The role of coherences in quantum thermodynamics
dc.contributor.advisor | Viviescas, Carlos Leonardo | |
dc.contributor.author | Torres Domínguez, Nicolás | |
dc.contributor.researchgroup | Caos y Complejidad | spa |
dc.date.accessioned | 2024-01-30T15:46:51Z | |
dc.date.available | 2024-01-30T15:46:51Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | En esta tesis presento una formulación de integrales de camino del esquema de medición Margenau-Hill, el cual permite definir un funcional de trabajo más allá del esquema de dos medidas (TPM), sirviendo como un punto de partida para el estudio del rol de las coherencias en la termodinámica cuántica lo cual ha demostrado ser un asunto apremiante en este campo. El camino hacia este resultado está enmarcado por recientes desarrollos de la física estadística fuera del equilibrio fundamentados en la conexión entre la dinámica estocástica y la termodinámica clásica por medio de la formulación de la estocástica energética y su contraparte cuántica. Resultados claves de esta área suelen expresarse como teoremas de fluctuación, versiones refinadas de la segunda ley de la termodinámica que a su vez permiten realizar predicciones experimentales. Como una contribución original en esta dirección, presento un teorema de fluctuación para el calor que en la transición entre dos estados de equilibrio, a saber, un estado microcanónico inicial que se termaliza tras entrar en contacto con un baño térmico canónico. Volviendo al ámbito cuántico, esta tesis proporciona una descripción detallada del esquema TPM, resaltando sus virtudes y limitaciones, y aclara posibles rutas para superarlas. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this Thesis I present a path integral formulation of the Margenau-Hill scheme that allows for a definition of a work functional beyond the two point measurement (TPM) scheme, serving as a starting point to assess the role coherences play in quantum thermodynamics, which has proven to be a pressing matter in in this field. The road toward this result is framed by recent developments in statistical physics out of equilibrium, that have been fuelled by the connection achieved between stochastic dynamics and classical thermodynamics under the formulation of stochastic energetics and its quantum counterpart. Key results in this area usually come in the form of fluctuation theorems, i.e. refined versions of the Second Law of Thermodynamics allowing experimental predictions to be made. As a contribution in this direction I present the derivation a novel heat fluctuation theorem describing the transition between two equilibrium states, namely an initial microcanonical state that thermalizes after entering in contact with a canonical thermal bath. Turning to the quantum realm, the Thesis provides a detailed description and analysis of the TPM scheme with its virtues and limitations, and clearly elucidates routes to overcome them. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Termodinámica Cuántica | spa |
dc.format.extent | xi, 64 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85517 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | R. Alicki and D. Gelbwaser-Klimovsky, “Non-equilibrium quantum heat machines,” New Journal of Physics, vol. 17, no. 11, p. 115012, 2015. | spa |
dc.relation.references | Y.-H. Shi, H.-L. Shi, X.-H. Wang, M.-L. Hu, S.-Y. Liu, W.-L. Yang, and H. Fan, “Quantum coherence in a quantum heat engine,” Journal of Physics A: Mathematical and Theoretical, vol. 53, no. 8, p. 085301, 2020. | spa |
dc.relation.references | C. L. Latune, I. Sinayskiy, and F. Petruccione, “Roles of quantum coherences in thermal machines,” The European Physical Journal Special Topics, vol. 230, no. 4, pp. 841– 850, 2021. | spa |
dc.relation.references | Y. Xiao, D. Liu, J. He, W.-M. Liu, and J.Wang, “Finite-time quantum otto engine with a squeezed thermal bath: Role of quantum coherence and squeezing in the performance and fluctuations,” arXiv preprint arXiv:2205.13290, 2022. | spa |
dc.relation.references | R. Chetrite and K. Mallick, “Quantum fluctuation relations for the lindblad master equation,” Journal of statistical physics, vol. 148, pp. 480–501, 2012. | spa |
dc.relation.references | K. Korzekwa, M. Lostaglio, D. Jennings, and T. Rudolph, “Quantum coherence, timetranslation symmetry and thermodynamics,” Bulletin of the American Physical Society, vol. 61, 2016. | spa |
dc.relation.references | G. Manzano, J. M. Horowitz, and J. M. Parrondo, “Quantum fluctuation theorems for arbitrary environments: adiabatic and nonadiabatic entropy production,” Physical Review X, vol. 8, no. 3, p. 031037, 2018. | spa |
dc.relation.references | J. ˚Aberg, “Fully quantum fluctuation theorems,” Physical Review X, vol. 8, no. 1, p. 011019, 2018. | spa |
dc.relation.references | M. Lostaglio, “Quantum fluctuation theorems, contextuality, and work quasiprobabilities,” Physical review letters, vol. 120, no. 4, p. 040602, 2018. | spa |
dc.relation.references | M. Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics A: Mathematical and General, vol. 32, no. 7, p. 1163, 1999. | spa |
dc.relation.references | L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Advances in Physics, vol. 65, no. 3, pp. 239–362, 2016. | spa |
dc.relation.references | M. Brenes, S. Pappalardi, J. Goold, and A. Silva, “Multipartite entanglement structure in the eigenstate thermalization hypothesis,” Physical Review Letters, vol. 124, no. 4, p. 040605, 2020. | spa |
dc.relation.references | K. Funo and H. T. Quan, “Path integral approach to quantum thermodynamics,” Phys. Rev. Lett., vol. 121, p. 040602, Jul 2018. | spa |
dc.relation.references | M. Campisi, P. H¨anggi, and P. Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Reviews of Modern Physics, vol. 83, no. 3, p. 771, 2011. | spa |
dc.relation.references | M. Esposito, M. A. Ochoa, and M. Galperin, “Nature of heat in strongly coupled open quantum systems,” Physical Review B, vol. 92, no. 23, p. 235440, 2015. | spa |
dc.relation.references | K. Funo and H. Quan, “Path integral approach to heat in quantum thermodynamics,” Physical Review E, vol. 98, no. 1, p. 012113, 2018. | spa |
dc.relation.references | S. Deffner and S. Campbell, Quantum Thermodynamics: An introduction to the thermodynamics of quantum information. Morgan & Claypool Publishers, 2019. | spa |
dc.relation.references | B. Leggio, A. Napoli, A. Messina, and H.-P. Breuer, “Entropy production and information fluctuations along quantum trajectories,” Physical Review A, vol. 88, no. 4, p. 042111, 2013. | spa |
dc.relation.references | F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, “Thermodynamics in the quantum regime,” Fundamental Theories of Physics, vol. 195, pp. 1–2, 2018. | spa |
dc.relation.references | K. Sekimoto, Stochastic energetics, vol. 799. Springer, 2010. | spa |
dc.relation.references | D. J. Evans and D. J. Searles, “The fluctuation theorem,” Advances in Physics, vol. 51, no. 7, pp. 1529–1585, 2002. | spa |
dc.relation.references | K. Micadei, G. T. Landi, and E. Lutz, “Quantum fluctuation theorems beyond twopoint measurements,” Physical Review Letters, vol. 124, no. 9, p. 090602, 2020. | spa |
dc.relation.references | G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Physical Review E, vol. 60, no. 3, p. 2721, 1999. | spa |
dc.relation.references | A. B. Adib, “Entropy and density of states from isoenergetic nonequilibrium processes,” Physical Review E, vol. 71, no. 5, p. 056128, 2005. | spa |
dc.relation.references | P. Talkner, M. Morillo, J. Yi, and P. H¨anggi, “Statistics of work and fluctuation theorems for microcanonical initial states,” New Journal of Physics, vol. 15, no. 9, p. 095001, 2013. | spa |
dc.relation.references | J. D. Noh and J.-M. Park, “Fluctuation relation for heat,” Physical Review Letters, vol. 108, no. 24, p. 240603, 2012. | spa |
dc.relation.references | C. Jarzynski and D. K. W´ojcik, “Classical and quantum fluctuation theorems for heat exchange,” Physical review letters, vol. 92, no. 23, p. 230602, 2004. | spa |
dc.relation.references | B.-B.Wei, “Fluctuation relations for heat exchange in the generalized gibbs ensemble,” Frontiers of Physics, vol. 13, no. 5, p. 130510, 2018. | spa |
dc.relation.references | R. W. Spekkens, “Contextuality for preparations, transformations, and unsharp measurements,” Physical Review A, vol. 71, no. 5, p. 052108, 2005. | spa |
dc.relation.references | S. Asthana and V. Ravishankar, “Weak measurements, non-classicality and negative probability,” Quantum Information Processing, vol. 20, pp. 1–39, 2021. | spa |
dc.relation.references | A. Allahverdyan and T. M. Nieuwenhuizen, “Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems,” Physical Review E, vol. 71, no. 6, p. 066102, 2005. | spa |
dc.relation.references | M. Perarnau-Llobet, E. B¨aumer, K. V. Hovhannisyan, M. Huber, and A. Acin, “No-go theorem for the characterization of work fluctuations in coherent quantum systems,” Physical review letters, vol. 118, no. 7, p. 070601, 2017. | spa |
dc.relation.references | A. Levy and M. Lostaglio, “Quasiprobability distribution for heat fluctuations in the quantum regime,” PRX Quantum, vol. 1, no. 1, p. 010309, 2020. | spa |
dc.relation.references | P. Talkner, E. Lutz, and P. H¨anggi, “Fluctuation theorems: Work is not an observable,” Physical Review E, vol. 75, no. 5, p. 050102, 2007. | spa |
dc.relation.references | J. Kurchan, “A quantum fluctuation theorem,” 2001. eprint arXiv:cond-mat/0007360. | spa |
dc.relation.references | P. Talkner and P. H¨anggi, “Aspects of quantum work,” Physical Review E, vol. 93, no. 2, p. 022131, 2016. | spa |
dc.relation.references | M. G. D´ıaz, G. Guarnieri, and M. Paternostro, “Quantum work statistics with initial coherence,” Entropy, vol. 22, no. 11, p. 1223, 2020. | spa |
dc.relation.references | A. E. Allahverdyan, “Nonequilibrium quantum fluctuations of work,” Physical Review E, vol. 90, no. 3, p. 032137, 2014. | spa |
dc.relation.references | H. J. Miller and J. Anders, “Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework,” New Journal of Physics, vol. 19, no. 6, p. 062001, 2017. | spa |
dc.relation.references | A. Barut, “Distribution functions for noncommuting operators,” Physical Review, vol. 108, no. 3, p. 565, 1957. | spa |
dc.relation.references | H. Margenau and R. N. Hill, “Correlation between measurements in quantum theory,” Progress of Theoretical Physics, vol. 26, no. 5, pp. 722–738, 1961. | spa |
dc.relation.references | L. Ardila, “Calor y trabajo en un oscilador armónico,” 2019. | spa |
dc.relation.references | S. Carnot, “R´eflexions sur la puissance motrice du feu et sur les machines propres `a d´evelopper cette puissance,” in Annales scientifiques de l’ ´ Ecole normale sup´erieure, vol. 1, pp. 393–457, 1872. | spa |
dc.relation.references | A. B. Pippard, Elements of classical thermodynamics: for advanced students of physics. Cambridge University Press, 1964. | spa |
dc.relation.references | R. Clausius, “ ¨Uber eine veranderte form des zweiten hauptsatzes der mechanischen w¨armetheorie,” Annalen der Physik, vol. 169, no. 12, pp. 481–506, 1854. | spa |
dc.relation.references | H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. American Association of Physics Teachers, 1998. | spa |
dc.relation.references | V. C. Weiss, “The uniqueness of clausius’s integrating factor,” American journal of physics, vol. 74, no. 8, pp. 699–705, 2006. | spa |
dc.relation.references | P. Strasberg, Quantum Stochastic Thermodynamics: Foundations and Selected Applications. Oxford University Press, 2022. | spa |
dc.relation.references | R. Brown, “Microscopical observations,” Philos. Mag, vol. 4, no. 21, pp. 161–173, 1828. | spa |
dc.relation.references | B. H. Lavenda, “Brownian motion,” Scientific American, vol. 252, no. 2, pp. 70–85, 1985. | spa |
dc.relation.references | A. Einstein, “¨Uber die von der molekularkinetischen theorie der w¨arme geforderte bewegung von in ruhenden fl¨ussigkeiten suspendierten teilchen,” Annalen der Physik, vol. 322, no. 8, pp. 549–560, 1905. | spa |
dc.relation.references | A. Einstein, “Zur theorie der brownschen bewegung,” Annalen der Physik, vol. 324, no. 2, pp. 371–381, 1906. | spa |
dc.relation.references | J. Perrin, Brownian movement and molecular reality. Courier Corporation, 2013. | spa |
dc.relation.references | P. Langevin, “Sur la th´eorie du mouvement brownien,” Compt. Rendus, vol. 146, pp. 530–533, 1908. | spa |
dc.relation.references | R. Zwanzig, Nonequilibrium statistical mechanics. Oxford university press, 2001. | spa |
dc.relation.references | R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics, vol. 29, no. 1, p. 255, 1966. | spa |
dc.relation.references | J. T´othov´a and V. Lis`y, “Brownian motion in a bath affected by an external harmonic potential,” Physics Letters A, vol. 395, p. 127220, 2021. | spa |
dc.relation.references | L. Ferrari, “Test particles in a gas: Markovian and non-markovian langevin dynamics,” Chemical Physics, vol. 523, pp. 42–51, 2019. | spa |
dc.relation.references | P. Shea and H. J. Kreuzer, “Langevin equation for diffusion of an adsorbed molecule,” Surface science, vol. 605, no. 3-4, pp. 296–305, 2011. | spa |
dc.relation.references | R. Tabar, Analysis and data-based reconstruction of complex nonlinear dynamical systems, vol. 730. Springer, 2019. | spa |
dc.relation.references | Y. P. Kalmykov, “Rotational brownian motion in an external potential: the langevin equation approach,” Journal of molecular liquids, vol. 69, pp. 117–131, 1996. | spa |
dc.relation.references | K. Sekimoto, “Kinetic characterization of heat bath and the energetics of thermal ratchet models,” Journal of the physical society of Japan, vol. 66, no. 5, pp. 1234– 1237, 1997. | spa |
dc.relation.references | T. Shimokawa, S. Sato, A. Buonocore, and L. Ricciardi, “A chemically driven fluctuating ratchet model for actomyosin interaction,” BioSystems, vol. 71, no. 1-2, pp. 179– 187, 2003. | spa |
dc.relation.references | L. S. Ornstein, “Zur theorie der brown schen bewegung f¨ur systeme, worin mehrere temperaturen vorkommen,” Zeitschrift f¨ur Physik, vol. 41, pp. 848–856, apr 1927. | spa |
dc.relation.references | P. H¨anggi and P. Jung, “Colored noise in dynamical systems,” Advances in chemical physics, vol. 89, pp. 239–326, 2007. | spa |
dc.relation.references | J. Luczka, “Non-markovian stochastic processes: Colored noise,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 15, no. 2, p. 026107, 2005. | spa |
dc.relation.references | J. Jim´enez-Aquino and N. S´anchez-Salas, “Thermodynamic work statistics for ornstein–uhlenbeck-type heat baths,” Physica A: Statistical Mechanics and its Applications, vol. 509, pp. 12–19, 2018. | spa |
dc.relation.references | M. Ceriotti, G. Bussi, and M. Parrinello, “Langevin equation with colored noise for constant-temperature molecular dynamics simulations,” Physical review letters, vol. 102, no. 2, p. 020601, 2009. | spa |
dc.relation.references | K. Sekimoto and S.-i. Sasa, “Complementarity relation for irreversible process derived from stochastic energetics,” Journal of the Physical Society of Japan, vol. 66, no. 11, pp. 3326–3328, 1997. | spa |
dc.relation.references | K. Sekimoto, F. Takagi, and T. Hondou, “Carnot’s cycle for small systems: Irreversibility and cost of operations,” Physical Review E, vol. 62, no. 6, p. 7759, 2000. | spa |
dc.relation.references | C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach,” Physical Review E, vol. 56, no. 5, p. 5018, 1997. | spa |
dc.relation.references | C. Jarzynski, “Hamiltonian derivation of a detailed fluctuation theorem,” Journal of Statistical Physics, vol. 98, pp. 77–102, 2000. | spa |
dc.relation.references | J. Kurchan, “Fluctuation theorem for stochastic dynamics,” Journal of Physics A: Mathematical and General, vol. 31, no. 16, p. 3719, 1998. | spa |
dc.relation.references | D. J. Evans and D. J. Searles, “Equilibrium microstates which generate second law violating steady states,” Physical Review E, vol. 50, no. 2, p. 1645, 1994. | spa |
dc.relation.references | K. Kraus, A. B¨ohm, J. D. Dollard, and W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, 1983. | spa |
dc.relation.references | I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 10 anv ed., 2011. | spa |
dc.relation.references | H. M. Wiseman and G. J. Milburn, Quantum measurement and control. Cambridge university press, 2009. | spa |
dc.relation.references | E. C. G. Sudarshan, P. M. Mathews, and J. Rau, “Stochastic dynamics of quantum mechanical systems,” Phys. Rev., vol. 121, pp. 920–924, Feb 1961. | spa |
dc.relation.references | I. E. Segal, “Postulates for general quantum mechanics,” Annals of Mathematics, pp. 930–948, 1947. | spa |
dc.relation.references | R. Haag and D. Kastler, “An algebraic approach to quantum field theory,” Journal of Mathematical Physics, vol. 5, no. 7, pp. 848–861, 1964. | spa |
dc.relation.references | K.-E. Hellwig and K. Kraus, “Pure operations and measurements,” Communications in Mathematical Physics, vol. 11, no. 3, pp. 214–220, 1969. | spa |
dc.relation.references | E. B. Davies and J. T. Lewis, “An operational approach to quantum probability,” Communications in Mathematical Physics, vol. 17, no. 3, pp. 239–260, 1970. | spa |
dc.relation.references | B. Tamir and E. Cohen, “Introduction to weak measurements and weak values,” Quanta, vol. 2, no. 1, pp. 7–17, 2013. | spa |
dc.relation.references | L. Blanco Casta˜neda, “Probabilidad,” Editorial UN, 2013. | spa |
dc.relation.references | T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical review letters, vol. 113, no. 14, p. 140401, 2014. | spa |
dc.relation.references | E. Chitambar and G. Gour, “Quantum resource theories,” Reviews of modern physics, vol. 91, no. 2, p. 025001, 2019. | spa |
dc.relation.references | M. Lostaglio, “An introductory review of the resource theory approach to thermodynamics,” Reports on Progress in Physics, vol. 82, no. 11, p. 114001, 2019 | spa |
dc.relation.references | C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824, 1996. | spa |
dc.relation.references | V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A, vol. 57, no. 3, p. 1619, 1998. | spa |
dc.relation.references | R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009. | spa |
dc.relation.references | Y. Yao, X. Xiao, L. Ge, and C. Sun, “Quantum coherence in multipartite systems,” Physical Review A, vol. 92, no. 2, p. 022112, 2015. | spa |
dc.relation.references | A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Reviews of Modern Physics, vol. 89, no. 4, p. 041003, 2017. | spa |
dc.relation.references | M. Avalle and A. Serafini, “Noisy quantum cellular automata for quantum versus classical excitation transfer,” Physical Review Letters, vol. 112, no. 17, p. 170403, 2014. | spa |
dc.relation.references | S. Yukawa, “A quantum analogue of the jarzynski equality,” Journal of the Physical Society of Japan, vol. 69, no. 8, pp. 2367–2370, 2000. | spa |
dc.relation.references | M. Campisi, P. Talkner, and P. H¨anggi, “Quantum bochkov–kuzovlev work fluctuation theorems,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1935, pp. 291–306, 2011. | spa |
dc.relation.references | A. J. Roncaglia, F. Cerisola, and J. P. Paz, “Work measurement as a generalized quantum measurement,” Physical review letters, vol. 113, no. 25, p. 250601, 2014. | spa |
dc.relation.references | C. Gardiner, Handbook of Stochastic Methods - For Physics, Chem, Nat. Sciences. Springer, 3rd ed ed., 2004. | spa |
dc.relation.references | E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, Jun 1932. | spa |
dc.relation.references | W. P. Schleich, Quantum optics in phase space. John Wiley & Sons, 2011. | spa |
dc.relation.references | P. P. Hofer, “Quasi-probability distributions for observables in dynamic systems,” Quantum, vol. 1, p. 32, 2017. | spa |
dc.relation.references | M. Lostaglio, A. Belenchia, A. Levy, S. Hern´andez-G´omez, N. Fabbri, and S. Gherardini, “Kirkwood-dirac quasiprobability approach to quantum fluctuations: Theoretical and experimental perspectives,” arXiv preprint arXiv:2206.11783, 2022. | spa |
dc.relation.references | T. Monnai and S. Tasaki, “Quantum correction of fluctuation theorem,” 2003. arXiv preprint cond-mat/0308337. | spa |
dc.relation.references | A. Messiah, Quantum Mechanics, vol. 2. John Wiley and Sons, Inc., 1 ed., 1961. | spa |
dc.relation.references | P. Solinas and S. Gasparinetti, “Full distribution of work done on a quantum system for arbitrary initial states,” Physical Review E, vol. 92, no. 4, p. 042150, 2015. | spa |
dc.relation.references | P. Solinas and S. Gasparinetti, “Probing quantum interference effects in the work distribution,” Physical Review A, vol. 94, no. 5, p. 052103, 2016. | spa |
dc.relation.references | J. J. Alonso, E. Lutz, and A. Romito, “Thermodynamics of weakly measured quantum systems,” Physical review letters, vol. 116, no. 8, p. 080403, 2016. | spa |
dc.relation.references | K. Micadei, G. T. Landi, and E. Lutz, “Quantum fluctuation theorems beyond twopoint measurements,” Physical Review Letters, vol. 124, no. 9, p. 090602, 2020. | spa |
dc.relation.references | S. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni, “The role of quantum coherence in energy fluctuations,” arXiv preprint arXiv:2006.06208, 2020. | spa |
dc.relation.references | R. W. Spekkens, “Negativity and contextuality are equivalent notions of nonclassicality,” Physical review letters, vol. 101, no. 2, p. 020401, 2008. | spa |
dc.relation.references | H. J. Miller and J. Anders, “Leggett-garg inequalities for quantum fluctuating work,” Entropy, vol. 20, no. 3, p. 200, 2018. | spa |
dc.relation.references | S. Asthana, S. Adhikary, and V. Ravishankar, “Non-locality and entanglement in multiqubit systems from a unified framework,” Quantum Information Processing, vol. 20, pp. 1–33, 2021. | spa |
dc.relation.references | B.-M. Xu, J. Zou, L.-S. Guo, and X.-M. Kong, “Effects of quantum coherence on work statistics,” Phys. Rev. A, vol. 97, p. 052122, May 2018. | spa |
dc.relation.references | P. Solinas, M. Amico, and N. Zangh`ı, “Quasiprobabilities of work and heat in an open quantum system,” Physical Review A, vol. 105, no. 3, p. 032606, 2022. | spa |
dc.relation.references | C. Elouard, D. A. Herrera-Mart´ı, M. Clusel, and A. Auff`eves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Information, vol. 3, no. 1, p. 9, 2017. | spa |
dc.relation.references | M. Naghiloo, D. Tan, P. Harrington, J. Alonso, E. Lutz, A. Romito, and K. Murch, “Heat and work along individual trajectories of a quantum bit,” Physical review letters, vol. 124, no. 11, p. 110604, 2020. | spa |
dc.relation.references | M. J. Hall, “Prior information: How to circumvent the standard joint-measurement uncertainty relation,” Physical Review A, vol. 69, no. 5, p. 052113, 2004. | spa |
dc.relation.references | J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Reviews of Modern Physics, vol. 86, no. 1, p. 307, 2014. | spa |
dc.relation.references | A. Barut, M. Boˇzi´c, and Z. Mari´c, “Joint probabilities of noncommuting operators and incompleteness of quantum mechanics,” Foundations of physics, vol. 18, pp. 999–1012, 1988. | spa |
dc.relation.references | J. B. Hartle, “Linear positivity and virtual probability,” Physical Review A, vol. 70, no. 2, p. 022104, 2004. | spa |
dc.relation.references | S. Adhikary, S. Asthana, and V. Ravishankar, “Bell-chsh non-locality and entanglement from a unified framework,” The European Physical Journal D, vol. 74, pp. 1–8, 2020. | spa |
dc.relation.references | F. Zhang and F. Zhang, “Positive semidefinite matrices,” Matrix Theory: Basic Results and Techniques, pp. 199–252, 2011. | spa |
dc.relation.references | R. Pan, Z. Fei, T. Qiu, J.-N. Zhang, and H. Quan, “Quantum-classical correspondence of work distributions for initial states with quantum coherence,” arXiv preprint arXiv:1904.05378, 2019. | spa |
dc.relation.references | R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals. Courier Corporation, 2010. | spa |
dc.relation.references | L. E. Ballentine, Quantum mechanics: a modern development. World Scientific Publishing Company, 2014. | spa |
dc.relation.references | L. S. Schulman, Techniques and applications of path integration. Courier Corporation, 2012. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | TERMODINAMICA | spa |
dc.subject.lemb | Thermodynamics | eng |
dc.subject.lemb | TEORIA CUANTICA | spa |
dc.subject.lemb | Quantum theory | eng |
dc.subject.proposal | Quantum thermodynamics | eng |
dc.subject.proposal | Work | eng |
dc.subject.proposal | Coherence | eng |
dc.subject.proposal | Fluctuation theorems | eng |
dc.subject.proposal | Quasi-probability | eng |
dc.subject.proposal | Path integral | eng |
dc.subject.proposal | Incompatible observables | eng |
dc.subject.proposal | Termodinámica cuántica | spa |
dc.subject.proposal | Trabajo | spa |
dc.subject.proposal | Coherencia | spa |
dc.subject.proposal | Teoremas de fluctuación | spa |
dc.subject.proposal | Quasi-probabilidad | eng |
dc.subject.proposal | Integral de camino | eng |
dc.subject.proposal | Observables incompatibles | spa |
dc.title | The role of coherences in quantum thermodynamics | eng |
dc.title.translated | El rol de las coherencias en la termodinámica cuántica | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019125991.2024.pdf
- Tamaño:
- 1.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: