no. 7, pp. 848–861, 1964.spa
dc.relation.referencesK.-E. Hellwig and K. Kraus, “Pure operations and measurements,” Communications in Mathematical Physics, vol. 11, no. 3, pp. 214–220, 1969.spa
dc.relation.referencesE. B. Davies and J. T. Lewis, “An operational approach to quantum probability,” Communications in Mathematical Physics, vol. 17, no. 3, pp. 239–260, 1970.spa
dc.relation.referencesB. Tamir and E. Cohen, “Introduction to weak measurements and weak values,” Quanta, vol. 2, no. 1, pp. 7–17, 2013.spa
dc.relation.referencesL. Blanco Casta˜neda, “Probabilidad,” Editorial UN, 2013.spa
dc.relation.referencesT. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical review letters, vol. 113, no. 14, p. 140401, 2014.spa
dc.relation.referencesE. Chitambar and G. Gour, “Quantum resource theories,” Reviews of modern physics, vol. 91, no. 2, p. 025001, 2019.spa
dc.relation.referencesM. Lostaglio, “An introductory review of the resource theory approach to thermodynamics,” Reports on Progress in Physics, vol. 82, no. 11, p. 114001, 2019spa
dc.relation.referencesC. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824, 1996.spa
dc.relation.referencesV. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A, vol. 57, no. 3, p. 1619, 1998.spa
dc.relation.referencesR. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.spa
dc.relation.referencesY. Yao, X. Xiao, L. Ge, and C. Sun, “Quantum coherence in multipartite systems,” Physical Review A, vol. 92, no. 2, p. 022112, 2015.spa
dc.relation.referencesA. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Reviews of Modern Physics, vol. 89, no. 4, p. 041003, 2017.spa
dc.relation.referencesM. Avalle and A. Serafini, “Noisy quantum cellular automata for quantum versus classical excitation transfer,” Physical Review Letters, vol. 112, no. 17, p. 170403, 2014.spa
dc.relation.referencesS. Yukawa, “A quantum analogue of the jarzynski equality,” Journal of the Physical Society of Japan, vol. 69, no. 8, pp. 2367–2370, 2000.spa
dc.relation.referencesM. Campisi, P. Talkner, and P. H¨anggi, “Quantum bochkov–kuzovlev work fluctuation theorems,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1935, pp. 291–306, 2011.spa
dc.relation.referencesA. J. Roncaglia, F. Cerisola, and J. P. Paz, “Work measurement as a generalized quantum measurement,” Physical review letters, vol. 113, no. 25, p. 250601, 2014.spa
dc.relation.referencesC. Gardiner, Handbook of Stochastic Methods - For Physics, Chem, Nat. Sciences. Springer, 3rd ed ed., 2004.spa
dc.relation.referencesE. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, Jun 1932.spa
dc.relation.referencesW. P. Schleich, Quantum optics in phase space. John Wiley & Sons, 2011.spa
dc.relation.referencesP. P. Hofer, “Quasi-probability distributions for observables in dynamic systems,” Quantum, vol. 1, p. 32, 2017.spa
dc.relation.referencesM. Lostaglio, A. Belenchia, A. Levy, S. Hern´andez-G´omez, N. Fabbri, and S. Gherardini, “Kirkwood-dirac quasiprobability approach to quantum fluctuations: Theoretical and experimental perspectives,” arXiv preprint arXiv:2206.11783, 2022.spa
dc.relation.referencesT. Monnai and S. Tasaki, “Quantum correction of fluctuation theorem,” 2003. arXiv preprint cond-mat/0308337.spa
dc.relation.referencesA. Messiah, Quantum Mechanics, vol. 2. John Wiley and Sons, Inc., 1 ed., 1961.spa
dc.relation.referencesP. Solinas and S. Gasparinetti, “Full distribution of work done on a quantum system for arbitrary initial states,” Physical Review E, vol. 92, no. 4, p. 042150, 2015.spa
dc.relation.referencesP. Solinas and S. Gasparinetti, “Probing quantum interference effects in the work distribution,” Physical Review A, vol. 94, no. 5, p. 052103, 2016.spa
dc.relation.referencesJ. J. Alonso, E. Lutz, and A. Romito, “Thermodynamics of weakly measured quantum systems,” Physical review letters, vol. 116, no. 8, p. 080403, 2016.spa
dc.relation.referencesK. Micadei, G. T. Landi, and E. Lutz, “Quantum fluctuation theorems beyond twopoint measurements,” Physical Review Letters, vol. 124, no. 9, p. 090602, 2020.spa
dc.relation.referencesS. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni, “The role of quantum coherence in energy fluctuations,” arXiv preprint arXiv:2006.06208, 2020.spa
dc.relation.referencesR. W. Spekkens, “Negativity and contextuality are equivalent notions of nonclassicality,” Physical review letters, vol. 101, no. 2, p. 020401, 2008.spa
dc.relation.referencesH. J. Miller and J. Anders, “Leggett-garg inequalities for quantum fluctuating work,” Entropy, vol. 20, no. 3, p. 200, 2018.spa
dc.relation.referencesS. Asthana, S. Adhikary, and V. Ravishankar, “Non-locality and entanglement in multiqubit systems from a unified framework,” Quantum Information Processing, vol. 20, pp. 1–33, 2021.spa
dc.relation.referencesB.-M. Xu, J. Zou, L.-S. Guo, and X.-M. Kong, “Effects of quantum coherence on work statistics,” Phys. Rev. A, vol. 97, p. 052122, May 2018.spa
dc.relation.referencesP. Solinas, M. Amico, and N. Zangh`ı, “Quasiprobabilities of work and heat in an open quantum system,” Physical Review A, vol. 105, no. 3, p. 032606, 2022.spa
dc.relation.referencesC. Elouard, D. A. Herrera-Mart´ı, M. Clusel, and A. Auff`eves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Information, vol. 3, no. 1, p. 9, 2017.spa
dc.relation.referencesM. Naghiloo, D. Tan, P. Harrington, J. Alonso, E. Lutz, A. Romito, and K. Murch, “Heat and work along individual trajectories of a quantum bit,” Physical review letters, vol. 124, no. 11, p. 110604, 2020.spa
dc.relation.referencesM. J. Hall, “Prior information: How to circumvent the standard joint-measurement uncertainty relation,” Physical Review A, vol. 69, no. 5, p. 052113, 2004.spa
dc.relation.referencesJ. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Reviews of Modern Physics, vol. 86, no. 1, p. 307, 2014.spa
dc.relation.referencesA. Barut, M. Boˇzi´c, and Z. Mari´c, “Joint probabilities of noncommuting operators and incompleteness of quantum mechanics,” Foundations of physics, vol. 18, pp. 999–1012, 1988.spa
dc.relation.referencesJ. B. Hartle, “Linear positivity and virtual probability,” Physical Review A, vol. 70, no. 2, p. 022104, 2004.spa
dc.relation.referencesS. Adhikary, S. Asthana, and V. Ravishankar, “Bell-chsh non-locality and entanglement from a unified framework,” The European Physical Journal D, vol. 74, pp. 1–8, 2020.spa
dc.relation.referencesF. Zhang and F. Zhang, “Positive semidefinite matrices,” Matrix Theory: Basic Results and Techniques, pp. 199–252, 2011.spa
dc.relation.referencesR. Pan, Z. Fei, T. Qiu, J.-N. Zhang, and H. Quan, “Quantum-classical correspondence of work distributions for initial states with quantum coherence,” arXiv preprint arXiv:1904.05378, 2019.spa
dc.relation.referencesR. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals. Courier Corporation, 2010.spa
dc.relation.referencesL. E. Ballentine, Quantum mechanics: a modern development. World Scientific Publishing Company, 2014.spa
dc.relation.referencesL. S. Schulman, Techniques and applications of path integration. Courier Corporation, 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembTERMODINAMICAspa
dc.subject.lembThermodynamicseng
dc.subject.lembTEORIA CUANTICAspa
dc.subject.lembQuantum theoryeng
dc.subject.proposalQuantum thermodynamicseng
dc.subject.proposalWorkeng
dc.subject.proposalCoherenceeng
dc.subject.proposalFluctuation theoremseng
dc.subject.proposalQuasi-probabilityeng
dc.subject.proposalPath integraleng
dc.subject.proposalIncompatible observableseng
dc.subject.proposalTermodinámica cuánticaspa
dc.subject.proposalTrabajospa
dc.subject.proposalCoherenciaspa
dc.subject.proposalTeoremas de fluctuaciónspa
dc.subject.proposalQuasi-probabilidadeng
dc.subject.proposalIntegral de caminoeng
dc.subject.proposalObservables incompatiblesspa
dc.titleThe role of coherences in quantum thermodynamicseng
dc.title.translatedEl rol de las coherencias en la termodinámica cuánticaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019125991.2024.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: