Estudio de la estabilidad termodinámica de la proteína α-quimotripsinógeno en soluciones acuosas de electrolitos fuertes

dc.contributor.advisorRomero Isaza, Carmen Maríaspa
dc.contributor.authorBeltran Molina, Yuver Alejandrospa
dc.contributor.researchgroupGrupo de Termodinámica Clásicaspa
dc.date.accessioned2022-05-31T19:39:04Z
dc.date.available2022-05-31T19:39:04Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa estabilidad termodinámica del α-quimotripsinógeno A, a pH 2,00, 3,00, 3,50 y en soluciones acuosas de los electrolitos NaCl, KCl, NH4NO3 y (NH4)2SO4 fue analizada por espectroscopía UV-Vis, calorimetría diferencial de barrido (DSC), tensión superficial y por medio de los parámetros de interacción preferencial determinados a partir de medidas de densidad. Los resultados obtenidos a partir de medidas de UV-Vis y DSC determinaron que el aumento en la estabilidad del α-quimotripsinógeno está relacionado con el aumento en la concentración de electrolito y con el aumento del pH. El efecto estabilizante que ejercen las sales sobre la estructura de la proteína aumenta en el siguiente orden: NaCl < NH4NO3 < KCl < (NH4)2SO4 A partir del estudio cinético de adsorción de la proteína en la interfase líquido/aire se determinó que este proceso se puede describir mediante un modelo de tres etapas y los valores obtenidos de la constante cinética k1 indicaron que el paso que controla el proceso de adsorción es la penetración y adsorción de la proteína en la interfase y que este paso es dependiente de la naturaleza y la concentración de las sales. Los resultados obtenidos para los parámetros de interacción preferencial indicaron que todos los electrolitos empleados en este estudio son excluidos de la superficie de la proteína y generan una hidratación preferencial que involucra un aumento en la estabilidad de la estructura nativa del α-quimotripsinógeno. Los resultados presentaron la misma tendencia que los obtenidos a partir de UV-Vis y DSC. (Texto tomado de la fuente).spa
dc.description.abstractThe thermodynamic stability of α-chymotrypsinogen A, at pH 2.00, 3.00, 3.50 and in aqueous solutions of the electrolytes NaCl, KCl, NH4NO3, and (NH4)2SO4 was analyzed by UV-Vis spectroscopy, differential scanning calorimetry (DSC), surface tension and through the preferential interaction parameters determined from density measurements. The results obtained from UV-Vis and DSC measurements determined that the increase in the stability of α-chymotrypsinogen is related to the increase in the electrolyte concentration as well as the increase in pH. The stabilizing effect of salts on protein structure increases in the following order: NaCl < NH4NO3 < KCl < (NH4)2SO4 From the kinetic study of protein adsorption at the liquid/air interface, it was determined that this process can be described by a three-stage model and the values obtained from the kinetic constant k1 indicate that the step that controls the adsorption process is the protein penetration and adsorption at the interface and this step is dependent on the nature and concentration of the salts. The results obtained for the preferential interaction parameters indicate that all the electrolytes used in this study were excluded from the surface of the protein and generated preferential hydration that involves an increase in the stability of the native structure of α-chymotrypsinogen. The results presented follow the same trend as those obtained from UV-Vis and DSCeng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaTermodinámica de solucionesspa
dc.format.extentxix, 168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81465
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesC. Vieille, J.G. Zeikus, Thermozymes: Identifying molecular determinants of protein structural and functional stability, Trends Biotechnol. 14 (6) (1996) 183–190.spa
dc.relation.referencesD. Voet, J.G. Voet, Bioquimica. 3 ed. Médica Panamericana 2006, Buenos Aires. pp 287-320.spa
dc.relation.referencesP.J. Halling, Proteins: Structures and molecular properties J. Chem. Technol. Biotechnol. 62 (1) (1995) 105–105spa
dc.relation.referencesM.K. Campbell, S.O. Farrell, Bioquímica 6 ed. Cengage Learning Latin America 2009, Mexico D.F. pp 200-260spa
dc.relation.referencesT. McKee, J.R. McKee, Bioquímica: la base molecular de la vida, 2 ed McGraw-Hill. 2014, Mexico D.F. 228–259.spa
dc.relation.referencesA. V. Finkelstein, O. V. Galzitskaya, Physics of protein folding, Phys. Life Rev. 1 (1) (2004) 23–56.spa
dc.relation.referencesJ. Berg, J. Tymoczko, L. Stryer, Biochemistry. 5ed Freeman, W. H. & Company, 2012, New York. pp. 83-106, 287-290spa
dc.relation.referencesC.M. Dobson, Protein folding and misfolding, Nature.426 (6968) (2003) 884–890spa
dc.relation.referencesM. Mathlouthi, Water content, water activity, water structure and the stability of foodstuffs, Food Control. 12 (7) (2001) 409–417.spa
dc.relation.referencesL. Zhang, L. Wang, Y.T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping hydration dynamics around a protein surface, Proc. Natl. Acad. Sci. 104 (47) (2007) 18461–18466.spa
dc.relation.referencesS. Ebbinghaus, S.J Kim, M. Heyden, An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. U. S. A. 104 (52) (2007) 20749–20752.spa
dc.relation.referencesV.A. Parsegian, Protein-water interactions, Int. Rev. Cytol. 215 (2) (2002) 1–31.spa
dc.relation.referencesP.L. Privalov, Thermodynamics of protein folding, J. Chem. Thermodyn. 29 (4) (1997) 447–474.spa
dc.relation.referencesR.L. Baldwin, How Hofmeister ion interactions affect protein stability, Biophys. J. 71 (4) (1996) 2056-2063.spa
dc.relation.referencesG. Vogt, S. Woell, P. Argos, Protein thermal stability, hydrogen bonds, and ion pairs, J. Mol. Biol. 269 (4) (1997) 631–643.spa
dc.relation.referencesW. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14 (1) (1959) 1–63.spa
dc.relation.referencesD. Lorient, J.C. Cheftel, J.L Cuq, Proteínas alimentarias: bioquímica. Propiedades funcionales. Valor nutritivo. Modificaciones químicas 1 ed. Acribia S.A 1989, España. pp 150-200.spa
dc.relation.referencesT.P. Creamer, R. Srinivasan, G D. Rose, Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility, Biochemistry. 36 (10) (1997) 2832–2835.spa
dc.relation.referencesP.L. Privalov, S.J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem. 39 (1) (1988) 191–234.spa
dc.relation.referencesC. Scharnagl, M. Reif, J. Friedrich, Stability of proteins: Temperature, pressure and the role of the solvent, Biochim. Biophys. Acta - Proteins Proteomics. 1749 (2) (2005) 187–213.spa
dc.relation.referencesK.A. Dill, Dominant forces in protein folding, Biochemistry. 29 (31) (1990) 7133–7155.spa
dc.relation.referencesC.N. Pace, J.M. Scholtz, G.R. Grimsley, Forces stabilizing proteins, FEBS Lett. 588 (14) (2014) 2177–2184.spa
dc.relation.referencesK. Takano, Y. Yamagata, K. Yutani, Contribution of polar groups in the interior of a protein to the conformational stability, Biochemistry. 40 (15) (2001) 4853–4858.spa
dc.relation.referencesC.I. Branden, J. Tooze, Introduction to Protein Structure, 2ed Garland Science 1999, Nueva York. pp 50-120spa
dc.relation.referencesC.N. Pace, H. Fu, K.L. Fryar, J. Landua, S.R. Trevino, B.A. Shirley, M.N. Hendricks, S. Iimura, K. Gajiwala, J.M. Scholtz, G.R. Grimsley, Contribution of hydrophobic interactions to protein stability, J. Mol. Biol. 408 (3) (2011) 514–528.spa
dc.relation.referencesJ.D. Bernal, Structure of proteins, Nat. 143 (625) (1939) 663–667.spa
dc.relation.referencesC. Tanford, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J. Am. Chem. Soc. 84 (22) (1962) 4240–4247.spa
dc.relation.referencesL. Wesson, D.. Eisenberg, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci. 1 (2) (1992) 227–235.spa
dc.relation.referencesS. Romero, D.A. Fernández, M. Costas, Estabilidad termodinámica de proteínas, Educ. Química. 29 (3) (2012) 3-17.spa
dc.relation.referencesA. Cooper, Protein: A comprehensive treatise. Thermodynamics of protein folding and stability. JAI Press Inc 1999, Scotland, UK. pp 217-270spa
dc.relation.referencesC. Goméz, J. Sancho, Estructura de proteínas 1 ed. Ariel S.A 2003, Barcelona España. pp 147-198spa
dc.relation.referencesJ. Sancho, The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time, Arch. Biochem. Biophys. 531 (2) (2013) 4–13.spa
dc.relation.referencesF. Franks, Protein stability: the value of old literature, Biophys. Chem. 96 (2) (2002) 117–127.spa
dc.relation.referencesF. Franks, Protein stability: the value of old literature, Biophys. Chem. 96 (2) (2002) 117–127.spa
dc.relation.referencesT.M. Devlin, Bioquímica : libro de texto con aplicaciones clínicas 4 ed. Reverte S.A, 2004, Barcelona España. pp 365-450spa
dc.relation.referencesJ.F. Brandts, The thermodynamics of protein denaturation. I. The denaturation of chymotrypsinogen, J. Am. Chem. Soc. 86 (20) (1964) 4291–4301.spa
dc.relation.referencesR.H. Hatley, F. Franks, The cold-induced denaturation of lactate dehydrogenase at sub-zero temperatures in the absence of perturbants, FEBS Lett. 257 (1) (1989) 171–173.spa
dc.relation.referencesM. Tollinger, K.A. Crowhurst, L.E. Kay, J.D. Forman-Kay, Site-specific contributions to the pH dependence of protein stability, Proc. Natl. Acad. Sci. 100 (8) (2003) 4545–4550.spa
dc.relation.referencesN.V. Russo, D.A. Estrin, M.A Marti, A.E. Roitberg, pH-Dependent conformational changes in proteins and their effect on experimental pKa: the case of Nitrophorin 4, PLoS Comput. Biol. 8 (11) (2012) 1-10.spa
dc.relation.referencesD.L. Nelson, M.M Cox, Lehninger principles of biochemistry 7ed. W.H. Freeman 2017, New York. pp 293–340.spa
dc.relation.referencesV.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny, High pressure effects on protein structure and function., Proteins. 24 (1) (1996) 81–91.spa
dc.relation.referencesB.B. Boonyaratanakornkit, C.B. Park, D.S. Clark, Pressure effects on intra- and intermolecular interactions within proteins, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1595 (1-2) (2002) 235–249.spa
dc.relation.referencesC. Mattos, D. Ringe, Proteins in organic solvents, Curr. Opin. Struct. Biol. 11 (6) (2001) 761–764.spa
dc.relation.referencesL. Dai, A.M. Klibanov, Striking activation of oxidative enzymes suspended in nonaqueous media, Proc. Natl. Acad. Sci. 96 (17) (1999) 9475–9478.spa
dc.relation.referencesK.R. Babu, D.J. Douglas, Methanol-induced conformations of myoglobin at pH 4.0, Biochemistry. 39 (47) (2000) 14702–14710.spa
dc.relation.referencesS.K. Awasthi, S.C. Shankaramma, S. Raghothama, P. Balaram, Solvent-induced-hairpin to helix conformational transition in a designed peptide, Biopolymers. 58 (5) (2001) 465–476.spa
dc.relation.referencesT.V. Burova, N. V. Grinberg, V.Y. Grinberg, R. V. Rariy, A.M. Klibanov, Calorimetric evidence for a native-like conformation of hen egg-white lysozyme dissolved in glycerol, Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1478 (2) (2000) 309–317.spa
dc.relation.referencesJ.F. Back, D. Oakenfull, M.B. Smith, Increased thermal stability of proteins in the presence of sugars and polyols, Biochemistry. 18 (23) (1979) 5191–5196.spa
dc.relation.referencesD.R Canchi, A.E. Garcia, Cosolvent effects on protein stability, Annu. Rev. Phys. Chem. 64 (1) (2013) 273–293.spa
dc.relation.referencesS.N. Timasheff, Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated, Adv. Protein Chem. 51 (1) (1998) 355–432.spa
dc.relation.referencesM.H. Priya, H.S. Ashbaugh, M.E. Paulaitis, Cosolvent preferential molecular interactions in aqueous solutions, J. Phys. Chem. B. 115 (46) (2011) 13633–13642.spa
dc.relation.referencesP.E. Smith, Chemical potential derivatives and preferential interaction parameters in biological systems from Kirkwood-Buff theory, Biophys. J. 91 (3) (2006) 849–856.spa
dc.relation.referencesM.R. Eftink, The use of fluorescence methods to monitor unfolding transitions in proteins., Biophys. J. 66 (2) (1994) 482-501.spa
dc.relation.referencesT. V. Chalikian, J. Völker, D. Anafi, K.J. Breslauer, The native and the heat-induced denatured states of α-chymotrypsinogen A: thermodynamic and spectroscopic studies, J. Mol. Biol. 274 (2) (1997) 237–252.spa
dc.relation.referencesS. Komal, D. Shashank, Relationship between the wavelength maximum of a protein and the temperature dependence of its intrinsic tryptophan fluorescence intensity, Eur. Biophys. J. 39 (10) (2010) 1445–1451.spa
dc.relation.referencesL. Hamborg, E.W. Horsted, K.E. Johansson, M. Willemoës, K. Lindorff-Larsen, K. Teilum, Global analysis of protein stability by temperature and chemical denaturation, Anal. Biochem. 605 (1) (2020) 113-133.spa
dc.relation.referencesC.M. Romero, J.S. Abella, A. Velázquez, J. Sancho, Thermal denaturation of α-chymotrypsinogen A in presence of polyols at pH 2.0 and pH 3.0, J. Therm. Anal. Calorim. 120 (1) (2015) 489–499.spa
dc.relation.referencesG. Bruylants, J. Wouters, C. Michaux, Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design, Curr. Med. Chem. 12 (17) (2005) 2011–2020.spa
dc.relation.referencesS.N. Timasheff, Protein-solvent interactions and protein conformation, Acc. Chem. Res. 3 (2) (1970) 62–68.spa
dc.relation.referencesT. Arakawa, S.N. Timasheff, The stabilization of proteins by osmolytes, Biophys. J. 47 (3) (1985) 411-414.spa
dc.relation.referencesT. Arakawa, Protein–solvent interaction, Biophys. Rev. 10 (1) (2018) 203-208.spa
dc.relation.referencesS.N. Timasheff, Solvent effects on protein stability, Curr. Opin. Struct. Biol. 2 (1) (1992) 35–39.spa
dc.relation.referencesW.H. Stockmayer, Light scattering in multi-component systems, J. Chem. Phys. 18 (58) (1950) 58–61.spa
dc.relation.referencesG. Scatchard, Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure, J. Am. Chem. Soc. 68 (11) (1946) 2315–2319.spa
dc.relation.referencesJ.C. Lee, S.N. Timasheff, Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride, Biochemistry. 13 (2) (1974) 257–265.spa
dc.relation.referencesJ.C. Lee, K. Gekko, S.N. Timasheff, Measurements of preferential solvent interactions by densimetric techniques, Methods Enzymol. 61 (1) (1979) 26–49.spa
dc.relation.referencesJ.K. Kaushik, R. Bhat, Thermal stability of proteins in aqueous polyol solutions : role of the surface tension of water in the stabilizing effect of polyols, J. Phys. Chem. 102 (36) (1998) 7058–7066.spa
dc.relation.referencesT.Y. Lin, S.N. Timasheff, On the role of surface tension in the stabilization of globular proteins., Protein Sci. 5 (2) (1996) 372-381.spa
dc.relation.referencesA. Nicholls, K.A. Sharp, B. Honig, Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins Struct. Funct. Bioinforma. 11 (4) (1991) 281–296.spa
dc.relation.referencesO. Sinanoglu, S. Abdulnur, Effect of water and other solvents on the structure of biopolymers, Fed. Proc. 24 (1) (1965) 12-23.spa
dc.relation.referencesR. Breslow, T. Guo, Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers, Proc. Natl. Acad. Sci. 87 (1) (1990) 167–169.spa
dc.relation.referencesJ.C. Lee, S.N. Timasheff, The stabilization of proteins by sucrose, J. Biol. Chem. 256 (14) (1981) 7193–7201.spa
dc.relation.referencesT. Arakawa, S.N. Timasheff, Preferential interactions of proteins with salts in concentrated solutions, Biochemistry. 21 (25) (1982) 6545–6552.spa
dc.relation.referencesT. Arakawa, S.N. Timasheff, Preferential interactions of proteins with solvent components in aqueous amino acid solutions, Arch. Biochem. Biophys. 224 (1) (1983) 169–177.spa
dc.relation.referencesY. Kita, T. Arakawa, T.Y. Lin, S.N. Timasheff, Contribution of the surface free energy perturbation to protein-solvent interactions, Biochemistry. 33 (50) (1994) 15178–15189.spa
dc.relation.referencesC.M. Romero, R.A. Albis, N. Mendieta, Influence of 1-butanol, 1,2-butanediol and 1,2,3,4-butanetreol on the adsorption of β-lactoglobulin at the air-water interface, Rev. Colomb. Química. 40 (3) (2011) 367–380.spa
dc.relation.referencesC.M. Romero, A. Albis, Influence of polyols and glucose on the surface tension of bovine α -lactalbumin in aqueous solution, J. Solut. Chem. 39 (12) (2010) 1865–1876.spa
dc.relation.referencesC.M. Romero, J.S. Abella, Surface behavior of α-chymotrypsinogen A in aqueous solutions at 298.15 K, J. Mol. Liq. 285 (1) (2019) 89–95.spa
dc.relation.referencesD.J. McClements, Modulation of globular protein functionality by weakly interacting cosolvents, Crit. Rev. Food Sci. Nutr. 42 (5) (2002) 417–471.spa
dc.relation.referencesK. Hill, E. Horvath-Szanics, G. Hajos, E. Kiss, Surface and interfacial properties of water-soluble wheat proteins, Colloids Surf, A Physicochem. Eng. Asp. 319 (3) (2008) 180–187.spa
dc.relation.referencesM. Auton, A.C. Ferreon, D.W. Bolen, Metrics that differentiate the origins of osmolyte effects on protein stability: a test of the surface tension proposal, J. Mol. Biol. 361 (5) (2006) 983–992.spa
dc.relation.referencesS. Magdassi, Surface activity of proteins : chemical and physicochemical modifications 1ed. Marcel Dekker Inc 1996, New York. pp 5-30spa
dc.relation.referencesA. Sadana, Protein adsorption and inactivation on surfaces. Influence of heterogeneities, Chem. Rev. 92 (8) (1992) 1799–1818.spa
dc.relation.referencesT. Sengupta, L. Razumovsky, S. Damodaran, Energetics of protein−interface interactions and Its effect on protein adsorption, Langmuir. 15 (20) (1999) 6991–7001.spa
dc.relation.referencesG. Yampolskaya, D. Platikanov, Proteins at fluid interfaces: adsorption layers and thin liquid films, Adv. Colloid Interface Sci. 128 (1) (2006) 159–183.spa
dc.relation.referencesC.S. Rao, S. Damodaran, Is surface pressure a measure of interfacial water activity? Evidence from protein adsorption behavior at interfaces, Langmuir. 16 (24) (2000) 9468–9477.spa
dc.relation.referencesG. Camejo, G. Colacicco, M.M. Rapport, Lipid monolayers: interactions with the apoprotein of high density plasma lipoprotein, J. Lipid Res. 9 (5) (1968) 562–569.spa
dc.relation.referencesJ. Mitchell, L. Irons, G.J. Palmer, A study of the spread and adsorbed films of milk proteins, Biochim. Biophys. Acta - Protein Struct. 200 (1) (1970) 138–150.spa
dc.relation.referencesR. Baeza, C.C. Sanchez, A.M.R. Pilosof, J.M. Rodríguez, Interactions of polysaccharides with β-lactoglobulin adsorbed films at the air–water interface, Food Hydrocoll. 19 (2) (2005) 239–248.spa
dc.relation.referencesD. Guzey, D.J. McClements, J. Weiss, Adsorption kinetics of BSA at air–sugar solution interfaces as affected by sugar type and concentration, Food Res. Int. 36 (7) (2003) 649–660.spa
dc.relation.referencesV.S. Alahverdjieva, V.B. Fainerman, E.V. Aksenenko, M.E. Leser, R. Miller, Adsorption of hen egg-white lysozyme at the air–water interface in presence of sodium dodecyl sulphate, Colloids Surf A Physicochem. Eng. Asp. 317 (1-3) (2008) 610–617.spa
dc.relation.referencesK.D. Martinez, C.C Sanchez, V.P. Henestrosa, J.M. Patino, A.M.R. Pilosof, Soy protein–polysaccharides interactions at the air–water interface, Food Hydrocoll. 21 (5) (2007) 804–812.spa
dc.relation.referencesR.A. Ganzevles, M.A. Stuart, T. Vliet, H.J. Jongh, Use of polysaccharides to control protein adsorption to the air–water interface, Food Hydrocoll. 20 (6) (2006) 872–878.spa
dc.relation.referencesW. Melander, C. Horváth, Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series, Arch. Biochem. Biophys. 183 (1) (1977) 200–215.spa
dc.relation.referencesW. Kunz, P. Lo Nostro, B.W. Ninham, The present state of affairs with Hofmeister effects, Curr. Opin. Colloid Interface Sci. 9 (1-2) (2004) 1–18.spa
dc.relation.referencesK.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods. 34 (3) (2004) 300–311.spa
dc.relation.referencesA.A. Zavitsas, Properties of water solutions of electrolytes and nonelectrolytes, J. Phys. Chem. B. 105 (32) (2001) 7805–7817.spa
dc.relation.referencesL.A. Bromley, Thermodynamic properties of strong electrolytes in aqueous solutions, AIChE J. 19 (2) (1973) 313–320.spa
dc.relation.referencesP. Lo Nostro, B.W. Niham, Hofmeister phenomena: an update on ion specificity in biology, Chem. Rev. 112 (4) (2012) 2286–2322.spa
dc.relation.referencesY. Marcus, Effect of Ions on the structure of water: structure making and breaking, Chem. Rev. 109 (3) (2009) 1346–1370.spa
dc.relation.referencesY. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol. 10 (6) (2006) 658–663.spa
dc.relation.referencesK.D. Collins, G.W. Neilson, J.E. Enderby, Ions in water: characterizing the forces that control chemical processes and biological structure, Biophys. Chem. 128 (2) (2007) 95–104.spa
dc.relation.referencesM.T. Ru, S.Y. Hirokane, A.S. Lo, J.S. Dordick, J. A. Reimer, D. S. Clark, On the salt-induced activation of lyophilized enzymes in organic solvents:  effect of salt kosmotropicity on enzyme activity, J. Am. Chem. Soc. 122 (8) (2000) 1565–1571.spa
dc.relation.referencesJ.M. Scholtz, G.R. Grimsley, C.N. Pace, Solvent denaturation of proteins and interpretations of the m value, Methods Enzymol. 466 (1) (2009) 549–565.spa
dc.relation.referencesN. Schwierz, D. Horinek, U. Sivan, R.R. Netz, Reversed Hofmeister series: the rule rather than the exception, Curr. Opin. Colloid Interface Sci. 23 (1) (2016) 10–18.spa
dc.relation.referencesY. Zhang, P.S. Cremer, The inverse and direct Hofmeister series for lysozyme, Proc. Natl. Acad. Sci. 106 (36) (2009) 15249–15253.spa
dc.relation.referencesN. V. Nucci, J.M. Vanderkooi, Effects of salts of the Hofmeister series on the hydrogen bond network of water, J. Mol. Liq. 143 (2) (2008) 160-170.spa
dc.relation.referencesP. Jungwirth, P.S. Cremer, Beyond Hofmeister, Nat. Chem. 6 (4) (2014) 261–263.spa
dc.relation.referencesN. Schwierz, D. Horinek, R.R. Netz, Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity, Langmuir. 26 (10) (2010) 7370–7379.spa
dc.relation.referencesL.B. Smillie, B.S. Hartley, The disulphide bridges of bovine chymotrypsinogen B, Biochem. J. 105 (3) (1967) 1125-1133.spa
dc.relation.referencesR.A. Alberty, E.A. Anderson, J. W. Williams, Homogeneity and the electrophoretic behavior of some proteins, J. Phys. Colloid Chem. 52 (1) (1948) 217–230.spa
dc.relation.referencesV.M. Ingram, Isoelectric point of chymotrypsinogen by a Donnan equilibrium method, Nat. 170 (4319) (1952) 250–251.spa
dc.relation.referencesV. Kubacki, K.D. Brown, M. Laskowski, Electrophoresis and solubility of chymotrypsinogen B and chymotrypsin B, J. Biol. Chem. 180 (1) (1949) 73–78.spa
dc.relation.referencesJ.A. Beeley, S.M. Stevenson, J.G. Beeley, Polyacrylamide gel isoelectric focusing of proteins: determination of isoelectric points using an antimony electrode, Biochim. Biophys. Acta - Protein Struct. 285 (2) (1972) 293–300.spa
dc.relation.referencesM.R. Salaman, A.R. Williamson, Isoelectric focusing of proteins in the native and denatured states. Anomalous behaviour of plasma albumin, Biochem. J. 122 (1) (1971) 93–99.spa
dc.relation.referencesM. Poitevin, K. Hammad, I. Ayed, P.G Righetti, G. Peltre, S. Descroix, Use of quasi-isoelectric buffers to limit protein adsorption in capillary zone electrophoresis, Electrophoresis. 29 (15) (2008) 3164–3167.spa
dc.relation.referencesJ.M. Andrews, Non-native aggregation of alpha-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies, Biochemistry. 26 (45) (2007) 7558-7571spa
dc.relation.referencesW.M. Jackson, J.F. Brandts, Thermodynamics of protein denaturation. Calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation, Biochemistry. 9 (11) (1970) 2294–2301.spa
dc.relation.referencesF. Khan, R. H. Khan, S. Muzammil, Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH, Biochim. Biophys. Acta. 1481 (2) (2000) 229–236.spa
dc.relation.referencesN. Poklar, G. Vesnaver, S. Lapanje, Interactions of alpha-chymotrypsinogen A with alkylureas., Biophys. Chem. 57 (2) (1996) 279–289.spa
dc.relation.referencesC.M. Romero, J.S. Abella, Preferential interaction of chymotrypsinogen in aqueous solutions of polyols at 298.15 K, J. Solut. Chem. 48 (11) (2019) 1591–1602.spa
dc.relation.referencesC.J. Coen, H.W. Blanch, J.M. Prausnitz, Salting out of aqueous proteins: phase equilibria and intermolecular potentials, AIChE J. 41 (4) (1995) 996–1004.spa
dc.relation.referencesJ. Osborne, A. Lunasin, R.F. Steiner, The binding of calcium by chymotrypsinogen A, Biochem. Biophys. Res. Commun. 49 (4) (1972) 923–929.spa
dc.relation.referencesO.D. Velev, E.W. Kaler, A.M. Lenhoff, Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen, Biophys. J. 75 (6) (1998) 2682–2697.spa
dc.relation.referencesS.D. Allison, A. Dong, J.F. Carpenter, Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration, Biophys. J. 71 (4) (1996) 2022–2032.spa
dc.relation.referencesC.H. Chervenka, The urea denaturation of chymotrypsinogen as determined by ultraviolet spectral changes. The influence of pH and salts, J. Am. Chem. Soc. 82 (3) (1960) 582–585.spa
dc.relation.referencesJ. Brandts, R. Lumry, The reversible thermal denaturation of chymotrypsinogen. I. Experimental characterization, J. Phys. Chem. 67 (7) (1963) 1484–1494.spa
dc.relation.referencesA.M. Kroetsch, E. Sahin, H.Y. Wang, S. Krizman, C.J. Roberts, Relating particle formation to salt- and pH-dependent phase separation of non-native aggregates of alpha-chymotrypsinogen A, J. Pharm. Sci. 101 (10) (2012) 3651–3660.spa
dc.relation.referencesJ.C. Lee, L.L. Lee, Preferential solvent interactions between proteins and polyethylene glycols, J. Biol. Chem. 256 (2) (1981) 625–631.spa
dc.relation.referencesI.L. Shulgin, E. Ruckenstein, Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol, Biophys. Chem. 120 (3) (2006) 188–198.spa
dc.relation.referencesN.N. Khechinashvili, J. Janin, F. Rodier, Thermodynamics of the temperature-induced unfolding of globular proteins, Protein Sci. 4 (7) (1995) 1315–1324.spa
dc.relation.referencesP.L. Privalov, Stability of proteins small globular proteins, Adv. Protein Chem. 33 (1) (1979) 167–241.spa
dc.relation.referencesJ.F. Brandts, The thermodynamics of protein denaturation. II. A model of reversible denaturation and interpretations regarding the stability of chymotrypsinogen, J. Am. Chem. Soc. 86 (20) (1964) 4302–4314.spa
dc.relation.referencesM.A. Eisenberg, G.W. Schwert, The reversible heat denaturation of chymotrypsinogen, J. Gen. Physiol. 34 (5) (1951) 583–606.spa
dc.relation.referencesC.M. Romero, A. Albis, J.M. Lozano, J. Sancho, Thermodynamic study of the influence of polyols and glucose on the thermal stability of holo-bovine α-lactalbumin, J. Therm. Anal. Calorim. 98 (1) (2009) 165–171.spa
dc.relation.referencesH. Naghibi, A. Tamura, J.M. Sturtevant, Significant discrepancies between van’t Hoff and calorimetric enthalpies, Proc. Natl. Acad. Sci. 92 (12) (1995) 5597–5599.spa
dc.relation.referencesN. Poklar, G. Vesnaver, Thermal denaturation of proteins studied by UV spectroscopy, J. Chem. Educ. 77 (3) (2000) 380–382.spa
dc.relation.referencesR. Singh, M.I. Hassan, A. Islam, F. Ahmad, Cooperative unfolding of residual structure in heat denatured proteins by urea and guanidinium chloride, PLoS One. 10 (6) (2015) 1-16.spa
dc.relation.referencesP.L. Privalov, N.N. Khechinashvili, A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study, J. Mol. Biol. 86 (3) (1974) 665–684.spa
dc.relation.referencesJ.A. Schellman, Fifty years of solvent denaturation, Biophys. Chem. 96 (2) (2002) 91–101.spa
dc.relation.referencesJ.A. Schellman, Protein stability in mixed solvents: a balance of contact interaction and excluded volume, Biophys. J. 85 (1) (2003) 108–125.spa
dc.relation.referencesJ.K. Myers, C.N. Pace, J.M. Scholtz, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci. 4 (10) (1995) 2138-2148.spa
dc.relation.referencesR.F. Greene, C.N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin, J. Biol. Chem. 249 (17) (1974) 5388–5393.spa
dc.relation.referencesZ. Zhang, S. Witham, E. Alexov, On the role of electrostatics on protein-protein interactions, Phys. Biol. 8 (3) (2011) 1-10.spa
dc.relation.referencesH. Goshima, K.M. Stevens, M. Liu, K.K. Qian, M. Tyagi, M.T. Cicerone, M.J. Pikal, Addition of monovalent electrolytes to improve storage stability of freeze-dried protein formulations, J. Pharm. Sci. 105 (2) (2016) 530–541.spa
dc.relation.referencesL. Pradeep, J. Udgaonkar, Differential salt-induced stabilization of structure in the initial folding intermediate ensemble of barstar, J. Mol. Biol. 324 (2) (2002) 331–347.spa
dc.relation.referencesA. Pica, G. Graziano, On the effect of sodium chloride and sodium sulfate on cold denaturation, PLoS One. 10 (7) (2015) 1-13.spa
dc.relation.referencesY. Goto, N. Ichimura, K. Hamaguchi, Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain, Biochemistry. 27 (5) (1988) 1670–1677.spa
dc.relation.referencesC. Mitchinson, R.H. Pain, Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from staphylococcus aureus. Implications for the folding pathway of beta-lactamase, J. Mol. Biol. 184 (2) (1985) 331–342.spa
dc.relation.referencesN. Matubayasi, K. Yamamoto, S.I. Yamaguchi, H. Matsuo, N. Ikeda, Thermodynamic quantities of surface formation of aqueous electrolyte solutions: III. aqueous solutions of alkali metal chloride, J. Colloid Interface Sci. 214 (1) (1999) 101–105.spa
dc.relation.referencesK. Johansson, J.C. Eriksson, γ and dγ/dT measurements on aqueous solutions of 1,1-electrolytes, J. Colloid Interface Sci. 49 (3) (1974) 469–480.spa
dc.relation.referencesP.K. Weissenborn, R.J. Pugh, Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence, J. Colloid Interface Sci. 184 (2) (1996) 550–563.spa
dc.relation.referencesL.M. Pegram, M.T. Record, Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air−water interface, J. Phys. Chem. B. 111 (19) (2007) 5411–5417.spa
dc.relation.referencesR. Tuckermann, Surface tension of aqueous solutions of water-soluble organic and inorganic compounds, Atmos. Environ. 41 (29) (2007) 6265–6275.spa
dc.relation.referencesN. Matubayasi, K. Takayama, T. Ohata, Thermodynamic quantities of surface formation of aqueous electrolyte solutions: IX. Aqueous solutions of ammonium salts, J. Colloid Interface Sci. 344 (1) (2010) 209–213.spa
dc.relation.referencesB.C. Tripp, J.J. Magda, J.D. Andrade, Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics, J. Colloid Interface Sci. 173 (1) (1995) 16–27.spa
dc.relation.referencesA.P. Santos, A. Diehl, Y. Levin, Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions, Langmuir. 26 (13) (2010) 10778–10783.spa
dc.relation.referencesJ.M. Gómez, V.P. Henestrosa, C.C. Sánchez, J.M. Patino, The role of static and dynamic characteristics of diglycerol esters and β-lactoglobulin mixed films foaming. 1. Dynamic phenomena at the air–water interface, Food Hydrocoll. 22 (7) (2008) 1105–1116.spa
dc.relation.referencesV.P. Henestrosa, C.C. Sánchez, M.M Escobar, J.P. Jiménez, F.M. Rodríguez, J.M. Patino, Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength, Colloids Surf A Physicochem. Eng. Asp. 309 (3) (2007) 202–215.spa
dc.relation.referencesE.M. Hernández, E.I. Franses, Adsorption and surface tension of fibrinogen at the air/water interface, Colloids Surf A Physicochem. Eng. Asp. 214 (3) (2003) 249–262.spa
dc.relation.referencesF.J. Millero, The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures, J. Phys. Chem. 74 (2) (1970) 356–362.spa
dc.relation.referencesL.A. Dunn, Apparent molar volumes of electrolytes. Part 2. Some 1–1 electrolytes in aqueous solution at 25°C, Trans. Faraday Soc. 64 (1) (1968) 1898–1903.spa
dc.relation.referencesF.J. Millero, W. Hansen, Apparent molal volumes of aqueous monovalent salt solutions at various temperatures, J. Chem. Eng. Data. 13 (3) (1968) 330–333.spa
dc.relation.referencesA. Roux, G.M. Musbally, G. Perron, J.E. Desnoyers, P.P. Singh, E.M. Woolley, L.G. Hepler, Apparent molal heat capacities and volumes of aqueous electrolytes at 25 °C: NaClO3, NaClO4, NaNO3, NaBrO3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4, Can. J. Chem. 56 (1) (1978) 24–28.spa
dc.relation.referencesS.L. Clegg, A.S. Wexler, Densities and apparent molar volumes of atmospherically important electrolyte solutions. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C, J. Phys. Chem. A. 115 (15) (2011) 3393–3460.spa
dc.relation.referencesW.J. Hamer, Y. Wu, Osmotic coefficients and mean activity coefficients of univalent electrolytes in water at 25°C, J. Phys. Chem. Ref. Data. 1 (4) (2009) 1047.spa
dc.relation.referencesJ.I. Partanen, Mean activity coefficients and osmotic coefficients in dilute aqueous sodium or potassium chloride solutions at temperatures from (0 to 70) °C, J. Chem. Eng. Data. 61 (1) (2016) 286–306.spa
dc.relation.referencesA.S. Brown, D.A. MacInnes, The determination of activity coefficients from the potentials of concentration cells with transference. I. Sodium chloride at 25°, J. Am. Chem. Soc. 57 (7) (1935) 1356–1362.spa
dc.relation.referencesT. Shedlovsky, D.A. MacInnes, The determination of activity coefficients from the potentials of concentration cells with transference. III. Potassium chloride. IV. Calcium chloride, J. Am. Chem. Soc. 59 (3) (1937) 503–506.spa
dc.relation.referencesH.M. Spencer, The activity coefficients of potassium chloride. An application of the extended Debye-Hückel theory to interpretation of freezing point measurements, J. Am. Chem. Soc. 54 (12) (1932) 4490–4497.spa
dc.relation.referencesS.L. Clegg, S. Milioto, D.A. Palmer, Osmotic and activity coefficients of aqueous (NH4)2SO4 as a function of temperature, and aqueous (NH4)2SO4−H2SO4 mixtures at 298.15 K and 323.15 K, J. Chem. Eng. Data. 41 (3) (1996) 455–467.spa
dc.relation.referencesR. Bhat, S.N. Timasheff, Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols, Protein Sci. 1 (9) (1992) 1133–1143.spa
dc.relation.referencesG. Xie, S.N. Timasheff, Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein, Protein Sci. 6 (1) (1997) 211–221.spa
dc.relation.referencesK. Gekko, S.N. Timasheff, Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures, Biochemistry. 20 (16) (1981) 4667–4676.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembAdsorptioneng
dc.subject.lembAdsorciónspa
dc.subject.lembPeptidaseeng
dc.subject.lembPeptidasasspa
dc.subject.lembElectrolyte solutionseng
dc.subject.lembSoluciones electrolíticasspa
dc.subject.proposalα-quimotripsinógenospa
dc.subject.proposalUV-Visspa
dc.subject.proposalDSCspa
dc.subject.proposalα-chymotrypsinogeneng
dc.subject.proposalUV-Viseng
dc.subject.proposalDSCeng
dc.subject.proposalTensión superficialspa
dc.subject.proposalElectrolitosspa
dc.subject.proposalInteracción preferencialspa
dc.subject.proposalSurface tensioneng
dc.subject.proposalElectrolyteseng
dc.subject.proposalPreferential interactioneng
dc.titleEstudio de la estabilidad termodinámica de la proteína α-quimotripsinógeno en soluciones acuosas de electrolitos fuertesspa
dc.title.translatedStudy of the thermodynamic stability of the α-chymotrypsinogen protein in aqueous solutions of strong electrolyteseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80350192.2022.pdf
Tamaño:
2.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: