Análisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarca

dc.contributor.advisorTorres Rojas, Esperanza
dc.contributor.advisorCaro Quintero, Alejandro
dc.contributor.authorGonzález Bello, Diego Alejandro
dc.contributor.orcidGonzález Bello, Diego [0000000268915907]spa
dc.contributor.researchgroupAgrobiodiversidad y Biotecnologíaspa
dc.coverage.countryColombia
dc.coverage.regionYacopí
dc.coverage.regionCundinamarca
dc.date.accessioned2023-07-31T20:04:00Z
dc.date.available2023-07-31T20:04:00Z
dc.date.issued2023-07-24
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl cadmio (Cd) es un metal pesado tóxico que altera el crecimiento y desarrollo de todos los organismos presentes en los sistemas agrícolas. Las plantas de cacao acumulan Cd y se han registrado altas concentraciones en los granos de cacao, lo que afecta la seguridad alimentaria y su comercialización. La comunidad microbiana del suelo cumple un papel importante en el ciclaje de nutrientes y en la biorremediación de suelos contaminados con metales pesados. Dentro de esta comunidad se destacan los hongos, que establecen redes miceliales que colonizan el suelo y exhiben mecanismos de tolerancia que les permiten sobrevivir altas concentraciones del metal. Sin embargo, pocos estudios han evaluado el efecto de las propiedades fisicoquímicas del suelo y del Cd sobre la comunidad fúngica presente en suelos cacaoteros. El objetivo de este estudio fue caracterizar la diversidad estructural de los microbiomas fúngicos presentes en suelos cacaoteros con diferentes propiedades físicas, químicas y concentraciones de Cd del municipio de Yacopí-Cundinamarca. Para ello, se seleccionaron tres fincas cacaoteras con diferentes concentraciones de Cd (F1>5,0 mg kg-1; F2 y F3<2 mg kg-1) y dos lotes uno con cultivo de cacao (SCC) y otro sin cultivo de cacao (SWC) en cada finca. Se colectaron muestras de suelo rizosférico (Rz) y no Rz a dos profundidades, D1 (0-30 cm) y D2 (31-100 cm); y muestras de hojarasca (HJ), hojas (HF) y frutos en los lotes SCC. Para los lotes SWC se colectaron únicamente suelo a las profundidades D1 y D2. (i) Se determinaron las propiedades fisicoquímicas del suelo y su relación con el Cd en suelos, hojarasca, hoja y grano de cacao en las tres fincas. Se encontró que la distribución de Cd fue heterogénea y mayor en F1>F3>F2, y en los suelos de F1 los contenidos de Cd fueron mayores SCC>SWC y en suelos Rz>D1=D2, alcanzado un valor promedio de 10,24 mg kg-1. Las concentraciones de Cd presentes en los suelos de las tres fincas fueron superiores a los niveles establecidos por las entidades regulatorias internacionales para suelos agrícolas no contaminados (1,0 mg kg-1) y el contenido de Cd en granos fue superior a las concentraciones permitidas por la comunidad europea para grano seco (0,6 mg kg-1). La concentración de Cd en los tejidos vegetales analizados fue mayor en HJ>HF>G. También el contenido de Cd en la HJ fue mayor a lo encontrado en el suelo a profundidad de D1, lo que podría contribuir a la recirculación del Cd en sistema suelo-planta. Posteriormente, (ii) se caracterizó la riqueza y abundancia relativa de la comunidad fúngica presentes en los suelos analizados. Los resultados muestran que la riqueza y la abundancia relativa encontrada en SCC fue mayor que la presente en SWC, indicando que el cultivo de cacao crea ambientes diferentes que favorecen la diversidad. Los ASVs (taxones) encontrados en los suelos de la finca F1 mostraron menor similitud con respecto a los presentes en los suelos de las fincas F2 y F3, mayor número de ASVs únicos en suelos con cultivo (SCC) y en suelos Rz; lo que indica que la estructura de la comunidad fúngica se ve alterada por las propiedades fisicoquímicas, el contenido de Cd en el suelo, el cultivo de cacao y la rizosfera. Los phylum Ascomycota (68%) y Basidiomycota (25%) fueron los más abundantes, donde los órdenes Hypocreales, Pleosporales y Capnodiales fueron los más representativos. Adicionalmente, los análisis de abundancia diferencial destacan los géneros Hypoxylon, Microdochium, Xylaria y la familia Nectricaceae, los cuales han sido reportados como tolerantes a metales pesados. También se encontraron géneros raros y pocos conocidos como Plectosphaerella, Tetracladium, Microdihum y Cyberlindnera que podrían tener capacidad de tolerar altas concentraciones de Cd. Finalmente, (iii) se evaluó el efecto de las características fisicoquímicas y concentraciones de Cd presente en suelos cacaoteros sobre la diversidad estructural de las comunidades fúngicas. Se encontró que las propiedades fisicoquímicas de los suelos presentaron bajas correlaciones con los índices de diversidad alfa, indicando que la estructura de las comunidades fúngicas está determinada por múltiples factores. La textura, el pH, CO, N, Na y Cdt mostraron tener mayor efecto en la diversidad estructural. Las redes de co-ocurrencia mostraron géneros fúngicos únicos y compartidos por finca. A su vez, se encontró que la finca F1 se presentó una estructura más homogénea debido posiblemente a los altos contenido de Cd y propiedades fisicoquímicas encontradas, en contraste, la finca F2, la estructura cambia de acuerdo a la profundidad del suelo. Esta investigación aporta por primera vez al conocimiento de la diversidad de la comunidad fúngica presente en SCC y SWC enriquecido con concentraciones de Cd natural. (Texto tomado de la fuente)spa
dc.description.abstractCadmium (Cd) is a toxic heavy metal that alters the growth and development of all organisms present in agricultural systems. Cacao plants accumulate Cd and high concentrations have been recorded in cacao beans, affecting food safety and marketing. The soil microbial community plays an important role in nutrient cycling and in the bioremediation of soils contaminated with heavy metals. Within this community, fungi stand out, establishing mycelial networks that colonize the soil and exhibit tolerance mechanisms that allow them to survive high concentrations of this metal. However, few studies have evaluated the effect of soil physicochemical properties and Cd on the fungal community present in cacao soils. The objective of this study was to characterize the structural diversity of fungal microbiomes present in cocoa soils with different physical and chemical properties and Cd concentrations in the municipality of Yacopí-Cundinamarca. For this purpose, three cocoa farms with different Cd concentrations (F1>5,0 mg kg-1 ; F2 and F3<2,0 mg kg-1 ) and two lots, one with cacao crop (SCC) and one without cacao crop (SWC) were selected in each farm. Rhizospheric (Rz) and non-Rz soil samples were collected at two depths, D1 (0-30 cm) and D2 (31-100 cm); and leaf litter (HJ), leaf (HF) and pods samples were collected in the SCC plots. For the SWC plots, only soil was collected at depths D1 and D2. (i) The physicochemical properties of the soil and their relationship with Cd in soils, leaf litter, leaves and cacao beans were determined on the three farms. It was found that the distribution of Cd was heterogeneous and higher in F1>F3>F2, and in F1 soils the Cd contents were higher SCC>SWC and in Rz>D1=D2 soils, reaching an average value of 10.24 mg kg-1 . The Cd concentrations present in the soils of the three farms were higher than the levels established by international regulatory for non-contaminated agricultural soils (1.0 mg kg-1) and the Cd content in grains was higher than the concentrations allowed by the European community for dry beans (0.6 mg kg-1). The Cd concentration in the plant tissues analyzed was higher in HJ>HF>G. Also, the Cd content in HJ was higher than that found in the soil at the depth of D1, which could contribute to the recirculation of Cd in the soil-plant system. Subsequently, (ii) the richness and relative abundance of the fungal community present in the analyzed soils were characterized. The results show that the richness and relative abundance found in SCC was higher than that present in SWC, indicating that cacao cultivation creates different environments that favor diversity. The ASVs (taxa) found in F1 farm soils showed lower similarity with respect to those present in F2 and F3 farm soils, higher number of unique ASVs in SCC and in Rz soils; indicating that the fungal community structure is altered by physicochemical properties, soil Cd content, cacao crop and rhizosphere. The phylum Ascomycota (68%) and Basidiomycota (25%) were the most abundant, where the orders Hypocreales, Pleosporales and Capnodiales were the most representative. In addition, differential abundance analyses highlighted the genera Hypoxylon, Microdochium, Xylaria and the family Nectricaceae, which have been reported to be tolerant to heavy metals. Rare and little known genera such as Plectosphaerella, Tetracladium, Microdihum and Cyberlindnera were also found that could be able to tolerate high Cd concentrations. Finally, (iii) the effect of physicochemical characteristics and Cd concentrations present in cacao soils on the structural diversity of fungal communities was evaluated. It was found that the physicochemical properties of the soils presented low correlations with the alpha diversity indices, indicating that the structure of fungal communities is determined by multiple factors. Texture, pH, organic carbon, N, Na and Cdt were shown to have the greatest effect on structural diversity. Co-occurrence networks showed unique and shared fungal genera per farm. At the same time, it was found that the F1 farm presented a more homogeneous structure, possibly due to the high Cd content and physicochemical properties found, in contrast, the F2 farm, the structure changes according to soil depth. This research contributes for the first time to the knowledge of the diversity of the fungal community present in SCC and SWC enriched with natural Cd concentrations.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.format.extent204 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84379
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M., Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation- a review. Open Journal of Environmental Biology, 2(1), 038-046. https://doi.org/10.17352/ojeb.000007spa
dc.relation.referencesAbbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A., & Abdul Khalil, H. P. S. (2018). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15(1), 243-262. https://doi.org/10.1007/s13762-017-1400-5spa
dc.relation.referencesAbdel-Azeem, A. (2015). Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere, 6(2), 228-240. https://doi.org/10.5943/mycosphere/6/2/12spa
dc.relation.referencesAbdu, N., Abdullahi, A. A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65-84. https://doi.org/10.1007/s10311-016-0587-xspa
dc.relation.referencesAbt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. https://doi.org/10.1080/19393210.2017.1420700spa
dc.relation.referencesAdamo, I., Castaño, C., Bonet, J. A., Colinas, C., Martínez de Aragón, J., & Alday, J. G. (2021). Soil physico-chemical properties have a greater effect on soil fungi than host species in Mediterranean pure and mixed pine forests. Soil Biology and Biochemistry, 160, 108320. https://doi.org/10.1016/j.soilbio.2021.108320spa
dc.relation.referencesAdeoye, A. O., Adebayo, I. A., Afodun, A. M., & Ajijolakewu, K. A. (2022). Benefits and limitations of phytoremediation: Heavy metal remediation review. En Phytoremediation (pp. 227-238). Elsevier. https://doi.org/10.1016/B978-0-323-89874-4.00002-9spa
dc.relation.referencesAdriano, D. C. (2002). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed). Springer.spa
dc.relation.referencesAguirre-Forero, S. E., Piraneque-Gambasica, N. V., & Vásquez-Polo, J. R. (2020). Heavy metals content in soils and cocoa tissues in Magdalena department Colombia: Emphasis in cadmium. Entramado, 16(2), 298-310. https://doi.org/10.18041/1900-3803/entramado.2.6753spa
dc.relation.referencesAhmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of field grown hemp reveals potential microbial interactions with root and rhizosphere soil. Frontiers in Microbiology, 12, 741597. https://doi.org/10.3389/fmicb.2021.741597spa
dc.relation.referencesAinsworth, G. C., & Bisby, G. R. (2011). Ainsworth & Bisby’s dictionary of the fungi (P. M. Kirk, Ed.; 10. ed. 2011). CABI.spa
dc.relation.referencesAkhtar, N., & Mannan, M. A. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, 26, e00452. https://doi.org/10.1016/j.btre.2020.e00452spa
dc.relation.referencesAli, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1-14. https://doi.org/10.1155/2019/6730305spa
dc.relation.referencesAlloway, B. J. (2013). Sources of heavy metals and metalloids in soils. En B. J. Alloway (Ed.), Heavy Metals in Soils (Vol. 22, pp. 11-50). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_2spa
dc.relation.referencesÁlvarez-Carrillo, F., Rojas-Molina, J., & Suárez-Salazar, J. C. (2015). Effect of organic and conventional fertilization on the growth and production of theobroma cacao l. Under an agroforestry system in rivera(Huila, colombia). Ciencia y Tecnología Agropecuaria, 16(2), 307-314.spa
dc.relation.referencesAmacher, M. C. (2018). Nickel, cadmium, and lead. En D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), SSSA Book Series (pp. 739-768). Soil Science Society of America, American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c28spa
dc.relation.referencesAnahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18(3), 502-508. https://doi.org/10.1016/j.scient.2011.05.015spa
dc.relation.referencesAnani, O. A., Mishra, R. R., Mishra, P., Olomukoro, J. O., Imoobe, T. O. T., & Adetunji, C. O. (2020). Influence of heavy metal on food security: Recent advances. En P. Mishra, R. R. Mishra, & C. O. Adetunji (Eds.), Innovations in Food Technology (pp. 257-267). Springer Singapore. https://doi.org/10.1007/978-981-15-6121-4_18spa
dc.relation.referencesAnderson, C., Beare, M., Buckley, H. L., & Lear, G. (2017). Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ, 5, e3930. https://doi.org/10.7717/peerj.3930spa
dc.relation.referencesAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Arévalo-Gardini, E., Canto, M., Alegre, J.,spa
dc.relation.referencesAntunes, L. P., Martins, L. F., Pereira, R. V., Thomas, A. M., Barbosa, D., Lemos, L. N., Silva, G. M. M., Moura, L. M. S., Epamino, G. W. C., Digiampietri, L. A., Lombardi, K. C., Ramos, P. L., Quaggio, R. B., de Oliveira, J. C. F., Pascon, R. C., Cruz, J. B. da, da Silva, A. M., & Setubal, J. C. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports, 6(1), 38915. https://doi.org/10.1038/srep38915spa
dc.relation.referencesAnyimah-Ackah, E., Ofosu, I. W., Lutterodt, H. E., & Darko, G. (2019). Exposures and risks of arsenic, cadmium, lead, and mercury in cocoa beans and cocoa-based foods: A systematic review. Food Quality and Safety, 3(1), 1-8. https://doi.org/10.1093/fqsafe/fyy025spa
dc.relation.referencesArévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dc.relation.referencesArévalo-Hernández, C. O., Arévalo-Gardini, E., Barraza, F., Farfán, A., He, Z., & Baligar, V. C. (2021). Growth and nutritional responses of wild and domesticated cacao genotypes to soil Cd stress. Science of The Total Environment, 763, 144021. https://doi.org/10.1016/j.scitotenv.2020.144021spa
dc.relation.referencesArévalo-Hernández, C. O., Loli, O., Julca, A., & Baligar, V. (2020). Cacao agroforestry management systems effects on soil fungi diversity in the Peruvian Amazon. Ecological Indicators, 115, 106404. https://doi.org/10.1016/j.ecolind.2020.106404spa
dc.relation.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of The Total Environment, 649, 120-127. https://doi.org/10.1016/j.scitotenv.2018.08.292spa
dc.relation.referencesArias Espana, V. A., Rodriguez Pinilla, A. R., Bardos, P., & Naidu, R. (2018). Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment, 618, 199-209. https://doi.org/10.1016/j.scitotenv.2017.10.245spa
dc.relation.referencesArmitage, D. W., & Jones, S. E. (2019). How sample heterogeneity can obscure the signal of microbial interactions. The ISME Journal, 13(11), 2639-2646. https://doi.org/10.1038/s41396-019-0463-3spa
dc.relation.referencesArora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111(4), 811-815. https://doi.org/10.1016/j.foodchem.2008.04.049spa
dc.relation.referencesAshrafi, S., Stadler, M., Dababat, A. A., Richert-Pöggeler, K. R., Finckh, M. R., & Maier, W. (2017). Monocillium gamsii sp. nov. and Monocillium bulbillosum: Two nematode-associated fungi parasitising the eggs of Heterodera filipjevi. MycoKeys, 27, 21-38. https://doi.org/10.3897/mycokeys.27.21254spa
dc.relation.referencesAyangbenro, A., & Babalola, O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094spa
dc.relation.referencesBaldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78-91. https://doi.org/10.1016/S0141-0229(02)00245-4spa
dc.relation.referencesBanerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., Keller, T., Charles, R., & van der Heijden, M. G. A. (2019). Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal, 13(7), 1722-1736. https://doi.org/10.1038/s41396-019-0383-2spa
dc.relation.referencesBari, M. A., Akther, M. S., Reza, M. A., & Kabir, A. H. (2019). Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiology and Biochemistry, 136, 22-33. https://doi.org/10.1016/j.plaphy.2019.01.007spa
dc.relation.referencesBar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115spa
dc.relation.referencesBarraza, F., Moore, R. E. T., Rehkämper, M., Schreck, E., Lefeuvre, G., Kreissig, K., Coles, B. J., & Maurice, L. (2019). Cadmium isotope fractionation in the soil – cacao systems of Ecuador: A pilot field study. RSC Advances, 9(58), 34011-34022. https://doi.org/10.1039/C9RA05516Aspa
dc.relation.referencesBarrientos, L. D. P., Oquendo, J. D. T., Garzón, M. A. G., & Álvarez, O. L. M. (2019). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International, 115, 259-267. https://doi.org/10.1016/j.foodres.2018.08.084spa
dc.relation.referencesBauer, R., Garnica, S., Oberwinkler, F., Riess, K., Weiß, M., & Begerow, D. (2015). Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLOS ONE, 10(7), e0128183. https://doi.org/10.1371/journal.pone.0128183spa
dc.relation.referencesBayramoglu, G. (2003). Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 101(3), 285-300. https://doi.org/10.1016/S0304-3894(03)00178-Xspa
dc.relation.referencesBeattie, R. E., Henke, W., Campa, M. F., Hazen, T. C., McAliley, L. R., & Campbell, J. H. (2018). Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 126, 57-63. https://doi.org/10.1016/j.soilbio.2018.08.011spa
dc.relation.referencesBeimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., Gube, M., Jackson, D. J., Reitner, J., Seyfullah, L. J., & Schmidt, A. R. (2014). Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398. https://doi.org/10.1016/j.ympev.2014.04.024spa
dc.relation.referencesBellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189. https://doi.org/10.1186/1471-2180-10-189spa
dc.relation.referencesBellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173-181. https://doi.org/10.1111/j.1574-6968.2005.00044.xspa
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xspa
dc.relation.referencesBertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46-53. https://doi.org/10.1016/j.foodcont.2016.01.013spa
dc.relation.referencesBlaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). its 1 versus its 2 as dna metabarcodes for fungi. Molecular Ecology Resources, 13(2), 218-224. https://doi.org/10.1111/1755-0998.12065spa
dc.relation.referencesBohn, H. L., McNeal, B. L., O’Connor, G. A., & Sánchez Orozco, M. (1993). Química del suelo. Limusa.spa
dc.relation.referencesBolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrientand heavy metal transformationand bioavailability. En Advances in Agronomy (Vol. 78, pp. 215-272). Elsevier. https://doi.org/10.1016/S0065-2113(02)78006-1spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science [Preprint]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27295v2spa
dc.relation.referencesBoros-Lajszner, E., Wyszkowska, J., Borowik, A., & Kucharski, J. (2021). The response of the soil microbiome to contamination with cadmium, cobalt and nickel in soil sown with brassica napus. Minerals, 11(5), 498. https://doi.org/10.3390/min11050498spa
dc.relation.referencesBoyd, R. S., & Rajakaruna, N. (2013). Heavy metal tolerance (pp. 9780199830060-9780199830137) [Data set]. Oxford University Press. https://doi.org/10.1093/obo/9780199830060-0137spa
dc.relation.referencesBravo Realpe, I. D. S., Arboleda Pardo, C. A., & Martin Peinado, F. J. (2014). Efecto de la calidad de la materia orgánica asociada con el uso y manejo de suelos en la retención de cadmio en sistemas altoandinos de Colombia. Acta Agronómica, 63(2), 164-174. https://doi.org/10.15446/acag.v63n2.39569spa
dc.relation.referencesBravo, D., & Braissant, O. (2022). Cadmium‐tolerant bacteria: Current trends and applications in agriculture. Letters in Applied Microbiology, 74(3), 311-333. https://doi.org/10.1111/lam.13594spa
dc.relation.referencesBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in colombia. Agronomy, 11(4), 761. Yispa
dc.relation.referencesBravo, D., León-Moreno, C., Quiroga, R., Duarte, D., Zamora, A., Gutiérrez, E., Aristizábal, A., Arroyave, C., Cardona, L., Guerra, B., Olarte, H., Cuervo, C., Orozco, M. L., & Moreno, E. (2021). Recomendaciones mínimas para la mitigación de cadmio (Primera). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.nbook.7404555spa
dc.relation.referencesBravo, D., Pardo‐Díaz, S., Benavides‐Erazo, J., Rengifo‐Estrada, G., Braissant, O., & Leon‐Moreno, C. (2018). Cadmium and cadmium‐tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175-1194. https://doi.org/10.1111/jam.13698spa
dc.relation.referencesCáceres, P. F. F., Vélez, L. P., Junca, H., & Moreno-Herrera, C. X. (2021). Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. Current Research in Microbial Sciences, 2, 100086. https://doi.org/10.1016/j.crmicr.2021.100086spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11(12), 2639-2643. https://doi.org/10.1038/ismej.2017.119spa
dc.relation.referencesCameron, E. S., Schmidt, P. J., Tremblay, B. J.-M., Emelko, M. B., & Müller, K. M. (2020). To rarefy or not to rarefy: Enhancing diversity analysis of microbial communities through next-generation sequencing and rarefying repeatedly [Preprint]. Bioinformatics. https://doi.org/10.1101/2020.09.09.290049spa
dc.relation.referencesCánovas, D., Vooijs, R., Schat, H., & de Lorenzo, V. (2004). The role of thiol species in the hypertolerance of aspergillus sp. P37 to arsenic. Journal of Biological Chemistry, 279(49), 51234-51240. https://doi.org/10.1074/jbc.M408622200spa
dc.relation.referencesCarney, K. M., & Matson, P. A. (2005). Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems, 8(8), 928-940. https://doi.org/10.1007/s10021-005-0047-0spa
dc.relation.referencesCarson, J. K., Gonzalez-Quiñones, V., Murphy, D. V., Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low pore connectivity increases bacterial diversity in soil. Applied and Environmental Microbiology, 76(12), 3936-3942. https://doi.org/10.1128/AEM.03085-09spa
dc.relation.referencesCazabonne, J., Bartrop, L., Dierickx, G., Gafforov, Y., Hofmann, T. A., Martin, T. E., Piepenbring, M., Rivas-Ferreiro, M., & Haelewaters, D. (2022). Molecular-based diversity studies and field surveys are not mutually exclusive: On the importance of integrated methodologies in mycological research. Frontiers in Fungal Biology, 3, 860777. https://doi.org/10.3389/ffunb.2022.860777spa
dc.relation.referencesCeci, A., Pinzari, F., Russo, F., Persiani, A. M., & Gadd, G. M. (2019). Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Applied Microbiology and Biotechnology, 103(1), 53-68. https://doi.org/10.1007/s00253-018-9451-1spa
dc.relation.referencesChallacombe, J. F., Hesse, C. N., Bramer, L. M., McCue, L. A., Lipton, M., Purvine, S., Nicora, C., Gallegos-Graves, L. V., Porras-Alfaro, A., & Kuske, C. R. (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 20(1), 976. https://doi.org/10.1186/s12864-019-6358-xspa
dc.relation.referencesChang, J., Sun, Y., Tian, L., Ji, L., Luo, S., Nasir, F., Kuramae, E. E., & Tian, C. (2021). The structure of rhizosphere fungal communities of wild and domesticated rice: Changes in diversity and co-occurrence patterns. Frontiers in Microbiology, 12, 610823. https://doi.org/10.3389/fmicb.2021.610823spa
dc.relation.referencesChaves-López, C., Serio, A., Grande-Tovar, C. D., Cuervo-Mulet, R., Delgado-Ospina, J., & Paparella, A. (2014). Traditional fermented foods and beverages from a microbiological and nutritional perspective: The colombian heritage: colombian fermented foods and beverages…. Comprehensive Reviews in Food Science and Food Safety, 13(5), 1031-1048. https://doi.org/10.1111/1541-4337.12098spa
dc.relation.referencesChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. https://doi.org/10.1016/j.scitotenv.2015.06.106spa
dc.relation.referencesChen, H., Zhang, W., Yang, X., Wang, P., McGrath, S. P., & Zhao, F.-J. (2018). Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 207, 699-707. https://doi.org/10.1016/j.chemosphere.2018.05.143spa
dc.relation.referencesChen, X. W., Wu, L., Luo, N., Mo, C. H., Wong, M. H., & Li, H. (2019). Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337, 749-757. https://doi.org/10.1016/j.geoderma.2018.10.029spa
dc.relation.referencesChen, Y. P., Liu, Q., Liu, Y. J., Jia, F. A., & He, X. H. (2014). Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports, 4(1), 4287. https://doi.org/10.1038/srep04287spa
dc.relation.referencesChoi, S., & Yun, Y. (2006). Biosorption of cadmium by various types of dried sludge: An equilibrium study and investigation of mechanisms. Journal of Hazardous Materials, 138(2), 378-383. https://doi.org/10.1016/j.jhazmat.2006.05.059spa
dc.relation.referencesChong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1spa
dc.relation.referencesChunhabundit, R. (2016). Cadmium exposure and potential health risk from foods in contaminated area, thailand. Toxicological Research, 32(1), 65-72. https://doi.org/10.5487/TR.2016.32.1.065spa
dc.relation.referencesClemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92-99. https://doi.org/10.1016/j.tplants.2012.08.003spa
dc.relation.referencesColler, E., Cestaro, A., Zanzotti, R., Bertoldi, D., Pindo, M., Larger, S., Albanese, D., Mescalchin, E., & Donati, C. (2019). Microbiome of vineyard soils is shaped by geography and management. Microbiome, 7(1), 140. https://doi.org/10.1186/s40168-019-0758-7spa
dc.relation.referencesCommission Regulation (EU). (2021) Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). url: https://eur-lex.europa.eu/eli/reg/2021/1323/oj. Consultado: Diciembre, 2022.spa
dc.relation.referencesCompant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29-37. https://doi.org/10.1016/j.jare.2019.03.004spa
dc.relation.referencesConsejo Municipal Yacopí - Cundinamarca. (2000). Esquema de Ordenamiento Territorial (EOT) del municipio de Yacopí, Cundinamarca: EOT Yacopí Cundinamarca 2000. url: https://repositoriocdim.esap.edu.co/handle/123456789/19167. Consulta: Diciembre, 2022.spa
dc.relation.referencesCordoba-Novoa, H. A., Cáceres-Zambrano, J., & Torres-Rojas, E. (2022). Assessment of native cadmium-tolerant bacteria in cacao (Theobroma cacao L.)—Cultivated soils in Cundinamarca-Colombia [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1726295/v1spa
dc.relation.referencesCorrea Alvarez, J., Castro Martínez, S., & Coy, J. (2014). Estado de la Moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta Agronómica, 63(4), 388-399. https://doi.org/10.15446/acag.v63n4.42747spa
dc.relation.referencesCorrea, J. E., Ramírez, R., Ruíz, O., & Leiva, E. I. (2021). Effect of soil characteristics on cadmium absorption and plant growth of Theobroma cacao L. seedlings. Journal of the Science of Food and Agriculture, 101(13), 5437-5445. https://doi.org/10.1002/jsfa.11192spa
dc.relation.referencesCreamer, R. E., Hannula, S. E., Leeuwen, J. P. V., Stone, D., Rutgers, M., Schmelz, R. M., Ruiter, P. C. de, Hendriksen, N. B., Bolger, T., Bouffaud, M. L., Buee, M., Carvalho, F., Costa, D., Dirilgen, T., Francisco, R., Griffiths, B. S., Griffiths, R., Martin, F., Silva, P. M. da, … Lemanceau, P. (2016). Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 97, 112-124. https://doi.org/10.1016/j.apsoil.2015.08.006spa
dc.relation.referencesCullen, J. T., & Maldonado, M. T. (2013). Biogeochemistry of cadmium and its release to the environment. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 31-62). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_2spa
dc.relation.referencesda Cunha, M. de L. R. de S. (2019). Molecular biology in microbiological analysis. En Reference Module in Food Science (p. B9780081005965230000). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22935-1spa
dc.relation.referencesDai, W., Chen, J., & Xiong, J. (2019). Concept of microbial gatekeepers: Positive guys? Applied Microbiology and Biotechnology, 103(2), 633-641. https://doi.org/10.1007/s00253-018-9522-3spa
dc.relation.referencesDas, N., Vimala, R. and Karthika, P. (2008) Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.spa
dc.relation.referencesDasgupta, D., & Brahmaprakash, G. P. (2021). Soil microbes are shaped by soil physico-chemical properties: A brief review of existing literature. International Journal of Plant & Soil Science, 59-71. https://doi.org/10.9734/ijpss/2021/v33i130409spa
dc.relation.referencesDe Beenhouwer, M., Aerts, R., & Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems & Environment, 175, 1-7. https://doi.org/10.1016/j.agee.2013.05.003spa
dc.relation.referencesDe Filippis, F., Laiola, M., Blaiotta, G., & Ercolini, D. (2017). Different amplicon targets for sequencing-based studies of fungal diversity. Applied and Environmental Microbiology, 83(17), e00905-17. https://doi.org/10.1128/AEM.00905-17spa
dc.relation.referencesde Menezes, A. B., Prendergast-Miller, M. T., Richardson, A. E., Toscas, P., Farrell, M., Macdonald, L. M., Baker, G., Wark, T., & Thrall, P. H. (2015). Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters: Network analysis of microbial community structure. Environmental Microbiology, 17(8), 2677-2689. https://doi.org/10.1111/1462-2920.12559spa
dc.relation.referencesde Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., Hallin, S., Kaisermann, A., Keith, A. M., Kretzschmar, M., Lemanceau, P., Lumini, E., Mason, K. E., Oliver, A., Ostle, N., Prosser, J. I., Thion, C., Thomson, B., & Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7spa
dc.relation.referencesDegens, B. (2000). Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32(2), 189-196. https://doi.org/10.1016/S0038-0717(99)00141-8spa
dc.relation.referencesDelgado‐Baquerizo, M., Reith, F., Dennis, P. G., Hamonts, K., Powell, J. R., Young, A., Singh, B. K., & Bissett, A. (2018). Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology, 99(3), 583-596. https://doi.org/10.1002/ecy.2137spa
dc.relation.referencesDeng, X., Yuan, X., Chen, L., Chen, Y., Rong, X., Zeng, Q., & Yang, Y. (2022). Field-scale remediation of cadmium-contaminated farmland soil by Cichorium intybus L.: Planting density, repeated harvests, and safe use of its Cd-enriched biomass for protein feed. Industrial Crops and Products, 188, 115604. https://doi.org/10.1016/j.indcrop.2022.115604spa
dc.relation.referencesDeng, Y., Huang, H., Fu, S., Jiang, L., Liang, Y., Liu, X., Jiang, H., & Liu, H. (2021). Cadmium uptake and growth responses of potted vegetables to the cd-contaminated soil inoculated with cd-tolerant purpureocillium lilacinum n1. Minerals, 11(6), 622. https://doi.org/10.3390/min11060622spa
dc.relation.referencesDhankhar, R., & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. https://doi.org/10.1080/09593330.2011.572922spa
dc.relation.referencesDin, G., Hassan, A., Dunlap, J., Ripp, S., & Shah, A. A. (2022). Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. International Journal of Environmental Science and Technology, 19(4), 2761-2770. https://doi.org/10.1007/s13762-021-03211-7spa
dc.relation.referencesDing, C., Ma, Y., Li, X., Zhang, T., & Wang, X. (2018). Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. Science of The Total Environment, 619-620, 700-706. https://doi.org/10.1016/j.scitotenv.2017.11.137spa
dc.relation.referencesDoku, T., & Belford, E. (2015). The potential of Aspergillus fumigatus and Aspergillus niger in bioaccumulation of heavy metals from the Chemu Lagoon, Ghana. Journal of Applied Biosciences, 94(1), 8907. https://doi.org/10.4314/jab.v94i1.12spa
dc.relation.referencesDomka, A. M., Rozpaądek, P., & Turnau, K. (2019). Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Frontiers in Microbiology, 10, 371. https://doi.org/10.3389/fmicb.2019.00371spa
dc.relation.referencesDonovan, P. D., Gonzalez, G., Higgins, D. G., Butler, G., & Ito, K. (2018). Identification of fungi in shotgun metagenomics datasets. PLOS ONE, 13(2), e0192898. https://doi.org/10.1371/journal.pone.0192898spa
dc.relation.referencesdos Reis, J. B. A., Lorenzi, A. S., & do Vale, H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Archives of Microbiology, 204(11), 675. https://doi.org/10.1007/s00203-022-03283-0spa
dc.relation.referencesDray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4). https://doi.org/10.18637/jss.v022.i04spa
dc.relation.referencesEdwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., Cheng, Y., Chang, J., Kittelmann, S., Fliegerova, K., Puniya, A. K., Henske, J. K., Gilmore, S. P., O’Malley, M. A., Griffith, G. W., & Smidt, H. (2017). Pcr and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8, 1657. https://doi.org/10.3389/fmicb.2017.01657spa
dc.relation.referencesEgidi, E., Delgado-Baquerizo, M., Plett, J. M., Wang, J., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., & Singh, B. K. (2019). A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 10(1), 2369. https://doi.org/10.1038/s41467-019-10373-zspa
dc.relation.referencesEhis-Eriakha, C. B., & Akemu, S. E. (2022). Impact of heavy metal pollution on the biotic and abiotic components of the environment. South Asian Journal of Research in Microbiology, 38-54. https://doi.org/10.9734/sajrm/2022/v13i330302spa
dc.relation.referencesEngbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., & Schulin, R. (2019). Cadmium accumulation and allocation in different cacao cultivars. Science of The Total Environment, 678, 660-670. https://doi.org/10.1016/j.scitotenv.2019.05.001spa
dc.relation.referencesEngelbrecht, C. J., Harrington, T. C., & Alfenas, A. (2007). Ceratocystis wilt of cacao—A disease of increasing importance. Phytopathology®, 97(12), 1648-1649. https://doi.org/10.1094/PHYTO-97-12-1648spa
dc.relation.referencesEstaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A., Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A., Vázquez‐Baeza, Y., Dillon, M. R., Bolyen, E., Caporaso, J. G., & Knight, R. (2020). Qiime 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics, 70(1). https://doi.org/10.1002/cpbi.100spa
dc.relation.referencesEsteves, A. C., Saraiva, M., Correia, A., & Alves, A. (2014). Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology, 60(5), 332-342. https://doi.org/10.1139/cjm-2014-0134spa
dc.relation.referencesEuropean Commission , 2021. Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). Off. J. Eur. Union 138, 75.spa
dc.relation.referencesEwels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048. https://doi.org/10.1093/bioinformatics/btw354spa
dc.relation.referencesFaith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., Rosenbaum, M., & Gordon, J. I. (2013). The long-term stability of the human gut microbiota. Science, 341(6141), 1237439. https://doi.org/10.1126/science.1237439spa
dc.relation.referencesFassbender, H. W., & Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina (2nd. rev. and enl). Instituto Interamericano de Cooperación para la Agricultura.spa
dc.relation.referencesFederación Nacional de Cacaoteros (FEDECACAO), (2015). Guía técnica para el cultivo del Cacao (Sexta edic, Vol. 6). Bogotá, Colombiaspa
dc.relation.referencesFederación Nacional de Cacaoteros (FEDECACAO), (2022), Producción Nacional de Cacao. url: https://www.fedecacao.com.co/economianacional. Consulta: Diciembre, 2022spa
dc.relation.referencesFelczykowska, A., Krajewska, A., Zielińska, S., & Łoś, J. M. (2015). Sampling, metadata and DNA extraction—Important steps in metagenomic studies. Acta Biochimica Polonica, 62(1), 151-160. https://doi.org/10.18388/abp.2014_916spa
dc.relation.referencesFenner, N., & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4(12), 895-900. https://doi.org/10.1038/ngeo1323spa
dc.relation.referencesFeria-Cáceres, P. F., Penagos-Velez, L., & Moreno-Herrera, C. X. (2022). Tolerance and cadmium (Cd) immobilization by native bacteria isolated in cocoa soils with increased metal content. Microbiology Research, 13(3), 556-573. https://doi.org/10.3390/microbiolres13030039spa
dc.relation.referencesFernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2(1), 15. https://doi.org/10.1186/2049-2618-2-15spa
dc.relation.referencesFernandes, P. (2016). Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harbor Perspectives in Medicine, 6(1), a025437. https://doi.org/10.1101/cshperspect.a025437spa
dc.relation.referencesFHIA. (2005). Guía práctica. PRODUCCIÓN DE PLANTAS DE CACAO POR INJERTO / Proyecto Control de la Moniliasis. Fundación Hondureña De Investigación Agrícolaspa
dc.relation.referencesFierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249. https://doi.org/10.1111/j.1461-0248.2009.01360.xspa
dc.relation.referencesFlorida Rofner, N. (2021). Cadmium in soil and cacao beans of Peruvian and South American origin. Revista Facultad Nacional de Agronomía Medellín, 74(2). https://doi.org/10.15446/rfnam.v74n2.91107spa
dc.relation.referencesFomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., & Gadd, G. M. (2005). Role of oxalic acid overexcretion in transformations of toxic metal minerals by beauveria caledonica. Applied and Environmental Microbiology, 71(1), 371-381. https://doi.org/10.1128/AEM.71.1.371-381.2005spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2022). FAOSTAT statistical database. [Rome]. Url: https://www.fao.org/faostat/en/#data/QCL/visualize. Consulta: Diciembre, 2022spa
dc.relation.referencesFoster, Z. S. L., Sharpton, T. J., & Grünwald, N. J. (2017). Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Computational Biology, 13(2), e1005404. https://doi.org/10.1371/journal.pcbi.1005404spa
dc.relation.referencesFrąc, M., Hannula, S. E., Bełka, M., & Jędryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 707. https://doi.org/10.3389/fmicb.2018.00707spa
dc.relation.referencesFreilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A., & Navarrete, S. A. (2018). Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology, 99(3), 690-699. https://doi.org/10.1002/ecy.2142spa
dc.relation.referencesFriedman, J., & Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Computational Biology, 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687spa
dc.relation.referencesFröhlich-Nowoisky, J., Hill, T. C. J., Pummer, B. G., Yordanova, P., Franc, G. D., & Pöschl, U. (2015). Ice nucleation activity in the widespread soil fungus &lt;i&gt;Mortierella alpina&lt;/i&gt; Biogeosciences, 12(4), 1057-1071. https://doi.org/10.5194/bg-12-1057-2015spa
dc.relation.referencesFurcal Beriguete, P. (2016). Extracción de nutrientes por los frutos de cacao en dos localidades en Costa Rica. Agronomía Mesoamericana, 28(1), 113. https://doi.org/10.15517/am.v28i1.23236spa
dc.relation.referencesGadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001spa
dc.relation.referencesGadd, G. M. (2021). Fungal biomineralization. Current Biology, 31(24), R1557-R1563. https://doi.org/10.1016/j.cub.2021.10.041spa
dc.relation.referencesGajewska, J., Floryszak-Wieczorek, J., Sobieszczuk-Nowicka, E., Mattoo, A., & Arasimowicz-Jelonek, M. (2022). Fungal and oomycete pathogens and heavy metals: An inglorious couple in the environment. IMA Fungus, 13(1), 6. https://doi.org/10.1186/s43008-022-00092-4spa
dc.relation.referencesGarbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(1), 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455spa
dc.relation.referencesGautam, A. K., Verma, R. K., Avasthi, S., Sushma, Bohra, Y., Devadatha, B., Niranjan, M., & Suwannarach, N. (2022). Current insight into traditional and modern methods in fungal diversity estimates. Journal of Fungi, 8(3), 226. https://doi.org/10.3390/jof8030226spa
dc.relation.referencesGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782spa
dc.relation.referencesGeng, H.-X., & Wang, L. (2019). Cadmium: Toxic effects on placental and embryonic development. Environmental Toxicology and Pharmacology, 67, 102-107. https://doi.org/10.1016/j.etap.2019.02.006spa
dc.relation.referencesGhosh, S. (2021). Fungi-mediated detoxification of heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 205-219). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch011spa
dc.relation.referencesGil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: A case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455-2476. https://doi.org/10.1007/s13762-021-03299-xspa
dc.relation.referencesGiller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031-2037. https://doi.org/10.1016/j.soilbio.2009.04.026spa
dc.relation.referencesGiweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44(1), 11. https://doi.org/10.1186/s41610-020-0151-2spa
dc.relation.referencesGleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6-7), 451-467. https://doi.org/10.1016/S0165-9936(02)00603-9spa
dc.relation.referencesGloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224. https://doi.org/10.3389/fmicb.2017.02224spa
dc.relation.referencesGoberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry, 166, 108534. https://doi.org/10.1016/j.soilbio.2021.108534spa
dc.relation.referencesGoberna, M., Montesinos‐Navarro, A., Valiente‐Banuet, A., Colin, Y., Gómez‐Fernández, A., Donat, S., Navarro‐Cano, J. A., & Verdú, M. (2019). Incorporating phylogenetic metrics to microbial co‐occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 19(6), 1552-1564. https://doi.org/10.1111/1755-0998.13079spa
dc.relation.referencesGobernación de Cundinamarca. (2020). Plan Departamental de Extensión Agropecuaria 2020. Url: https://www.adr.gov.co/wp-content/uploads/2021/07/PDEA-Cundinamarca.pdf. Consulta: Diciembre, 2022spa
dc.relation.referencesGómez, J. & Montes, N.E., compiladores. 2020. Atlas Geológico de Colombia 2020. Escala 1:500 000. Servicio Geológico Colombiano, 26 hojas. Bogotá.spa
dc.relation.referencesGong, H., Rose, A. W., & Suhr, N. H. (1977). The geochemistry of cadmium in some sedimentary rocks. Geochimica et Cosmochimica Acta, 41(12), 1687-1692. https://doi.org/10.1016/0016-7037(77)90200-9spa
dc.relation.referencesGouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. En Microbial Biodegradation and Bioremediation (pp. 301-323). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00013-3spa
dc.relation.referencesGqozo, M. P., Bill, M., Siyoum, N., Labuschagne, N., & Korsten, L. (2020). Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 151, 103543. https://doi.org/10.1016/j.apsoil.2020.103543spa
dc.relation.referencesGramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of The Total Environment, 580, 677-686. https://doi.org/10.1016/j.scitotenv.2016.12.014spa
dc.relation.referencesGramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370-378. https://doi.org/10.1016/j.scitotenv.2017.08.145spa
dc.relation.referencesGriffioen, J., & Appelo, C. A. J. (1993). Adsorption of calcium and its complexes by two sediments in calcium-hydrogen-chlorine-carbon dioxide systems. Soil Science Society of America Journal, 57(3), 716-722. https://doi.org/10.2136/sssaj1993.03615995005700030015xspa
dc.relation.referencesGrządziel, J., & Gałązka, A. (2019). Fungal biodiversity of the most common types of polish soil in a long-term microplot experiment. Frontiers in Microbiology, 10, 6. https://doi.org/10.3389/fmicb.2019.00006spa
dc.relation.referencesGu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of cd (Ii), cu (Ii), ni (Ii), pb (Ii) and zn (Ii) onto montmorillonite. Geochimica et Cosmochimica Acta, 74(20), 5718-5728. https://doi.org/10.1016/j.gca.2010.07.016spa
dc.relation.referencesGuala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221(8), 1148-1152. https://doi.org/10.1016/j.ecolmodel.2010.01.003spa
dc.relation.referencesGuarro, J., Gene, J., Stchigel, A.M. and Figueras, M.J. (2012). Atlas of Soil Ascomycetes. Issue 10 of CBS Biodiversity Series, Holland.spa
dc.relation.referencesGuerra Sierra, B. E., Arteaga-Figueroa, L. A., Sierra-Pelaéz, S., & Alvarez, J. C. (2022). Talaromyces santanderensis: A new cadmium-tolerant fungus from cacao soils in colombia. Journal of Fungi, 8(10), 1042. https://doi.org/10.3390/jof8101042spa
dc.relation.referencesGuggenberger, G. (2005). Humification and mineralization in soils. En A. Varma & F. Buscot (Eds.), Microorganisms in Soils: Roles in Genesis and Functions (Vol. 3, pp. 85-106). Springer-Verlag. https://doi.org/10.1007/3-540-26609-7_4spa
dc.relation.referencesGuiasu, R. C., & Guiasu, S. (2010). The Rich-Gini-Simpson quadratic index of biodiversity. Natural Science, 2(10), 1130-1137. https://doi.org/10.4236/ns.2010.210140spa
dc.relation.referencesGuo, B., Liang, Y., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166(1), 20-31. https://doi.org/10.1016/j.jplph.2008.01.002spa
dc.relation.referencesGuo, H., Nasir, M., Lv, J., Dai, Y., & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, 300-306. https://doi.org/10.1016/j.ecoenv.2017.06.048spa
dc.relation.referencesGuo, P., Wang, C., Jia, Y., Wang, Q., Han, G., & Tian, X. (2011). Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant and Soil, 338(1-2), 355-366. https://doi.org/10.1007/s11104-010-0550-8spa
dc.relation.referencesGuo, Y., Cheng, S., Fang, H., Yang, Y., Li, Y., & Zhou, Y. (2022). Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Science of The Total Environment, 844, 157119. https://doi.org/10.1016/j.scitotenv.2022.157119spa
dc.relation.referencesGutiérrez-Macías, P., Mirón-Mérida, V. A., Rodríguez-Nava, C. O., & Barragán-Huerta, B. E. (2021). Cocoa: Beyond chocolate, a promising material for potential value-added products. En Valorization of Agri-Food Wastes and By-Products (pp. 267-288). Elsevier. https://doi.org/10.1016/B978-0-12-824044-1.00038-6spa
dc.relation.referencesHaider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887spa
dc.relation.referencesHaj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of The Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946spa
dc.relation.referencesHakim, S., Nawaz, M. S., Siddique, M. J., Hayat, M., Gulzar, U., & Imran, A. (2022). Metagenomics for rhizosphere engineering. En Rhizosphere Engineering (pp. 395-416). Elsevier. https://doi.org/10.1016/B978-0-323-89973-4.00022-3spa
dc.relation.referencesHandelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9spa
dc.relation.referencesHannula, S. E., Heinen, R., Huberty, M., Steinauer, K., De Long, J. R., Jongen, R., & Bezemer, T. M. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12(1), 5686. https://doi.org/10.1038/s41467-021-25971-zspa
dc.relation.referencesHao, W., Flynn, S. L., Alessi, D. S., & Konhauser, K. O. (2018). Change of the point of zero net proton charge (Phpznpc) of clay minerals with ionic strength. Chemical Geology, 493, 458-467. https://doi.org/10.1016/j.chemgeo.2018.06.023spa
dc.relation.referencesHao, X., Bai, L., Liu, X., Zhu, P., Liu, H., Xiao, Y., Geng, J., Liu, Q., Huang, L., & Jiang, H. (2021). Cadmium speciation distribution responses to soil properties and soil microbes of plow layer and plow pan soils in cadmium-contaminated paddy fields. Frontiers in Microbiology, 12, 774301. https://doi.org/10.3389/fmicb.2021.774301spa
dc.relation.referencesHartemink, A. E. (2005). Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. En Advances in Agronomy (Vol. 86, pp. 227-253). Elsevier. https://doi.org/10.1016/S0065-2113(05)86005-5spa
dc.relation.referencesHayakawa, N., Tomioka, R., & Takenaka, C. (2011). Effects of calcium on cadmium uptake and transport in the tree species Gamblea innovans. Soil Science and Plant Nutrition, 57(5), 691-695. https://doi.org/10.1080/00380768.2011.608196spa
dc.relation.referencesHe, S., He, Z., Yang, X., Stoffella, P. J., & Baligar, V. C. (2015). Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. En Advances in Agronomy (Vol. 134, pp. 135-225). Elsevier. https://doi.org/10.1016/bs.agron.2015.06.005spa
dc.relation.referencesHe, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere, 27(3), 421-438. https://doi.org/10.1016/S1002-0160(17)60339-4spa
dc.relation.referencesHelmke, P. A. (1999). Chemistry of cadmium in soil solution. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 39-64). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_3spa
dc.relation.referencesHernández-Núñez, H. E., Gutiérrez-Montes, I., Sánchez-Acosta, J. R., Rodríguez-Suárez, L., Gutiérrez-García, G. A., Suárez-Salazar, J. C., & Casanoves, F. (2020). Agronomic conditions of cacao cultivation: Its relationship with the capitals endowment of Colombian rural households. Agroforestry Systems, 94(6), 2367-2380. https://doi.org/10.1007/s10457-020-00556-9spa
dc.relation.referencesHirano, H., & Takemoto, K. (2019). Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics, 20(1), 329. https://doi.org/10.1186/s12859-019-2915-1spa
dc.relation.referencesHoggard, M., Vesty, A., Wong, G., Montgomery, J. M., Fourie, C., Douglas, R. G., Biswas, K., & Taylor, M. W. (2018). Characterizing the human mycobiota: A comparison of small subunit rrna, its1, its2, and large subunit rrna genomic targets. Frontiers in Microbiology, 9, 2208. https://doi.org/10.3389/fmicb.2018.02208spa
dc.relation.referencesHossain, M., Siddique, M. R. H., Rahman, Md. S., Hossain, Md. Z., & Hasan, Md. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577-582. https://doi.org/10.1007/s11676-011-0175-7spa
dc.relation.referencesHou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366-381. https://doi.org/10.1038/s43017-020-0061-yspa
dc.relation.referencesHu, Y., Irinyi, L., Hoang, M. T. V., Eenjes, T., Graetz, A., Stone, E. A., Meyer, W., Schwessinger, B., & Rathjen, J. P. (2022). Inferring species compositions of complex fungal communities from long- and short-read sequence data. MBio, 13(2), e02444-21. https://doi.org/10.1128/mbio.02444-21spa
dc.relation.referencesHussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M. T., Hussain, I., Ali, Q., & Hussain, S. M. (2019). Morphological and physiological responses of plants to cadmium toxicity. En Cadmium Toxicity and Tolerance in Plants (pp. 47-72). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00003-6spa
dc.relation.referencesHuybrechts, M., Hendrix, S., Bertels, J., Beemster, G. T. S., Vandamme, D., & Cuypers, A. (2020). Spatial analysis of the rice leaf growth zone under controlled and cadmium-exposed conditions. Environmental and Experimental Botany, 177, 104120. https://doi.org/10.1016/j.envexpbot.2020.104120spa
dc.relation.referencesIgiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 1-16. https://doi.org/10.1155/2018/2568038spa
dc.relation.referencesIgnatova, L., Kistaubayeva, A., Brazhnikova, Y., Omirbekova, A., Mukasheva, T., Savitskaya, I., Karpenyuk, T., Goncharova, A., Egamberdieva, D., & Sokolov, A. (2021). Characterization of cadmium-tolerant endophytic fungi isolated from soybean (Glycine max) and barley (Hordeum vulgare). Heliyon, 7(11), e08240. https://doi.org/10.1016/j.heliyon.2021.e08240spa
dc.relation.referencesInstituto Colombiano Agustin Codazzi (IGAC). (2000). CATÁLOGO DE REPRESENTACIÓN CARTOGRAFÍA BÁSICA DIGITAL IGAC ESCALA 1:2.000. url: https://www.igac.gov.co/sites/igac.gov.co/files/catalogo_representacion_2k_v1.0.pdf. Consulta: Diciembre, 2022.spa
dc.relation.referencesInstituto Colombiano Agustin Codazzi (IGAC). (2006). Métodos analíticos del Laboratorio de Suelos. Instituto Colombiano Agustin Codazzi. 6a edicion. Bogotá Colombia.spa
dc.relation.referencesInternational Cocoa Organization (ICCO). (2022). COCOA MARKET REPORT NOVEMBER 2022. Url: https://www.icco.org/wp-content/uploads/ICCO-Monthly-Cocoa-Market-Report-November-2022.pdf. Consulta: Diciembre, 2022.spa
dc.relation.referencesIsmael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M., Zhao, X., & Hu, C. (2019). Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255-277. https://doi.org/10.1039/C8MT00247Aspa
dc.relation.referencesJan, S., & Parray, J. A. (2016). Heavy metal uptake in plants. En S. Jan & J. A. Parray, Approaches to Heavy Metal Tolerance in Plants (pp. 1-18). Springer Singapore. https://doi.org/10.1007/978-981-10-1693-6_1spa
dc.relation.referencesJärup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032spa
dc.relation.referencesJaworska, H., & Lemanowicz, J. (2019). Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic. Scientific Reports, 9(1), 19981. https://doi.org/10.1038/s41598-019-56418-7spa
dc.relation.referencesJenkins, J. R., Viger, M., Arnold, E. C., Harris, Z. M., Ventura, M., Miglietta, F., Girardin, C., Edwards, R. J., Rumpel, C., Fornasier, F., Zavalloni, C., Tonon, G., Alberti, G., & Taylor, G. (2017). Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9(3), 591-612. https://doi.org/10.1111/gcbb.12371spa
dc.relation.referencesJia, T., Wang, R., Fan, X., & Chai, B. (2018). A comparative study of fungal community structure, diversity and richness between the soil and the phyllosphere of native grass species in a copper tailings dam in shanxi province, china. Applied Sciences, 8(8), 1297. https://doi.org/10.3390/app8081297spa
dc.relation.referencesJiang, S., Chen, Y., Han, S., Lv, L., & Li, L. (2022). Next-generation sequencing applications for the study of fungal pathogens. Microorganisms, 10(10), 1882. https://doi.org/10.3390/microorganisms10101882spa
dc.relation.referencesJiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0spa
dc.relation.referencesKabata-Pendias, A. (2010). Trace elements in soils and plants (0 ed.). CRC Press. https://doi.org/10.1201/b10158spa
dc.relation.referencesKamble, A., & Singh, H. (2020). Different methods of soil dna extraction. BIO-PROTOCOL, 10(2). https://doi.org/10.21769/BioProtoc.3521spa
dc.relation.referencesKant, R., Kumar, A., & Sironen, T. (2020). From microbial genomics to metagenomics. International Journal of Genomics, 2020, 1-2. https://doi.org/10.1155/2020/9357450spa
dc.relation.referencesKarimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., & Ranjard, L. (2017). Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 15(2), 265-281. https://doi.org/10.1007/s10311-017-0614-6spa
dc.relation.referencesKassambara, A & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextraspa
dc.relation.referencesKaur, H., & Garg, N. (2018). Recent perspectives on cross talk between cadmium, zinc, and arbuscular mycorrhizal fungi in plants. Journal of Plant Growth Regulation, 37(2), 680-693. https://doi.org/10.1007/s00344-017-9750-2spa
dc.relation.referencesKhan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of The Total Environment, 601-602, 1591-1605. https://doi.org/10.1016/j.scitotenv.2017.06.030spa
dc.relation.referencesKim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089-2093. https://doi.org/10.4014/jmb.1709.09027spa
dc.relation.referencesKirchman, D. L. (2018). Processes in microbial ecology (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198789406.001.0001spa
dc.relation.referencesKirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2), 19-32. https://doi.org/10.1016/j.geoderma.2006.08.024spa
dc.relation.referencesKirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163-2190. https://doi.org/10.1016/j.gca.2006.02.006spa
dc.relation.referencesKoranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., & Richter, A. (2014). Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 87(1), 142-152. https://doi.org/10.1111/1574-6941.12214spa
dc.relation.referencesKrämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61(1), 517-534. https://doi.org/10.1146/annurev-arplant-042809-112156spa
dc.relation.referencesKrauss, U., Ten Hoopen, M., Rees, R., Stirrup, T., Argyle, T., George, A., Arroyo, C., Corrales, E., & Casanoves, F. (2013). Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. From cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control, 67(3), 317-327. https://doi.org/10.1016/j.biocontrol.2013.09.011spa
dc.relation.referencesKravchenko, A., Falconer, R. E., Grinev, D., & Otten, W. (2011). Fungal colonization in soils with different management histories: Modeling growth in three-dimensional pore volumes. Ecological Applications, 21(4), 1202-1210. https://doi.org/10.1890/10-0525.1spa
dc.relation.referencesKrehenwinkel, H., Pomerantz, A., Henderson, J. B., Kennedy, S. R., Lim, J. Y., Swamy, V., Shoobridge, J. D., Graham, N., Patel, N. H., Gillespie, R. G., & Prost, S. (2019). Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 8(5), giz006. https://doi.org/10.1093/gigascience/giz006spa
dc.relation.referencesKumar, U., Saqib, H. S. A., Islam, W., Prashant, P., Patel, N., Chen, W., Yang, F., You, M., & He, W. (2022). Landscape composition and soil physical–chemical properties drive the assemblages of bacteria and fungi in conventional vegetable fields. Microorganisms, 10(6), 1202. https://doi.org/10.3390/microorganisms10061202spa
dc.relation.referencesKumar, V., Singh, S., Singh, G., & Dwivedi, S. K. (2019). Exploring the cadmium tolerance and removal capability of a filamentous fungus fusarium solani. Geomicrobiology Journal, 36(9), 782-791. https://doi.org/10.1080/01490451.2019.1627443spa
dc.relation.referencesKüpper, H., & Leitenmaier, B. (2013). Cadmium-accumulating plants. En A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Cadmium: From Toxicity to Essentiality (Vol. 11, pp. 373-393). Springer Netherlands. https://doi.org/10.1007/978-94-007-5179-8_12spa
dc.relation.referencesLamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6spa
dc.relation.referencesLamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338(1-2), 483-495. https://doi.org/10.1007/s11104-010-0560-6spa
dc.relation.referencesLatiffah, Z., Mah Kok, F., Heng Mei, H., Maziah, Z., & Baharuddin, S. (2010). Fusarium species isolated from mangrove soil in kampung pantai acheh, balik pulau, pulau pinang, malaysia. Tropical Life Sciences Research, 21(1), 21-29.spa
dc.relation.referencesLee, K. K., Kim, H., & Lee, Y.-H. (2022). Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. Frontiers in Microbiology, 13, 953300. https://doi.org/10.3389/fmicb.2022.953300spa
dc.relation.referencesLeff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J. M. H., McCulley, R. L., La Pierre, K., Risch, A. C., Seabloom, E. W., Schütz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 112(35), 10967-10972. https://doi.org/10.1073/pnas.1508382112spa
dc.relation.referencesQin, S., Liu, H., Nie, Z., Rengel, Z., Gao, W., Li, C., & Zhao, P. (2020). Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168-180. https://doi.org/10.1016/S1002-0160(20)60002-9spa
dc.relation.referencesQiu, M., Yuan, C., & Yin, G. (2020). Effect of terrain gradient on cadmium accumulation in soils. Geoderma, 375, 114501. https://doi.org/10.1016/j.geoderma.2020.114501spa
dc.relation.referencesQuail, M. A., Swerdlow, H., & Turner, D. J. (2009). Improved protocols for the illumina genome analyzer sequencing system. Current Protocols in Human Genetics, 62(1). https://doi.org/10.1002/0471142905.hg1802s62spa
dc.relation.referencesQuezada-Hinojosa, R. P., Föllmi, K. B., Verrecchia, E., Adatte, T., & Matera, V. (2015). Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. CATENA, 125, 10-32. https://doi.org/10.1016/j.catena.2014.10.003spa
dc.relation.referencesRaich, J. W., Clark, D. A., Schwendenmann, L., & Wood, T. E. (2014). Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. PLoS ONE, 9(6), e100275. https://doi.org/10.1371/journal.pone.0100275spa
dc.relation.referencesRaja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. https://doi.org/10.1021/acs.jnatprod.6b01085spa
dc.relation.referencesRajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2021). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 43(4), 1629-1654. https://doi.org/10.1007/s10653-020-00527-0spa
dc.relation.referencesRamette, A. (2007). Multivariate analyses in microbial ecology: Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142-160. https://doi.org/10.1111/j.1574-6941.2007.00375.xspa
dc.relation.referencesRamtahal, G., Umaharan, P., Hanuman, A., Davis, C., & Ali, L. (2019). The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment, 693, 133563. https://doi.org/10.1016/j.scitotenv.2019.07.369spa
dc.relation.referencesRamtahal, G., Yen, I. C., Bekele, I., Bekele, F., Wilson, L., Maharaj, K., & Harrynanan, L. (2016). Relationships between cadmium in tissues of cacao trees and soils in plantations of trinidad and tobago. Food and Nutrition Sciences, 07(01), 37-43. https://doi.org/10.4236/fns.2016.71005spa
dc.relation.referencesRangel Mendoza, J. A., & Silva Parra, A. (2020). Agroforestry systems of Theobroma cacao L. affects soil and leaf litter quality. Colombia forestal, 23(2), 75-88. https://doi.org/10.14483/2256201X.16123spa
dc.relation.referencesReese, A. T., & Dunn, R. R. (2018). Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance. MBio, 9(4), e01294-18. https://doi.org/10.1128/mBio.01294-18spa
dc.relation.referencesReeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411. https://doi.org/10.1111/nph.14907spa
dc.relation.referencesRehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234spa
dc.relation.referencesRehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055-1073. https://doi.org/10.3852/10-302spa
dc.relation.referencesRenella, G., Chaudri, A. M., & Brookes, P. C. (2002). Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biology and Biochemistry, 34(1), 121-124. https://doi.org/10.1016/S0038-0717(01)00150-Xspa
dc.relation.referencesRicotta, C., & Podani, J. (2017). On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity, 31, 201-205. https://doi.org/10.1016/j.ecocom.2017.07.003spa
dc.relation.referencesRiess, K., Schön, M. E., Ziegler, R., Lutz, M., Shivas, R. G., Piątek, M., & Garnica, S. (2019). The origin and diversification of the Entorrhizales: Deep evolutionary roots but recent speciation with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. Organisms Diversity & Evolution, 19(1), 13-30. https://doi.org/10.1007/s13127-018-0384-4spa
dc.relation.referencesRizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D. F., & Khan, Mohd. S. (2020). Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Advances, 10(63), 38379-38403. https://doi.org/10.1039/D0RA05610Cspa
dc.relation.referencesRobinson, J. R., Isikhuemhen, O. S., & Anike, F. N. (2021). Fungal–metal interactions: A review of toxicity and homeostasis. Journal of Fungi, 7(3), 225. https://doi.org/10.3390/jof7030225spa
dc.relation.referencesRobinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010a). Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616spa
dc.relation.referencesRodríguez Albarrcín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, e00214. https://doi.org/10.1016/j.geodrs.2019.e00214spa
dc.relation.referencesRomero-Estévez, D., Yánez-Jácome, G. S., Dazzini Langdon, M., Simbaña-Farinango, K., Rebolledo Monsalve, E., Durán Cobo, G., & Navarrete, H. (2020). An overview of cadmium, chromium, and lead content in bivalves consumed by the community of santa rosa island (Ecuador) and its health risk assessment. Frontiers in Environmental Science, 8, 134. https://doi.org/10.3389/fenvs.2020.00134spa
dc.relation.referencesRosales Huamani, J. A., Centeno Rojas, L., Cajacuri Perez, J. R., Breña Ore, J., & Chávez Chapana, C. (2021). Identificación de Cadmio y Plomo en los cultivos de Cacao ubicados en la zona de Satipo—Junín. TECNIA, 21(2). https://doi.org/10.21754/tecnia.v21i2.1062spa
dc.relation.referencesRose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688-694. https://doi.org/10.1016/j.bjbas.2018.08.001spa
dc.relation.referencesRousk, J., Brookes, P. C., & Bååth, E. (2010). Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 42(6), 926-934. https://doi.org/10.1016/j.soilbio.2010.02.009spa
dc.relation.referencesSácký, J., Černý, J., Šantrůček, J., Borovička, J., Leonhardt, T., & Kotrba, P. (2021). Cadmium hyperaccumulating mushroom Cystoderma carcharias has two metallothionein isoforms usable for cadmium and copper storage. Fungal Genetics and Biology, 153, 103574. https://doi.org/10.1016/j.fgb.2021.103574spa
dc.relation.referencesSamuel, M. S., E.A. Abigail, M., & Ramalingam, C. (2015). Biosorption of cr(Vi) by ceratocystis paradoxa msr2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLOS ONE, 10(3), e0118999. https://doi.org/10.1371/journal.pone.0118999spa
dc.relation.referencesSánchez-Castro, I., Gianinazzi-Pearson, V., Cleyet-Marel, J. C., Baudoin, E., & van Tuinen, D. (2017). Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Science of The Total Environment, 598, 121-128. https://doi.org/10.1016/j.scitotenv.2017.04.084spa
dc.relation.referencesSandoval Pineda, J. F., Pérez, U. A., Rodriguez, A., & Rojas, E. T. (2020). Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.). Acta Biológica Colombiana, 25(3), 333-344. https://doi.org/10.15446/abc.v25n3.78746spa
dc.relation.referencesSandoval Cárdenas, D. I., Gomez-Ramirez, M., Rojas-Avelizapa, N. G., & Vidales-Hurtado, M. A. (2017). Synthesis of Cadmium Sulfide Nanoparticles by Biomass of Fusarium oxysporum f. Sp. Lycopersici . Journal of Nano Research, 46, 179-191. https://doi.org/10.4028/www.scientific.net/JNanoR.46.179spa
dc.relation.referencesSantoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, 15(1), e03R01. https://doi.org/10.5424/sjar/2017151-9990spa
dc.relation.referencesSchadt, C. W., & Rosling, A. (2015). Comment on “Global diversity and geography of soil fungi”. Science, 348(6242), 1438-1438. https://doi.org/10.1126/science.aaa4269spa
dc.relation.referencesSchappe, T., Albornoz, F. E., Turner, B. L., & Jones, F. A. (2020). Co-occurring fungal functional groups respond differently to tree neighborhoods and soil properties across three tropical rainforests in panama. Microbial Ecology, 79(3), 675-685. https://doi.org/10.1007/s00248-019-01446-zspa
dc.relation.referencesSchmidt, S. K., Nemergut, D. R., Darcy, J. L., & Lynch, R. (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23(2), 254-258. https://doi.org/10.1111/mec.12589spa
dc.relation.referencesSchneegurt, M. A., Dore, S. Y., and Kulpa, C. F. Jr. (2003). Direct extraction of DNA from soils for studies in microbial ecology. Curr. Issues Mol. Biol. 5, 1–8.spa
dc.relation.referencesSchoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K.-D., Bai, F.-Y., Barreto, R. W., Begerow, D., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (Its) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109spa
dc.relation.referencesSchreck, E., Dappe, V., Sarret, G., Sobanska, S., Nowak, D., Nowak, J., Stefaniak, E. A., Magnin, V., Ranieri, V., & Dumat, C. (2014). Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves. Science of The Total Environment, 476-477, 667-676. https://doi.org/10.1016/j.scitotenv.2013.12.089spa
dc.relation.referencesSchwartz, M. O. (2000). Cadmium in zinc deposits: Economic geology of a polluting element. International Geology Review, 42(5), 445-469. https://doi.org/10.1080/00206810009465091spa
dc.relation.referencesSeaton, F. M., George, P. B. L., Lebron, I., Jones, D. L., Creer, S., & Robinson, D. A. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766. https://doi.org/10.1016/j.soilbio.2020.107766spa
dc.relation.referencesSegata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60spa
dc.relation.referencesSenanayake, I. C., Crous, P. W., Groenewald, J. Z., Maharachchikumbura, S. S. N., Jeewon, R., Phillips, A. J. L., Bhat, J. D., Perera, R. H., Li, Q. R., Li, W. J., Tangthirasunun, N., Norphanphoun, C., Karunarathna, S. C., Camporesi, E., Manawasighe, I. S., Al-Sadi, A. M., & Hyde, K. D. (2017). Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology, 86(1), 217-296. https://doi.org/10.1016/j.simyco.2017.07.003spa
dc.relation.referencesSessitsch, A., Weilharter, A., Gerzabek, M. H., Kirchmann, H., & Kandeler, E. (2001). Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, 67(9), 4215-4224. https://doi.org/10.1128/AEM.67.9.4215-4224.2001spa
dc.relation.referencesShadmani, L., Jamali, S., & Fatemi, A. (2021). Effects of root endophytic fungus, Microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia, 76(2), 711-719. https://doi.org/10.2478/s11756-020-00598-5spa
dc.relation.referencesShadmani, L., Jamali, S., & Fatemi, A. (2021). Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Brazilian Journal of Microbiology, 52(3), 1097-1106. https://doi.org/10.1007/s42770-021-00493-4spa
dc.relation.referencesShahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. C. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. En P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 241 (Vol. 241, pp. 73-137). Springer International Publishing. https://doi.org/10.1007/398_2016_8spa
dc.relation.referencesShanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: An overview. En Cadmium Toxicity and Tolerance in Plants (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00001-2spa
dc.relation.referencesSharma, V., & Pant, D. (2018). Structural basis for expanding the application of bioligand in metal bioremediation: A review. Bioresource Technology, 252, 188-197. https://doi.org/10.1016/j.biortech.2017.12.070spa
dc.relation.referencesSheldon, A. R., & Menzies, N. W. (2005). The effect of copper toxicity on the growth and root morphology of rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1-2), 341-349. https://doi.org/10.1007/s11104-005-8815-3spa
dc.relation.referencesSilverman, J. D., Bloom, R. J., Jiang, S., Durand, H. K., Dallow, E., Mukherjee, S., & David, L. A. (2021). Measuring and mitigating PCR bias in microbiota datasets. PLOS Computational Biology, 17(7), e1009113. https://doi.org/10.1371/journal.pcbi.1009113spa
dc.relation.referencesSingh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246. https://doi.org/10.4103/0253-7613.81505spa
dc.relation.referencesSolis-Hernández, A. P., Chávez-Vergara, B. M., Rodríguez-Tovar, A. V., Beltrán-Paz, O. I., Santillán, J., & Rivera-Becerril, F. (2022). Effect of the natural establishment of two plant species on microbial activity, on the composition of the fungal community, and on the mitigation of potentially toxic elements in an abandoned mine tailing. Science of The Total Environment, 802, 149788. https://doi.org/10.1016/j.scitotenv.2021.149788spa
dc.relation.referencesSong, C., Zhu, F., Carrión, V. J., & Cordovez, V. (2020). Beyond plant microbiome composition: Exploiting microbial functions and plant traits via integrated approaches. Frontiers in Bioengineering and Biotechnology, 8, 896. https://doi.org/10.3389/fbioe.2020.00896spa
dc.relation.referencesSong, Y., Jin, L., & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), 133-141. https://doi.org/10.1080/15226514.2016.1207598spa
dc.relation.referencesSoonvald, L., Loit, K., Runno-Paurson, E., Astover, A., & Tedersoo, L. (2020). Characterising the effect of crop species and fertilisation treatment on root fungal communities. Scientific Reports, 10(1), 18741. https://doi.org/10.1038/s41598-020-74952-7spa
dc.relation.referencesSterckeman, T., & Thomine, S. (2020). Mechanisms of cadmium accumulation in plants. Critical Reviews in Plant Sciences, 39(4), 322-359. https://doi.org/10.1080/07352689.2020.1792179spa
dc.relation.referencesSuárez Salazar, J. C., Ngo Bieng, M. A., Melgarejo, L. M., Di Rienzo, J. A., & Casanoves, F. (2018). First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLOS ONE, 13(2), e0191003. https://doi.org/10.1371/journal.pone.0191003spa
dc.relation.referencesSuárez, L. R., Suárez Salazar, J. C., Casanoves, F., & Ngo Bieng, M. A. (2021). Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agriculture, Ecosystems & Environment, 314, 107349. https://doi.org/10.1016/j.agee.2021.107349spa
dc.relation.referencesSuhani, I., Sahab, S., Srivastava, V., & Singh, R. P. (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27, 1-7. https://doi.org/10.1016/j.cotox.2021.04.004spa
dc.relation.referencesSui, X., Zhang, R., Frey, B., Yang, L., Liu, Y., Ni, H., & Li, M. (2021). Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecology and Evolution, 11(5), 2194-2208. https://doi.org/10.1002/ece3.7184spa
dc.relation.referencesSulistyo, B. P., Larsson, K.-H., Haelewaters, D., & Ryberg, M. (2021). Multigene phylogeny and taxonomic revision of Atheliales s.l.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biology, 125(3), 239-255. https://doi.org/10.1016/j.funbio.2020.11.007spa
dc.relation.referencesSun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J., & Zhang, Y. (2022). Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil. BMC Microbiology, 22(1), 77. https://doi.org/10.1186/s12866-022-02488-zspa
dc.relation.referencesSun, J.-M., Irzykowski, W., Jedryczka, M., & Han, F.-X. (2005). Analysis of the genetic structure of sclerotinia sclerotiorum (Lib.) de bary populations from different regions and host plants by random amplified polymorphic dna markers. Journal of Integrative Plant Biology, 47(4), 385-395. https://doi.org/10.1111/j.1744-7909.2005.00077.xspa
dc.relation.referencesTaiyun, W & Viliam, S. (2021). R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92). Available from https://github.com/taiyun/corrplotspa
dc.relation.referencesTakamatsu, R., Asakura, K., Chun, W.-J., Miyazaki, T., & Nakano, M. (2006). Exafs studies about the sorption of cadmium ions on montmorillonite. Chemistry Letters, 35(2), 224-225. https://doi.org/10.1246/cl.2006.224spa
dc.relation.referencesTamariz-Angeles, C., Huamán, G. D., Palacios-Robles, E., Olivera-Gonzales, P., & Castañeda-Barreto, A. (2021). Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, perú). Microbiological Research, 250, 126811. https://doi.org/10.1016/j.micres.2021.126811spa
dc.relation.referencesTecon, R., & Or, D. (2017). Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews, 41(5), 599-623. https://doi.org/10.1093/femsre/fux039spa
dc.relation.referencesTedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rähn, E., Adamson, K., Drenkhan, T., Tullus, H., Jürimaa, K., … Abarenkov, K. (2020). Regional-scale in-depth analysis of soil fungal diversity reveals strong ph and plant species effects in northern europe. Frontiers in Microbiology, 11, 1953. https://doi.org/10.3389/fmicb.2020.01953spa
dc.relation.referencesTedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688spa
dc.relation.referencesTedersoo, L., Bahram, M., Zinger, L., Nilsson, R. H., Kennedy, P. G., Yang, T., Anslan, S., & Mikryukov, V. (2022). Best practices in metabarcoding of fungi: From experimental design to results. Molecular Ecology, 31(10), 2769-2795. https://doi.org/10.1111/mec.16460spa
dc.relation.referencesTian, S., Lu, L., Labavitch, J., Yang, X., He, Z., Hu, H., Sarangi, R., Newville, M., Commisso, J., & Brown, P. (2011). Cellular sequestration of cadmium in the hyperaccumulator plant species sedum alfredii. Plant Physiology, 157(4), 1914-1925. https://doi.org/10.1104/pp.111.183947spa
dc.relation.referencesTkavc, R., Matrosova, V. Y., Grichenko, O. E., Gostinčar, C., Volpe, R. P., Klimenkova, P., Gaidamakova, E. K., Zhou, C. E., Stewart, B. J., Lyman, M. G., Malfatti, S. A., Rubinfeld, B., Courtot, M., Singh, J., Dalgard, C. L., Hamilton, T., Frey, K. G., Gunde-Cimerman, N., Dugan, L., & Daly, M. J. (2018). Prospects for fungal bioremediation of acidic radioactive waste sites: Characterization and genome sequence of rhodotorula taiwanensis md1149. Frontiers in Microbiology, 8, 2528. https://doi.org/10.3389/fmicb.2017.02528spa
dc.relation.referencesToju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE, 7(7), e40863. https://doi.org/10.1371/journal.pone.0040863spa
dc.relation.referencesTorres-Cruz, T. J., Hesse, C., Kuske, C. R., & Porras-Alfaro, A. (2018). Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Applied Soil Ecology, 131, 66-74. https://doi.org/10.1016/j.apsoil.2018.08.001spa
dc.relation.referencesTorsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), 240-245. https://doi.org/10.1016/S1369-5274(02)00324-7spa
dc.relation.referencesTrivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959. https://doi.org/10.1111/nph.18016spa
dc.relation.referencesU.S. Environmental Protection Agency (USEPA) (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 5th Edition, Washington DC, EPA-821-R-02-012.spa
dc.relation.referencesVăcar, C. L., Covaci, E., Chakraborty, S., Li, B., Weindorf, D. C., Frențiu, T., Pârvu, M., & Podar, D. (2021). Heavy metal-resistant filamentous fungi as potential mercury bioremediators. Journal of Fungi, 7(5), 386. https://doi.org/10.3390/jof7050386spa
dc.relation.referencesVanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J. L., Umaharan, P., Chavez, E., Sarret, G., & Smolders, E. (2021). Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment, 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779spa
dc.relation.referencesVásquez-Barajas, E. F., García-Torres, N. E., Bastos-Osorio, L. M., & Lázaro-Pacheco, J. M. (2018). Análisis económico del sector cacaotero en Norte de Santander, Colombia y a nivel internacional. Revista de Investigación, Desarrollo e Innovación, 8(2), 237-250. https://doi.org/10.19053/20278306.v8.n2.2018.7963spa
dc.relation.referencesVerbruggen, N., Juraniec, M., Baliardini, C., & Meyer, C.-L. (2013). Tolerance to cadmium in plants: The special case of hyperaccumulators. BioMetals, 26(4), 633-638. https://doi.org/10.1007/s10534-013-9659-6spa
dc.relation.referencesVětrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B. D., Bílohnědá, K., Brabcová, V., D’Alò, F., Human, Z. R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., … Baldrian, P. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 7(1), 228. https://doi.org/10.1038/s41597-020-0567-7spa
dc.relation.referencesViehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55(1), 35. https://doi.org/10.1186/1999-3110-55-35spa
dc.relation.referencesViolante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3). https://doi.org/10.4067/S0718-95162010000100005spa
dc.relation.referencesVishwakarma, G. S., Bhattacharjee, G., Gohil, N., & Singh, V. (2020). Current status, challenges and future of bioremediation. En Bioremediation of Pollutants (pp. 403-415). Elsevier. https://doi.org/10.1016/B978-0-12-819025-8.00020-Xspa
dc.relation.referencesVliet, J. A. van, Vliet, J. A. van, & Giller, K. (2015). Mineral nutrition of cocoa: A review. Wageningen UR.spa
dc.relation.referencesWachira, P., Kimenju, J., Okoth, S., & Kiarie, J. (2014). Conservation and sustainable management of soil biodiversity for agricultural productivity. En N. Kaneko, S. Yoshiura, & M. Kobayashi (Eds.), Sustainable Living with Environmental Risks (pp. 27-34). Springer Japan. https://doi.org/10.1007/978-4-431-54804-1_3spa
dc.relation.referencesWade, J., Ac-Pangan, M., Favoretto, V. R., Taylor, A. J., Engeseth, N., & Margenot, A. J. (2022). Drivers of cadmium accumulation in Theobroma cacao L. beans: A quantitative synthesis of soil-plant relationships across the Cacao Belt. PLOS ONE, 17(2), e0261989. https://doi.org/10.1371/journal.pone.0261989spa
dc.relation.referencesWagner, B. D., Grunwald, G. K., Zerbe, G. O., Mikulich-Gilbertson, S. K., Robertson, C. E., Zemanick, E. T., & Harris, J. K. (2018). On the use of diversity measures in longitudinal sequencing studies of microbial communities. Frontiers in Microbiology, 9, 1037. https://doi.org/10.3389/fmicb.2018.01037spa
dc.relation.referencesWahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. CATENA, 148, 40-45. https://doi.org/10.1016/j.catena.2016.02.021spa
dc.relation.referencesWallenius, K., Rita, H., Simpanen, S., Mikkonen, A., & Niemi, R. M. (2010). Sample storage for soil enzyme activity and bacterial community profiles. Journal of Microbiological Methods, 81(1), 48-55. https://doi.org/10.1016/j.mimet.2010.01.021spa
dc.relation.referencesWalsh, A. M., Crispie, F., Claesson, M. J., & Cotter, P. D. (2017). Translating omics to food microbiology. Annual Review of Food Science and Technology, 8(1), 113-134. https://doi.org/10.1146/annurev-food-030216-025729spa
dc.relation.referencesWang, M., Chen, S., Chen, L., & Wang, D. (2019). Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 252, 1609-1621. https://doi.org/10.1016/j.envpol.2019.06.082spa
dc.relation.referencesWang, M., Chen, Z., Song, W., Hong, D., Huang, L., & Li, Y. (2021). A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bulletin of Environmental Contamination and Toxicology, 106(1), 65-74. https://doi.org/10.1007/s00128-020-03088-1spa
dc.relation.referencesWang, M., Wang, L., Zhao, S., Li, S., Lei, X., Qin, L., Sun, X., & Chen, S. (2021). Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH. Journal of Hazardous Materials, 416, 126079. https://doi.org/10.1016/j.jhazmat.2021.126079spa
dc.relation.referencesWang, S., & Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 28(3), 197-214. https://doi.org/10.1007/s10653-005-9032-yspa
dc.relation.referencesWang, S., Dai, H., Wei, S., Skuza, L., & Chen, Y. (2022). Effects of Cd-resistant fungi on uptake and translocation of Cd by soybean seedlings. Chemosphere, 291, 132908. https://doi.org/10.1016/j.chemosphere.2021.132908spa
dc.relation.referencesWang, T. Y., Wang, L., Zhang, J. H., & Dong, W. H. (2011). A simplified universal genomic DNA extraction protocol suitable for PCR. Genetics and Molecular Research, 10(1), 519-525. https://doi.org/10.4238/vol10-1gmr1055spa
dc.relation.referencesWang, W., Zhai, Y., Cao, L., Tan, H., & Zhang, R. (2016). Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice ( Oryza sativa L.). Microbiological Research, 188-189, 1-8. https://doi.org/10.1016/j.micres.2016.04.009spa
dc.relation.referencesWang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0spa
dc.relation.referencesWang, Y., Xu, X., Liu, T., Wang, H., Yang, Y., Chen, X., & Zhu, S. (2020). Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea l. Gaud) fields in different areas in China. Scientific Reports, 10(1), 3264. https://doi.org/10.1038/s41598-020-58608-0spa
dc.relation.referencesWeiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME Journal, 10(7), 1669-1681. https://doi.org/10.1038/ismej.2015.235spa
dc.relation.referencesWelch, R. M., & Norvell, W. A. (1999). Mechanisms of cadmium uptake, translocation and deposition in plants. En M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in Soils and Plants (pp. 125-150). Springer Netherlands. https://doi.org/10.1007/978-94-011-4473-5_6spa
dc.relation.referencesWijayawardene, N. (2020). Outline of Fungi and fungus-like taxa. Mycosphere, 11(1), 1060-1456. https://doi.org/10.5943/mycosphere/11/1/8spa
dc.relation.referencesWillis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in Microbiology, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407spa
dc.relation.referencesWong, C., Roberts, S. M., & Saab, I. N. (2022). Review of regulatory reference values and background levels for heavy metals in the human diet. Regulatory Toxicology and Pharmacology, 130, 105122. https://doi.org/10.1016/j.yrtph.2022.105122spa
dc.relation.referencesWu, B., Luo, H., Wang, X., Liu, H., Peng, H., Sheng, M., Xu, F., & Xu, H. (2022). Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. Science of The Total Environment, 802, 149899. https://doi.org/10.1016/j.scitotenv.2021.149899spa
dc.relation.referencesWu, D., Ma, Y., Yang, T., Gao, G., Wang, D., Guo, X., & Chu, H. (2022). Phosphorus and zinc are strongly associated with belowground fungal communities in wheat field under long-term fertilization. Microbiology Spectrum, 10(2), e00110-22. https://doi.org/10.1128/spectrum.00110-22spa
dc.relation.referencesWu, H., Wen, Q., Hu, L., & Gong, M. (2018). Effect of adsorbate concentration to adsorbent dosage ratio on the sorption of heavy metals on soils. Journal of Environmental Engineering, 144(2), 04017094. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001306spa
dc.relation.referencesXia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953. https://doi.org/10.1016/j.soilbio.2020.107953spa
dc.relation.referencesXu, L., Ravnskov, S., Larsen, J., Nilsson, R. H., & Nicolaisen, M. (2012). Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry, 46, 26-32. https://doi.org/10.1016/j.soilbio.2011.11.010spa
dc.relation.referencesYamanaka, T. (2003). The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia, 95(4), 584-589. https://doi.org/10.1080/15572536.2004.11833062spa
dc.relation.referencesYang, G.-L., Zheng, M.-M., Tan, A.-J., Liu, Y.-T., Feng, D., & Lv, S.-M. (2021). Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6), 544. https://doi.org/10.3390/biology10060544spa
dc.relation.referencesYang, T., Adams, J. M., Shi, Y., He, J., Jing, X., Chen, L., Tedersoo, L., & Chu, H. (2017). Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215(2), 756-765. https://doi.org/10.1111/nph.14606spa
dc.relation.referencesYasanthika, W., Wanasinghe, D., Mortimer, P., Monkai, J., & Farias, A. (2022). The importance of culture-based techniques in the genomic era for assessing the taxonomy and diversity of soil fungi. Mycosphere, 13(1), 724-751. https://doi.org/10.5943/mycosphere/13/1/8spa
dc.relation.referencesYelle, D. J., Ralph, J., Lu, F., & Hammel, K. E. (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 10(7), 1844-1849. https://doi.org/10.1111/j.1462-2920.2008.01605.xspa
dc.relation.referencesYi, Z., Lehto, N. J., Robinson, B. H., & Cavanagh, J.-A. E. (2020). Environmental and edaphic factors affecting soil cadmium uptake by spinach, potatoes, onion and wheat. Science of The Total Environment, 713, 136694. https://doi.org/10.1016/j.scitotenv.2020.136694spa
dc.relation.referencesYin, C., Schlatter, D. C., Kroese, D. R., Paulitz, T. C., & Hagerty, C. H. (2021). Responses of soil fungal communities to lime application in wheat fields in the pacific northwest. Frontiers in Microbiology, 12, 576763. https://doi.org/10.3389/fmicb.2021.576763spa
dc.relation.referencesZaia, F. C., Gama-Rodrigues, A. C., Gama-Rodrigues, E. F., Moço, M. K. S., Fontes, A. G., Machado, R. C. R., & Baligar, V. C. (2012). Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agroforestry Systems, 86(2), 197-212. https://doi.org/10.1007/s10457-012-9550-4spa
dc.relation.referencesZeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., Gomes, E. V., Tsui, C. K.-M., & Nayak S, C. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182-207. https://doi.org/10.1093/femsre/fuv045spa
dc.relation.referencesZhang, D., Du, G., Chen, D., Shi, G., Rao, W., Li, X., Jiang, Y., Liu, S., & Wang, D. (2019). Effect of elemental sulfur and gypsum application on the bioavailability and redistribution of cadmium during rice growth. Science of The Total Environment, 657, 1460-1467. https://doi.org/10.1016/j.scitotenv.2018.12.057spa
dc.relation.referencesZhang, H., Chen, J., Zhu, L., Yang, G., & Li, D. (2014). Transfer of cadmium from soil to vegetable in the pearl river delta area, south china. PLoS ONE, 9(9), e108572. https://doi.org/10.1371/journal.pone.0108572spa
dc.relation.referencesZhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12, 766364. https://doi.org/10.3389/fmicb.2021.766364spa
dc.relation.referencesZhang, X., Fu, G., Xing, S., Fu, W., Liu, X., Wu, H., Zhou, X., Ma, Y., Zhang, X., & Chen, B. (2022). Structure and diversity of fungal communities in long-term copper-contaminated agricultural soil. Science of The Total Environment, 806, 151302. https://doi.org/10.1016/j.scitotenv.2021.151302spa
dc.relation.referencesZhang, Y., Naafs, B. D. A., Huang, X., Song, Q., Xue, J., Wang, R., Zhao, M., Evershed, R. P., Pancost, R. D., & Xie, S. (2022). Variations in wetland hydrology drive rapid changes in the microbial community, carbon metabolic activity, and greenhouse gas fluxes. Geochimica et Cosmochimica Acta, 317, 269-285. https://doi.org/10.1016/j.gca.2021.11.014spa
dc.relation.referencesZhao, M., Wang, M., Zhao, Y., Hu, N., Qin, L., Ren, Z., Wang, G., & Jiang, M. (2022). Soil microbial abundance was more affected by soil depth than the altitude in peatlands. Frontiers in Microbiology, 13, 1068540. https://doi.org/10.3389/fmicb.2022.1068540spa
dc.relation.referencesZhao, Y., Gao, L., Zha, F., Chen, X., Zhou, X., Wang, X., Chen, Y., & Pan, X. (2021). Research on heavy metal level and co-occurrence network in typical ecological fragile area. Journal of Environmental Health Science and Engineering, 19(1), 531-540. https://doi.org/10.1007/s40201-021-00625-wspa
dc.relation.referencesZheng, L., Li, Y., Shang, W., Dong, X., Tang, Q., & Cheng, H. (2019). The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Annals of Microbiology, 69(8), 849-859. https://doi.org/10.1007/s13213-019-01478-3spa
dc.relation.referencesZhou, Q., An, X., & Wei, S. (2008). [Heavy metal pollution ecology of macro-fungi: Research advances and expectation]. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology, 19(8), 1848-1853.spa
dc.relation.referencesZhu, P., Li, Y., Gao, Y., Yin, M., Wu, Y., Liu, L., Du, N., Liu, J., Yu, X., Wang, L., & Guo, W. (2021). Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting. Bioresource Technology, 319, 124111. https://doi.org/10.1016/j.biortech.2020.124111spa
dc.relation.referencesZhu, Y., Ge, X., Wang, L., You, Y., Cheng, Y., Ma, J., & Chen, F. (2022). Biochar rebuilds the network complexity of rare and abundant microbial taxa in reclaimed soil of mining areas to cooperatively avert cadmium stress. Frontiers in Microbiology, 13, 972300. https://doi.org/10.3389/fmicb.2022.972300spa
dc.relation.referencesŽifčáková, L., Větrovský, T., Howe, A., & Baldrian, P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter: Seasonal dynamics of a soil microbial community. Environmental Microbiology, 18(1), 288-301. https://doi.org/10.1111/1462-2920.13026spa
dc.relation.referencesZulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M. F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F. U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M., & Mustafa, A. (2022). Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Frontiers in Plant Science, 13, 773815. https://doi.org/10.3389/fpls.2022.773815spa
dc.relation.referencesLewis, C., Lennon, A. M., Eudoxie, G., & Umaharan, P. (2018). Genetic variation in bioaccumulation and partitioning of cadmium in Theobroma cacao L. Science of The Total Environment, 640-641, 696-703. https://doi.org/10.1016/j.scitotenv.2018.05.365spa
dc.relation.referencesLi, T., Liang, C., Han, X., & Yang, X. (2013). Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere, 91(7), 970-976. https://doi.org/10.1016/j.chemosphere.2013.01.100spa
dc.relation.referencesLibohova, Z., J.M. Martín-López, M. da Silva, C. Lagoueyte, J. Cruz, P. Drohan, S. Maximova, M. Guiltinan, M.G. Ferruzzi, D. Guarín, P. Reich, C. Kome, Y.P. Zapata, G. Gallego-Sánchez, C. Quintero, C. Botero, N.P. Winters, and M. Robotham. (2020). Soil and cacao genomics survey of Sierra Nevada de Santa Marta Region, Colombia. United States Department of Agriculture, Natural Resources Conservation Service; International Center for Tropical Agriculture (CIAT); and Pennsylvania State Universityspa
dc.relation.referencesLiu, H., Wang, H., Ma, Y., Wang, H., & Shi, Y. (2016). Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere, 144, 1960-1965. https://doi.org/10.1016/j.chemosphere.2015.10.093spa
dc.relation.referencesLiu, Y., Alessi, D. S., Flynn, S. L., Alam, Md. S., Hao, W., Gingras, M., Zhao, H., & Konhauser, K. O. (2018). Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chemical Geology, 483, 191-200. https://doi.org/10.1016/j.chemgeo.2018.01.018spa
dc.relation.referencesLiu, Y., Xiao, T., Ning, Z., Li, H., Tang, J., & Zhou, G. (2013). High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry, 37, 149-156. https://doi.org/10.1016/j.apgeochem.2013.07.022spa
dc.relation.referencesLlatance, W. O., Gonza Saavedra, C. J., Guzmán Castillo, W., & Pariente Mondragón, E. (2018). Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad.Revista Forestal del Perú, 33(1), 63. https://doi.org/10.21704/rfp.v33i1.1156spa
dc.relation.referencesMahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023spa
dc.relation.referencesMary Ugwu, I., & Anthony Igbokwe, O. (2019). Sorption of heavy metals on clay minerals and oxides: A review. En S. Edebali (Ed.), Advanced Sorption Process Applications. IntechOpen. https://doi.org/10.5772/intechopen.80989spa
dc.relation.referencesMcLaughlin, M. J., Smolders, E., Zhao, F. J., Grant, C., & Montalvo, D. (2021). Managing cadmium in agricultural systems. En Advances in Agronomy (Vol. 166, pp. 1-129). Elsevier. https://doi.org/10.1016/bs.agron.2020.10.004spa
dc.relation.referencesMendoza, O. H., Portilla, K. A., Pérez, A., Castellanos, F. y Orejuela, C,J., (2020). Cadmio-(Cd) En: Atlas Geoquímico de Colombia, versión 2020, Bogotá: Servicio Geológico Colombiano.spa
dc.relation.referencesMeter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506spa
dc.relation.referencesMeunier, N., Blais, J.-F., & Tyagi, R. D. (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter-current sorption process. Hydrometallurgy, 73(3-4), 225-235. https://doi.org/10.1016/j.hydromet.2003.10.011spa
dc.relation.referencesMinasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009spa
dc.relation.referencesMinisterio de Agricultura (MINAGRICULTURA). (2021). CADENA DE CACAO Dirección de Cadenas Agrícolas y Forestales Marzo 2021. Url: https://sioc.minagricultura.gov.co/Cacao/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf. Consulta: Diciembre, 2022.spa
dc.relation.referencesMorais, F. (1985). Sistema de Producao do cacaueiro na Amazonia brasileira. Belém, Pará, Bra.: CEPLAC.spa
dc.relation.referencesNaeem, A., Zafar, M., Khalid, H., Zia-ur-Rehman, M., Ahmad, Z., Ayub, M. A., & Farooq Qayyum, M. (2019). Cadmium-induced imbalance in nutrient and water uptake by plants. En Cadmium Toxicity and Tolerance in Plants (pp. 299-326). Elsevier. https://doi.org/10.1016/B978-0-12-814864-8.00012-7spa
dc.relation.referencesNagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216. https://doi.org/10.1007/s10311-010-0297-8spa
dc.relation.referencesOgunlade, M. O., Oluyole, K. A., & Aikpokpodion, P. O. (2009). An evaluation of the level of fertilizer utilization for cocoa production in nigeria. Journal of Human Ecology, 25(3), 175-178. https://doi.org/10.1080/09709274.2009.11906152spa
dc.relation.referencesOliva, M., Rubio, K., Epquin, M., Marlo, G., & Leiva, S. (2020). Cadmium uptake in native cacao trees in agricultural lands of bagua, peru. Agronomy, 10(10), 1551. https://doi.org/10.3390/agronomy10101551spa
dc.relation.referencesOliveira, B. R. M., de Almeida, A.-A. F., Santos, N. de A., & Pirovani, C. P. (2022). Tolerance strategies and factors that influence the cadmium uptake by cacao tree. Scientia Horticulturae, 293, 110733. https://doi.org/10.1016/j.scienta.2021.110733spa
dc.relation.referencesPabón, M., & Pabón, M. (2016). Caracterizacion socio-económica y productiva del cultivo de cacao en el departamento de santander (Colombia). https://doi.org/10.22004/AG.ECON.239289spa
dc.relation.referencesPichtel, J., Kuroiwa, K., & Sawyerr, H. T. (2000). Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution, 110(1), 171-178. https://doi.org/10.1016/S0269-7491(99)00272-9spa
dc.relation.referencesLiaquat, F., Munis, M. F. H., Haroon, U., Arif, S., Saqib, S., Zaman, W., Khan, A. R., Shi, J., Che, S., & Liu, Q. (2020). Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of nanjing, china. Biology, 9(12), 469. https://doi.org/10.3390/biology9120469spa
dc.relation.referencesLin, H., & Peddada, S. D. (2020). Analysis of microbial compositions: A review of normalization and differential abundance analysis. Npj Biofilms and Microbiomes, 6(1), 60. https://doi.org/10.1038/s41522-020-00160-wspa
dc.relation.referencesLiu, C., Cui, Y., Li, X., & Yao, M. (2021). microeco: An r package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2), fiaa255. https://doi.org/10.1093/femsec/fiaa255spa
dc.relation.referencesLiu, H., Wang, C., Xie, Y., Luo, Y., Sheng, M., Xu, F., & Xu, H. (2020). Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region. Journal of Hazardous Materials, 392, 122478. https://doi.org/10.1016/j.jhazmat.2020.122478spa
dc.relation.referencesLombard, N., Prestat, E., van Elsas, J. D., & Simonet, P. (2011). Soil-specific limitations for access and analysis of soil microbial communities by metagenomics: Limitations in soil metagenomics. FEMS Microbiology Ecology, 78(1), 31-49. https://doi.org/10.1111/j.1574-6941.2011.01140.xspa
dc.relation.referencesLorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological Reviews, 58(3), 563-602. https://doi.org/10.1128/mr.58.3.563-602.1994spa
dc.relation.referencesLourenço, K. S., Suleiman, A. K. A., Pijl, A., Cantarella, H., & Kuramae, E. E. (2020). Dynamics and resilience of soil mycobiome under multiple organic and inorganic pulse disturbances. Science of The Total Environment, 733, 139173. https://doi.org/10.1016/j.scitotenv.2020.139173spa
dc.relation.referencesMcMurdie, P. J., & Holmes, S. (2013). Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217spa
dc.relation.referencesMenolli, N., & Sánchez-García, M. (2020). Brazilian fungal diversity represented by DNA markers generated over 20 years. Brazilian Journal of Microbiology, 51(2), 729-749. https://doi.org/10.1007/s42770-019-00206-yspa
dc.relation.referencesMenzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121-130. https://doi.org/10.1016/j.envpol.2006.03.021spa
dc.relation.referencesMohammadian, E., Babai Ahari, A., Arzanlou, M., Oustan, S., & Khazaei, S. H. (2017). Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 185, 290-296. https://doi.org/10.1016/j.chemosphere.2017.07.022spa
dc.relation.referencesMohammadian Fazli, M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 19. https://doi.org/10.1186/s40201-015-0176-0spa
dc.relation.referencesNearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M. A., Wright, R. J., Dhanani, A. S., Comeau, A. M., & Langille, M. G. I. (2022). Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 13(1), 342. https://doi.org/10.1038/s41467-022-28034-zspa
dc.relation.referencesNgu, M., Moya, E., & Magan, N. (1998). Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration & Biodegradation, 42(1), 55-62. https://doi.org/10.1016/S0964-8305(98)00047-Xspa
dc.relation.referencesNicaise, V., Chereau, S., Pinson-Gadais, L., Verdal-Bonnin, M.-N., Ducos, C., Jimenez, M., Coriou, C., Bussière, S., Robert, T., Nguyen, C., Richard-Forget, F., & Cornu, J.-Y. (2022). Interaction between the accumulation of cadmium and deoxynivalenol mycotoxin produced by fusarium graminearum in durum wheat grains. Journal of Agricultural and Food Chemistry, 70(26), 8085-8096. https://doi.org/10.1021/acs.jafc.2c01673spa
dc.relation.referencesNilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome diversity: High-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17(2), 95-109. https://doi.org/10.1038/s41579-018-0116-yspa
dc.relation.referencesNilsson, R. H., Larsson, K.-H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264. https://doi.org/10.1093/nar/gky1022spa
dc.relation.referencesNyika, J. M. (2021). Tolerance of microorganisms to heavy metals: En S. Dey & B. Acharya (Eds.), Advances in Environmental Engineering and Green Technologies (pp. 19-35). IGI Global. https://doi.org/10.4018/978-1-7998-4888-2.ch002spa
dc.relation.referencesPassarini, M. R. Z., Ottoni, J. R., Costa, P. E. dos S., Hissa, D. C., Falcão, R. M., Melo, V. M. M., Balbino, V. Q., Mendonça, L. A. R., Lima, M. G. de S., Coutinho, H. D. M., & Verde, L. C. L. (2022). Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Archives of Microbiology, 204(5), 255. https://doi.org/10.1007/s00203-022-02860-7spa
dc.relation.referencesPhukhamsakda, C., Nilsson, R. H., Bhunjun, C. S., de Farias, A. R. G., Sun, Y.-R., Wijesinghe, S. N., Raza, M., Bao, D.-F., Lu, L., Tibpromma, S., Dong, W., Tennakoon, D. S., Tian, X.-G., Xiong, Y.-R., Karunarathna, S. C., Cai, L., Luo, Z.-L., Wang, Y., Manawasinghe, I. S., … Hyde, K. D. (2022). The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity, 114(1), 327-386. https://doi.org/10.1007/s13225-022-00502-3spa
dc.relation.referencesLehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., & Rillig, M. C. (2020). Fungal traits important for soil aggregation. Frontiers in Microbiology, 10, 2904. https://doi.org/10.3389/fmicb.2019.02904spa
dc.relation.referencesLi, F., Jin, Z., Wang, Z., Liao, Y., Yu, L., & Li, X. (2022). Host plant selection imprints structure and assembly of fungal community along the soil-root continuum. MSystems, 7(4), e00361-22. https://doi.org/10.1128/msystems.00361-22spa
dc.relation.referencesLi, B., Xu, R., Sun, X., Han, F., Xiao, E., Chen, L., Qiu, L., & Sun, W. (2021). Microbiome–environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere, 263, 128227. https://doi.org/10.1016/j.chemosphere.2020.128227spa
dc.relation.referencesLi, Y., Li, Z., Arafat, Y., & Lin, W. (2020). Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology, 70(1), 7. https://doi.org/10.1186/s13213-020-01555-yspa
dc.relation.referencesLin, Y., Xiao, W., Ye, Y., Wu, C., Hu, Y., & Shi, H. (2020). Adaptation of soil fungi to heavy metal contamination in paddy fields—A case study in eastern China. Environmental Science and Pollution Research, 27(22), 27819-27830. https://doi.org/10.1007/s11356-020-09049-9spa
dc.relation.referencesLladó, S., López-Mondéjar, R., & Baldrian, P. (2018). Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102(10), 4331-4338. https://doi.org/10.1007/s00253-018-8950-4spa
dc.relation.referencesLorena, B.-B., Javiera, O., & Jean Franco, C. (2021). Facultative fungal endophytes and their potential for the development of sustainable agriculture. En Microbial Management of Plant Stresses (pp. 1-12). Elsevier. https://doi.org/10.1016/B978-0-323-85193-0.00014-0spa
dc.relation.referencesMa, A., Zhuang, X., Wu, J., Cui, M., Lv, D., Liu, C., & Zhuang, G. (2013). Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE, 8(6), e66146. https://doi.org/10.1371/journal.pone.0066146spa
dc.relation.referencesMalik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J., Vazquez, P. G. M., Jehmlich, N., von Bergen, M., Griffiths, R. I., & Gleixner, G. (2016). Soil fungal:bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01247spa
dc.relation.referencesMemić, M., Vrtačnik, M., Boh, B., Pohleven, F., & Mahmutović, O. (2020). Biodegradation of pahs by ligninolytic fungi hypoxylon fragiforme and coniophora puteana. Polycyclic Aromatic Compounds, 40(2), 206-213. https://doi.org/10.1080/10406638.2017.1392326spa
dc.relation.referencesMantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine vitis vinifera. Journal of Fungi, 7(2), 142. https://doi.org/10.3390/jof7020142spa
dc.relation.referencesMatchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., & List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Computational and Structural Biotechnology Journal, 19, 2687-2698. https://doi.org/10.1016/j.csbj.2021.05.001spa
dc.relation.referencesMhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. https://doi.org/10.1016/j.sciaf.2019.e00246spa
dc.relation.referencesMoreira-Morrillo, A. A., Cedeño-Moreira, Á. V., Canchignia-Martínez, F., & Garcés-Fiallos, F. R. (2021). Lasiodiplodiatheobromae(Pat.) Griffon & Maubl [(Syn.) Botryodiplodia theobromae Pat] in the cocoa crop: Symptoms, biological cycle,and strategies management. Scientia Agropecuaria, 12(4), 653-662. https://doi.org/10.17268/sci.agropecu.2021.068spa
dc.relation.referencesMuneer, M. A., Huang, X., Hou, W., Zhang, Y., Cai, Y., Munir, M. Z., Wu, L., & Zheng, C. (2021). Response of fungal diversity, community composition, and functions to nutrients management in red soil. Journal of Fungi, 7(7), 554. https://doi.org/10.3390/jof7070554spa
dc.relation.referencesNaveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T. P. A., & de Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. https://doi.org/10.1016/j.apsoil.2016.03.004spa
dc.relation.referencesNaylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540. https://doi.org/10.3390/microorganisms10030540spa
dc.relation.referencesNicolitch, O., Feucherolles, M., Churin, J.-L., Fauchery, L., Turpault, M.-P., & Uroz, S. (2019). A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Scientific Reports, 9(1), 14403. https://doi.org/10.1038/s41598-019-50730-yspa
dc.relation.referencesNishiyama, M., Sugita, R., Otsuka, S., & Senoo, K. (2012). Community structure of bacteria on different types of mineral particles in a sandy soil. Soil Science and Plant Nutrition, 58(5), 562-567. https://doi.org/10.1080/00380768.2012.729226spa
dc.relation.referencesNongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313. https://doi.org/10.1016/j.bjm.2016.01.008spa
dc.relation.referencesObayomi, O., Seyoum, M. M., Ghazaryan, L., Tebbe, C. C., Murase, J., Bernstein, N., & Gillor, O. (2021). Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Applied Soil Ecology, 161, 103834. https://doi.org/10.1016/j.apsoil.2020.103834spa
dc.relation.referencesOueriaghli, N., Castro, D. J., Llamas, I., Béjar, V., & Martínez-Checa, F. (2018). Study of bacterial community composition and correlation of environmental variables in rambla salada, a hypersaline environment in south-eastern spain. Frontiers in Microbiology, 9, 1377. https://doi.org/10.3389/fmicb.2018.01377spa
dc.relation.referencesPečiulytė, D., & Dirginčiutė-Volodkienė, V. (2012). Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija, 58(2). https://doi.org/10.6001/ekologija.v58i2.2524spa
dc.relation.referencesPoll, C., Brune, T., Begerow, D., & Kandeler, E. (2010). Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microbial Ecology, 59(1), 130-140. https://doi.org/10.1007/s00248-009-9541-9spa
dc.relation.referencesProulx, S., Promislow, D., & Phillips, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. https://doi.org/10.1016/j.tree.2005.04.004spa
dc.relation.referencesLi, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072spa
dc.relation.referencesLiang, G., Gong, W., Li, B., Zuo, J., Pan, L., & Liu, X. (2019). Analysis of heavy metals in foodstuffs and an assessment of the health risks to the general public via consumption in beijing, china. International Journal of Environmental Research and Public Health, 16(6), 909. https://doi.org/10.3390/ijerph16060909spa
dc.relation.referencesLiao, M., Luo, Y., Zhao, X., & Huang, C. (2005). Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in a paddy soil. Journal of Zhejiang University-SCIENCE B, 6(5), 324-330. https://doi.org/10.1631/jzus.2005.B0324spa
dc.relation.referencesLin, Y.-F., & Aarts, M. G. M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences, 69(19), 3187-3206. https://doi.org/10.1007/s00018-012-1089-zspa
dc.relation.referencesLuo, J.-S., & Zhang, Z. (2021). Mechanisms of cadmium phytoremediation and detoxification in plants. The Crop Journal, 9(3), 521-529. https://doi.org/10.1016/j.cj.2021.02.001spa
dc.relation.referencesLuo, J., Xiao, X., & Luo, sheng-lian. (2010). Biosorption of cadmium(Ii) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of Nonferrous Metals Society of China, 20(6), 1104-1111. https://doi.org/10.1016/S1003-6326(09)60264-8spa
dc.relation.referencesLux, A., Martinka, M., Vaculik, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21-37. https://doi.org/10.1093/jxb/erq281spa
dc.relation.referencesMalik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261-278. https://doi.org/10.1016/j.envint.2003.08.001spa
dc.relation.referencesManguilimotan, L. C., & Bitacura, J. G. (2018). Biosorption of cadmium by filamentous fungi isolated from coastal water and sediments. Journal of Toxicology, 2018, 1-6. https://doi.org/10.1155/2018/7170510spa
dc.relation.referencesManzotti, A., Bergna, A., Burow, M., Jørgensen, H. J. L., Cernava, T., Berg, G., Collinge, D. B., & Jensen, B. (2020). Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology, 96(5), fiaa052. https://doi.org/10.1093/femsec/fiaa052spa
dc.relation.referencesMarchetti, C. (2013). Role of calcium channels in heavy metal toxicity. ISRN Toxicology, 2013, 1-9. https://doi.org/10.1155/2013/184360spa
dc.relation.referencesMathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., & Meng, D. (2021). Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment – A review. Ecotoxicology and Environmental Safety, 226, 112863. https://doi.org/10.1016/j.ecoenv.2021.112863spa
dc.relation.referencesMengistu, D. A. (2021). Public health implications of heavy metals in foods and drinking water in Ethiopia (2016 to 2020): Systematic review. BMC Public Health, 21(1), 2114. https://doi.org/10.1186/s12889-021-12189-3spa
dc.relation.referencesMeter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in cacao from latin america and the caribbean. A review of research and potential mitigation solutions. CAF. https://cafscioteca.azurewebsites.net/handle/123456789/1506spa
dc.relation.referencesMuszyńska, E., & Hanus-Fajerska, E. (2015). Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia, 4, 265-271. https://doi.org/10.5114/bta.2015.57730spa
dc.relation.referencesNagy, Z., Montigny, C., Leverrier, P., Yeh, S., Goffeau, A., Garrigos, M., & Falson, P. (2006). Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie, 88(11), 1665-1671. https://doi.org/10.1016/j.biochi.2006.05.014spa
dc.relation.referencesOsmolovskaya, N. G., Dung, V. V., Kudryashova, Z. K., Kuchaeva, L. N., & Popova, N. F. (2018). Effect of cadmium on distribution of potassium, calcium, magnesium, and oxalate accumulation in amaranthus cruentus l. Plants. Russian Journal of Plant Physiology, 65(4), 553-562. https://doi.org/10.1134/S1021443718040076spa
dc.relation.referencesOtt, T., Fritz, E., Polle, A., & Schützendübel, A. (2002). Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. And its reaction to cadmium. FEMS Microbiology Ecology, 42(3), 359-366. https://doi.org/10.1111/j.1574-6941.2002.tb01025.xspa
dc.relation.referencesPage, V., & Feller, U. (2015). Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy, 5(3), 447-463. https://doi.org/10.3390/agronomy5030447spa
dc.relation.referencesPambuka, G. T., Kinge, T. R., Ghosh, S., Cason, E. D., Nyaga, M. M., & Gryzenhout, M. (2022). Plant and soil core mycobiomes in a two-year sorghum–legume intercropping system of underutilized crops in south africa. Microorganisms, 10(10), 2079. https://doi.org/10.3390/microorganisms10102079spa
dc.relation.referencesPereira de Araújo, R., Furtado de Almeida, A.-A., Silva Pereira, L., Mangabeira, P. A. O., Olimpio Souza, J., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. https://doi.org/10.1016/j.ecoenv.2017.06.006spa
dc.relation.referencesPeršoh, D. (2015). Plant-associated fungal communities in the light of meta’omics. Fungal Diversity, 75(1), 1-25. https://doi.org/10.1007/s13225-015-0334-9spa
dc.relation.referencesPraveen, R., & Nagalakshmi, R. (2022). Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Materials Today: Proceedings, 68, 1562-1567. https://doi.org/10.1016/j.matpr.2022.07.190spa
dc.relation.referencesPrifti, E., & Zucker, J.-D. (2015). The new science of metagenomics and the challenges of its use in both developed and developing countries. En S. Morand, J.-P. Dujardin, R. Lefait-Robin, & C. Apiwathnasorn (Eds.), Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia (pp. 191-216). Springer Singapore. https://doi.org/10.1007/978-981-287-527-3_12spa
dc.relation.referencesPriyadarshini, E., Priyadarshini, S. S., Cousins, B. G., & Pradhan, N. (2021). Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere, 274, 129976. https://doi.org/10.1016/j.chemosphere.2021.129976spa
dc.relation.referencesQadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N. A., & Ahmad, P. (2014). Modulation of plant growth and metabolism in cadmium-enriched environments. En D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 229, pp. 51-88). Springer International Publishing. https://doi.org/10.1007/978-3-319-03777-6_4spa
dc.relation.referencesRodríguez Eugenio, N., McLaughlin, M. J., & Pennock, D. J. (2018). Soil pollution: A hidden reality. Food and Agriculture Organization of the United Nations.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocMicrobiomasspa
dc.subject.agrovocMicrobiomeseng
dc.subject.agrovocAcondicionadores del suelospa
dc.subject.agrovocSoil conditionerseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalComunidad-fúngicaspa
dc.subject.proposalTheobroma-cacaospa
dc.subject.proposalEcología-microbianaspa
dc.subject.proposalMetataxonomíaspa
dc.subject.proposalMetales-pesadosspa
dc.subject.proposalFungal-communityeng
dc.subject.proposalTheobroma-cacaoeng
dc.subject.proposalMicrobial-ecologyeng
dc.subject.proposalMetataxonomyeng
dc.subject.proposalHeavy-metalseng
dc.subject.proposalTheobroma-cacaoeng
dc.titleAnálisis del microbioma fúngico presente en diferentes tipos de suelos cacaoteros con cadmio en el municipio de Yacopí - Cundinamarcaspa
dc.title.translatedAnalysis of the fungal microbiome present in cocoa soils with different cadmium concentrationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCaracterización estructural y predicción funcional de la comunidad microbiana presente en suelos con diferentes niveles de cadmio en fincas cacaoteras del Municipio de Yacopí-Cundinamarcaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032466943.2023.pdf
Tamaño:
5.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: