Uso de hábitat del Oso hormiguero gigante Myrmecophaga tridactyla en paisajes afectados por incendios en el Departamento del Vichada, Orinoquia colombiana
dc.contributor.advisor | Armenteras, Dolors | |
dc.contributor.advisor | González, Tania | |
dc.contributor.author | Moreno Niño, Nathalia | |
dc.contributor.cvlac | Moreno Niño, Nathalia | spa |
dc.contributor.orcid | Moreno Niño, Nathalia [0000000212192017] | spa |
dc.contributor.researchgate | Moreno Niño, Nathalia [Nathalia-Moreno-Nino] | spa |
dc.contributor.researchgroup | Ecología del Paisaje y Modelación de Ecosistemas | spa |
dc.date.accessioned | 2025-04-07T13:56:57Z | |
dc.date.available | 2025-04-07T13:56:57Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, fotografías | spa |
dc.description.abstract | Esta tesis investiga el uso del hábitat del Oso hormiguero gigante (Myrmecophaga tridactyla) en paisajes afectados por incendios en el Departamento del Vichada, Colombia. Reconociendo la importancia ecológica de esta especie y los impactos que la alteración del hábitat provoca en la fauna debido a los incendios, el objetivo de este estudio fue comprender cómo estos cambios ambientales influyen en las preferencias y el uso del hábitat del hormiguero. Utilizando un enfoque de métodos mixtos que incluye trampas cámara, análisis espacial y observaciones de campo, la investigación se llevó a cabo en dos áreas afectadas por incendios dentro del departamento del Vichada. Los resultados indican que no hay cambios significativos en la disponibilidad de recursos entre ambos sitios. Además, nuestros hallazgos sugieren que el uso del hábitat esta mediado principalmente por su comportamiento de termorregulación, similar a lo reportado en otros estudios. Estos resultados sugieren una resiliencia en la especie, evidenciando su capacidad para adaptarse a entornos alterados. Asimismo, se evaluó la distribución potencial de la especie en los escenarios de cambio climático más catastróficos, indicando que para el año 2070 se prevé una reducción en las áreas ideales para su distribución. En este caso, las variables bioclimáticas, como BIO12 y BIO1, mostraron la mayor influencia en los modelos, mientras que la probabilidad de ocurrencia de incendios también tiene un impacto negativo sobre la distribución del hábitat. En este contexto, a nivel local no se evidencia ninguna afectación de los incendios forestales sobre el uso del hábitat de la especie, pero a nivel regional se observa que sí hay un efecto de los incendios sobre la distribución potencial. Sin embargo, es necesario implementar estrategias de conservación que mitiguen los impactos a largo plazo del fuego en sus hábitats. Este estudio contribuye a una comprensión más amplia de la adaptación de la vida silvestre a los incendios forestales y ofrece perspectivas sobre medidas de conservación efectivas para el Oso hormiguero gigante en ecosistemas afectados por incendios (Texto tomado de la fuente) | spa |
dc.description.abstract | This thesis investigates the habitat use of the Giant Anteater (Myrmecophaga tridactyla) in fire-affected landscapes in the Vichada Department, Colombia. Recognizing the ecological importance of this species and the impacts that habitat alteration due to fires has on wildlife, the objective of this study was to understand how these environmental changes influence the preferences and habitat use of the anteater. Using a mixed-methods approach that includes camera traps, spatial analysis with GIS, and field observations, the research was conducted in two fire-affected areas within the Vichada Department. The results indicate that there are no significant changes in resource availability between the two sites. Furthermore, although our findings are not conclusive, they suggest that habitat use is very similar to that reported in other studies, where habitat use is primarily mediated by thermoregulation behavior. It was found that the savanna provides the most information regarding habitat use, albeit with a negative influence. These results suggest resilience in the species, demonstrating its capacity to adapt to altered environments. Additionally, the potential distribution of the species was evaluated in scenarios of more catastrophic climate change, indicating that by 2070 there is an expected reduction in the ideal areas for its distribution. In this case, bioclimatic variables such as BIO12 and BIO1 showed the greatest influence in the models, while the probability of fire occurrence also negatively impacted habitat distribution. In this context, there is no evidence of any effect of forest fires on the species' habitat use at the local level; however, at the regional level, it is observed that there is indeed an effect of fires on potential distribution. Nonetheless, it is essential to implement conservation strategies that mitigate the long-term impacts of fire on their habitats. This study contributes to a broader understanding of wildlife adaptation to wildfires and offers insights into effective conservation measures for the Giant Anteater in fire-affected ecosystems. (Texto tomado de la fuente) | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biología | spa |
dc.description.researcharea | Ecología | spa |
dc.description.sponsorship | Idea Wild | spa |
dc.description.sponsorship | Neotropical Grassland Conservancy | spa |
dc.format.extent | 106 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87856 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | 1. Aguilar-Garavito, M., Isaacs-Cubides, P., Ruiz-Santacruz, J. S., y Cortina Segarra, J. (2021). Wildfire dynamics and impacts on a tropical andean oak forest. International Journal of Wildland Fire, 30(2), 112-124. doi:10.1071/WF20030 | spa |
dc.relation.references | 2. Aguilar-Isaza, Nathalia; Plese, Tinka; Rojano, C. (2016). Programa nacional para la conservación y uso sostenible de las especies del superorden Xenarthra presentes en Colombia. Plan de acción 2014 - 2023. | spa |
dc.relation.references | 3. Anacleto, T. C. S., & Marinho-Filho, J. (2001). Hábito alimentar do tatu canastra (Xenarthra, Dasypodidae) em uma área de Cerrado do Brasil Central. Revista Brasileira de Zoologia, 18, 681–688. | spa |
dc.relation.references | 4. Anacleto, T. C. S. (2007). Food habits of four Armadillo species in the Cerrado Area, Mato Grosso, Brazil. Zoological Studies, 46, 529–537. | spa |
dc.relation.references | 5. Anderson, T. M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A.,... y Packer, C. (2016). The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150314. | spa |
dc.relation.references | 6. Andersen, A. N., & Yen, A. L. (1985). Immediate effects of fire on ants in the semi-arid mallee region of northwestern Victoria. Austral Ecology, 10, 25–30. | spa |
dc.relation.references | 7. Andrade-Ponce, G. P., Cepeda-Duque, J. C., Mandujano, S., Velásquez, K., Gómez-Valencia, B., & Lizcano, D. (2021). Modelos de Ocupación para datos de cámaras trampa: de los conceptos a la interpretación. Mammalogy Notes, 7(1), 1-23. | spa |
dc.relation.references | 8. Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., y Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002 | spa |
dc.relation.references | 9. Armenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., y Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347 | spa |
dc.relation.references | 10. Armenteras, D, Romero, M., y Galindo, G. (2005). Vegetation fire in the savannas of the Llanos orientales of Colombia. World Resource Review, 17(4), 628–647. | spa |
dc.relation.references | 11. Armenteras, Dolors, González-Alonso, F., y Aguilera, C. F. (2009). Distribución geográfica y temporal de incendios en Colombia utilizando datos de anomalías térmicas. Caldasia, 31(2), 303–318. | spa |
dc.relation.references | 12. Armenteras, Dolors, González, T. M., Ríos, O. V., Elizalde, M. C. M., y Oliveras, I. (2020). Fire in the ecosystems of northern South America: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353 | spa |
dc.relation.references | 13. Armenteras D (2022) Cambios en los patrones espaciales de área quemada en Colombia, ¿qué ha pasado en las dos primeras décadas del siglo XXI?. ACCEFYN 1–13. https://doi.org/10.18257/raccefyn.1514 | spa |
dc.relation.references | 14. Avitabile, S. C., Nimmo, D. G., Bennett, A. F., & Clarke, M. F. (2015). Termites are resistant to the effects of fire at multiple spatial scales. PLoS One, 10(11), e0140114. https://doi.org/10.1371/journal.pone.0140114 | spa |
dc.relation.references | 15. Baddeley, A., & Turner, R. (2005). spatstat: An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software, 12(6), 1-42. https://doi.org/10.18637/jss.v012.i06 | spa |
dc.relation.references | 16. Bailey, L. L., MacKenzie, D. I., & Nichols, J. D. (2014). Advances and applications of occupancy models. Methods in Ecology and Evolution, 5(12), 1269-1279. | spa |
dc.relation.references | 17. Banks, S. C., Knight, E. J., McBurney, L., Blair, D., y Lindenmayer, D. B. (2011). The effects of wildfire on mortality and resources for an arboreal marsupial: Resilience to fire events but susceptibility to fire regime change. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0022952 | spa |
dc.relation.references | 18. Barreto JS (2020) Modelo de riesgo de fuego para la ecorregión de los Llanos colombo-venezolanos. Dissertation, Universidad Nacional de Colombia | spa |
dc.relation.references | 19. Barreto, J. S., & Armenteras, D. (2020). Open data and machine learning to model the occurrence of fire in the ecoregion of “llanos colombo–venezolanos”. Remote Sensing, 12(23), 3921. | spa |
dc.relation.references | 20. Bertassoni, A., & Costa, L. C. M. (2010). Behavioral repertoire of giant anteater (Myrmecophaga tridactyla, Linnaeus 1758) in nature at Serra da Canastra National Park, MG and in captivity at Curitiba Zoo, PR, Brazil. Revista de Etologia, 9(2), 21–30. | spa |
dc.relation.references | 21. Bertassoni, A., Mourão, G., & Bianchi, R. D. C. (2020). Space use by giant anteaters (Myrmecophaga tridactyla) in a protected area within human‐modified landscape. Ecology and Evolution, 10(15), 7981-7994. | spa |
dc.relation.references | 22. Bertassoni, A., y Ribeiro, M. C. (2019). Space use by the giant anteater (Myrmecophaga tridactyla): a review and key directions for future research. European Journal of Wildlife Research, 65(6). https://doi.org/10.1007/s10344-019-1334-y | spa |
dc.relation.references | 23. Bertassoni, A., Mourão, G., & Bianchi, R. D. C. (2020). Space use by giant anteaters (Myrmecophaga tridactyla) in a protected area within human‐modified landscape. Ecology and Evolution, 10(15), 7981-7994. | spa |
dc.relation.references | 24. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Jean, M., Cochrane, M. A., Antonio, C. M. D., Defries, R. S., Doyle, J. C., Harrison, P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., … Pyne, S. J. (2009). Supporting Online Material for Fire in the Earth System. May. https://doi.org/10.1126/science.1163886 | spa |
dc.relation.references | 25. Bowman, D. M. J. S., y Haberle, S. G. (2010). Paradise burnt: How colonizing humans transform landscapes with fire. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21234–21235. https://doi.org/10.1073/pnas.1016393108 | spa |
dc.relation.references | 26. Bradstock, R. A., Hammill, K. A., Collins, L., & Price, O. (2010). Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landscape Ecology, 25, 607-619. | spa |
dc.relation.references | 27. Braga, F. G., Souza, N. J., Batista, A. C., & Lima, P. P. (2014). Consumo de formigas cortadeiras por tamanduá-bandeira Myrmecophaga tridactyla (Linnaeus, 1758) em plantios de Pinus spp. no Paraná, Brasil. Edentata, 15, 1–8. | spa |
dc.relation.references | 28. Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: Causes and mechanisms underlying variability in a Panama ant community. Ecology and Evolution, 6(17), 6282–6291. https://doi.org/10.1002/ece3.2355x | spa |
dc.relation.references | 29. Camilo-Alves, C. de S. e P., y Mourão, G. de M. (2006). Responses of a Specialized Insectivorous Mammal (Myrmecophaga tridactyla). Biotropica, 38(1), 52–56. https://doi.org/https://doi.org/10.1111/j.1744- 7429.2006.00106.x | spa |
dc.relation.references | 30. Catling, P. C., y Burt, R. J. (1995). Studies of the ground-dwelling mammals of eucalypt forests in south-eastern New South Wales: The effect of environmental variables on distribution and abundance. Wildlife Research, 22(6), 669–685. https://doi.org/10.1071/WR9950669 | spa |
dc.relation.references | 31. Chamberlain S (2024). ccafs: Client for 'CCAFS' 'GCM' Data_. R package version 0.3.0 | spa |
dc.relation.references | 32. Chia, E.K., Bassett, M., Leonard, S. W. J., Holland, G. J., Ritchie, E. G., Clarke, M. F., y Bennett, A. F. (2016). Effects of the fire regime on mammal occurrence after wildfire: Site effects vs landscape context in fire-prone forests. Forest Ecology and Management, 363, 130–139. https://doi.org/10.1016/j.foreco.2015.12.008 | spa |
dc.relation.references | 33. Chia, E.K., Bassett, M., Nimmo, D. G., Leonard, S. W. J., Ritchie, E. G., Clarke, M. F., Bennett, A. F., y Peters, D. P. C. (2015). Fire severity and fire induced landscape heterogeneity affect arboreal mammals in fire-prone forests. Ecosphere, 6(10). https://doi.org/10.1890/ES15-00327.1 | spa |
dc.relation.references | 34. Chia, Evelyn K., Bassett, M., Leonard, S. W. J., Holland, G. J., Ritchie, E. G., Clarke, M. F., y Bennett, A. F. (2016). Effects of the fire regime on mammal occurrence after wildfire: Site effects vs landscape context in fire-prone forests. Forest Ecology and Management, 363, 130–139. https://doi.org/10.1016/j.foreco.2015.12.008 | spa |
dc.relation.references | 35. Dalerum, F., Boutin, S., y Dunford, J. S. (2007). Wildfire effects on home range size and fidelity of boreal caribou in Alberta, Canada. Canadian Journal of Zoology, 85(1), 26–32. https://doi.org/10.1139/Z06-186 . | spa |
dc.relation.references | 36. Davies, A. B., Parr, C. L., & van Rensburg, B. J. (2010). Termites and fire: Current understanding and future research directions for improved savanna conservation. Austral Ecology, 35, 482–486. | spa |
dc.relation.references | 37. Davies, A. B., Eggleton, P., van Rensburg, B. J., & Parr, C. L. (2012). The pyrodiversity–biodiversity hypothesis: A test with savanna termite assemblages. Journal of Applied Ecology, 49(2), 422–430. | spa |
dc.relation.references | 38. Davies, A. B., Levick, S. R., Asner, G. P., Robertson, M. P., van Rensburg, B. J., & Parr, C. L. (2014). Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 37(9), 852–862. | spa |
dc.relation.references | 39. Dawes-Gromadzki, T. Z. (2007). Short-term effects of low intensity fire on soil macroinvertebrate assemblages in different vegetation patch types in an Australian tropical savanna. Austral Ecology, 32, 663–668. | spa |
dc.relation.references | 40. de Freitas, C. H., Justino, C. S., y Setz, E. Z. F. (2014). Road-kills of the giant anteater in south-eastern Brazil: 10 years monitoring spatial and temporal determinants. Wildlife Research, 41(8), 673. https://doi.org/10.1071/WR14220 | spa |
dc.relation.references | 41. De Frenne , F. Zellweger , F. Rodríguez-Sánchez , BR Scheffers , K. Hylander , M. Luoto , M. Vellend , M. Verheyen , J. Lenoir. (2019). Amortiguación global de las temperaturas bajo las copas de los árboles Ecología y evolución de la naturaleza, 3 (5), págs. 744-749, 10.1038/s41559-019-0842-1 | spa |
dc.relation.references | 42. Delfín-Alfonso, C. A. D., Gallina-Tessaro, S. A. G., & Lopez-González, L. (2009). El hábitat: definición, dimensiones y escalas de evaluación para la fauna silvestre. Manual de Técnicas para el estudio de la Fauna, 317. | spa |
dc.relation.references | 43. Denés, F. v., l. F. Silveira, y S. r. BeiSSinGer. (2015). Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution 6:543–556. | spa |
dc.relation.references | 44. DeSouza, O., Albuquerque, L. B., Tonello, V. M., Pinto, L. P., & Junior, R. R. (2003). Effects of fire on termite generic richness in a savanna-like ecosystem (‘Cerrado’) of central Brazil. Sociobiology, 42, 639–649. | spa |
dc.relation.references | 45. Di Blanco, Y. E., Spørring, K. L., y Di Bitetti, M. S. (2016). Daily activity pattern of reintroduced giant anteaters (Myrmecophaga tridactyla): Effects of seasonality and experience. Mammalia, 81(1), 11–21. https://doi.org/10.1515/mammalia-2015-0088 | spa |
dc.relation.references | 46. Diniz M. F., Brito D. (2015). Protected areas effectiveness in maintaining viable giant anteater (Myrmecophaga tridactyla) populations in an agricultural frontier. Natureza & Conservação.;13(2):145–151. doi: 10.1016/j.ncon.2015.08.001. | spa |
dc.relation.references | 47. Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy: An R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 13(8), 1670-1678. | spa |
dc.relation.references | 48. Driscoll, D. A., Lindenmayer, D. B., Bennett, A. F., Bode, M., Bradstock, R. A., Cary, G. J., Clarke, M. F., Dexter, N., Fensham, R., Friend, G., Gill, M., James, S., Kay, G., Keith, D. A., MacGregor, C., Russell-Smith, J., Salt, D., Watson James, J. E. M., Williams Richard J., R. J., y York, A. (2010). Fire management for biodiversity conservation: Key research questions and our capacity to answer them. Biological Conservation, 143(9), 1928–1939. https://doi.org/10.1016/j.biocon.2010.05.026 | spa |
dc.relation.references | 49. Drumond, M. A. (1992). Padrões de Forrageamento do tamanduá-bandeira (Myrmecophaga tridactyla) no Parque Nacional da Serra da Canastra: Dieta, comportamento alimentar e efeito de queimadas (p. 95). https://www.ufmg.br/pos/ecologia/index.php/dissertacoes/64-1991-1995 | spa |
dc.relation.references | 50. Dunnington, D. (2021). ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.7. https://CRAN.R-project.org/package=ggspatial | spa |
dc.relation.references | 51. Federación Nacional de Industriales de la Madera. (2024). Plantaciones forestales comerciales en Colombia. Consultado en: https://fedemaderas.org.co/plantaciones-forestales-comerciales-2/ | spa |
dc.relation.references | 52. Ferrar, P. (1982). Termites of a South African savanna III. Comparative attack on toilet roll baits in subhabitats. Oecologia, 52, 139–146. | spa |
dc.relation.references | 53. Fiske, I., & Chandler, R. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of statistical software, 43, 1-23. | spa |
dc.relation.references | 54. Fordyce, A., Hradsky, B. A., Ritchie, E. G., y Di Stefano, J. (2016). Fire affects microhabitat selection, movement patterns, and body condition of an Australian rodent (Rattus fuscipes). Journal of Mammalogy, 97(1), 102–111. https://doi.org/10.1093/jmammal/gyv159 | spa |
dc.relation.references | 55. Gaudin, T. J., Hicks, P., & Di Blanco, Y. (2018). Myrmecophaga tridactyla (pilosa: myrmecophagidae). Mammalian Species, 50(956), 1-13. | spa |
dc.relation.references | 56. Giroux, A., Ortega, Z., Bertassoni, A., Desbiez, A. L. J., Kluyber, D., Massocato, G. F., ... & OLIVEIRA‐SANTOS, L. G. R. (2022). The role of environmental temperature on movement patterns of giant anteaters. Integrative Zoology, 17(2), 285-296. | spa |
dc.relation.references | 57. Giroux, A., Ortega, Z., Attias, N., Desbiez, A. L. J., Valle, D., Börger, L., & Oliveira-Santos, L. G. R. (2023). Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour, 201, 191-209. | spa |
dc.relation.references | 58. González, T. M., González-Trujillo, J. D., Muñoz, A., y Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005 | spa |
dc.relation.references | 59. Greenwell, B. M., Boehmke, B. C., & Cunningham, J. (2023). gbm: Generalized Boosted Regression Models. R package version 2.1.8. https://CRAN.R-project.org/package=gbm | spa |
dc.relation.references | 60. Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009 Hijmans, R. J. (2023). terra: Spatial Data Analysis. R package version 1.7-23. https://CRAN.R-project.org/package=terra colorspace: | spa |
dc.relation.references | 61. Figel, J. J., Botero-Cañola, S., Forero-Medina, G., Sánchez-Londoño, J. D., Valenzuela, L., & Noss, R. F. (2019). Wetlands are keystone habitats for jaguars in an intercontinental biodiversity hotspot. PLoS One, 14(9), e0221705. | spa |
dc.relation.references | 62. Hall, L. S., Krausman, P. R., y Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25(1), 173– 182. | spa |
dc.relation.references | 63. Haslem, A., Kelly, L. T., Nimmo, D. G., Watson, S. J., Kenny, S. A., Taylor, R. S., et al. (2011). Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. Journal of Applied Ecology, 48, 247–256. | spa |
dc.relation.references | 64. Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package ‘dismo’. Circles, 9(1), 1-68. | spa |
dc.relation.references | 65. Hijmans, R. J. (2022). terra: Spatial Data Analysis. R package version 1.5-21. | spa |
dc.relation.references | 66. Hoffmann, B. D., & Andersen, A. N. (2023). Patterns of European ant communities reveal a functionally coherent Holarctic fauna. Diversity, 15, 341. | spa |
dc.relation.references | 67. Hohnen, R., Tuft, K. D., Legge, S., Radford, I. J., Carver, S., y Johnson, C. N. (2015). Post-fire habitat use of the golden-backed tree-rat (Mesembriomys macrurus) in the northwest Kimberley, Western Australia. Austral Ecology, 40(8), 941–952. https://doi.org/10.1111/aec.12278 | spa |
dc.relation.references | 68. Instituto Geográfico Agustin Codazi (IGAC). Datos Abiertos Cartografía y Geografía. https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia. Consultado 2024. | spa |
dc.relation.references | 69. Jenkins, C. N., et al. (2011). Global diversity in light of climate change: The case of ants. Diversity and Distributions, 17(4), 652–662. https://doi.org/10.1111/j.1472-4642.2011.00770.x | spa |
dc.relation.references | 70. Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, 1211–1219. | spa |
dc.relation.references | 71. Jorge, M. H., Garrison, E. P., Conner, L. M., y Cherry, M. J. (2020). Fire and land cover drive predator abundances in a pyric landscape. Forest Ecology and Management, 461. https://doi.org/10.1016/j.foreco.2020.117939 | spa |
dc.relation.references | 72. Kays R, Arbogast BS, Baker‐Whatton M, Beirne C, Boone HM, Bowler M, Burneo SF, Cove MV, Ding P, Espinosa S. (2020). An empirical evaluation of camera trap study design: how many, how long, and when? Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13370 | spa |
dc.relation.references | 73. Kreutz, K., Fischer, F., & Linsenmair, R. E. (2012). Timber plantations as favourite habitat for giant anteaters. Mammalia, 76, 137–142. | spa |
dc.relation.references | 74. Körtner, G., Pavey, C. R., y Geiser, F. (2007). Spatial ecology of the mulgara in arid Australia: Impact of fire history on home range size and burrow use. Journal of Zoology, 273(4), 350–357. https://doi.org/10.1111/j.1469- 7998.2007.00334.x | spa |
dc.relation.references | 75. Kreutz, K., Fischer, F., y Linsenmair, K. E. (2012). Timber plantations as favorite habitat for giant anteaters. Mammalia, 76(2), 137–142. https://doi.org/10.1515/mammalia-2011-0049 | spa |
dc.relation.references | 76. Laurance, W. F., & Williamson, G. B. (2001). Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15, 1529–1535. | spa |
dc.relation.references | 77. Leahy, L., Legge, S. M., Tuft, K., McGregor, H. W., Barmuta, L. A., Jones, M. E., y Johnson, C. N. (2015). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research, 42(8), 705–716. https://doi.org/10.1071/WR15011 | spa |
dc.relation.references | 78. Lindenmayer, D. B., Welsh, A., Donnelly, C. F., & Cunningham, R. B. (1996). Use of nest trees by the Mountain Brushtail Possum (Trichosurus caninus) (Phalangeridae: Marsupialia). II. Characteristics of occupied trees. Wildlife Research, 23, 531–545. | spa |
dc.relation.references | 79. Lindenmayer, D. B., Blanchard, W., Mcburney, L., Blair, D., Banks, S. C., y Driscoll, D. (2013). Fire severity and landscape context effects on arboreal marsupials. BIOLOGICAL CONSERVATION, 167, 137–148. https://doi.org/10.1016/j.biocon.2013.07.028 | spa |
dc.relation.references | 80. Lindenmayer, D. B., MacGregor, C., Welsh, A., Donnelly, C., Crane, M., Michael, D., Montague-Drake, R., Cunningham, R. B., Brown, D., Fortescue, M., Hudson, M., y Gill, A. M. (2008). Contrasting mammal responses to vegetation type and fire. Wildlife Research, 35(5), 395–408. https://doi.org/10.1071/WR07156 | spa |
dc.relation.references | 81. Lindenmayer, D. B., et al. (2010). Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation, 143, 1587–1593. | spa |
dc.relation.references | 82. Litt, A. R., y Steidl, R. J. (2011). Interactive effects of fire and nonnative plants on small mammals in Grasslands. Wildlife Monographs, 176, 1–31. https://doi.org/10.1002/wmon.2 | spa |
dc.relation.references | 83. Lizcano D.J. (2019). Simulación y análisis de ocupación. Entendiendo las simulaciones y el modelo básico de ocupación (Version 1). Zenodo. http://doi.org/10.5281/zenodo.4028019 | spa |
dc.relation.references | 84. Lorena, A. C., Jacintho, L. F., Siqueira, M. F., De Giovanni, R., Lohmann, L. G., De Carvalho, A. C., & Yamamoto, M. (2011). Comparing machine learning classifiers in potential distribution modelling. Expert Systems with Applications, 38(5), 5268-5275. | spa |
dc.relation.references | 85. Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist, 156(2), 201–219. | spa |
dc.relation.references | 86. Lubin, Y. D., Montgomery, G. G., & Young, O. P. (1977). Food resources of anteaters (Edentata: Myrmecophagidae) I. A year’s census of arboreal nests of ants and termites on Barro Colorado Island, Panama Canal Zone. Biotropica, 9(1), 26–34. | spa |
dc.relation.references | 87. Maravalhas, J., & Vasconcelos, H. L. (2014). Revisando la hipótesis de la pirodiversidad y la biodiversidad: Regímenes de incendios a largo plazo y la estructura de las comunidades de hormigas en un punto crítico de la sabana neotropical. Journal of Applied Ecology, 51, 1661–1668. | spa |
dc.relation.references | 88. Marini, M. Â., Barbet-Massin, M., Lopes, L. E., & Jiguet, F. (2009). Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conservation Biology, 23, 1–9. | spa |
dc.relation.references | 89. Mboukou-Kimbatsa, I. M. C., Bernhard-Reversat, F., & Loumeto, J. J. (1998). Change in soil macrofauna and vegetation when fast-growing trees are planted on savanna soils. Forest Ecology and Management, 110, 1–12. | spa |
dc.relation.references | 90. McKenzie, D., Z. Gedalof, D.L. Peterson, and P. Mote. (2004). Climatic change, wildfire, and conservation. Conservation Biology 18: 890–902. | spa |
dc.relation.references | 91. MacKenzie, D. I., J. D.Nichols, G. B.Lachman, S.Droege, A. J.Royle, and C. A.Langtimm. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology83:2248–2255. | spa |
dc.relation.references | 92. MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84(8), 2200–2207. doi: 10.1890/02-3090 | spa |
dc.relation.references | 93. McKenzie, D., Miller, C., & Falk, D. A. (Eds.). (2011). The Landscape Ecology of Fire. Ecological Studies. doi:10.1007/978-94-007-0301-8 | spa |
dc.relation.references | 94. Matthews, A., Lunney, D., Gresser, S., y Maitz, W. (2016). Movement patterns of koalas in remnant forest after fire. Australian Mammalogy, 38(1), 91–104. https://doi.org/10.1071/AM14010 | spa |
dc.relation.references | 95. Matthews, J. K., Stawski, C., Körtner, G., Parker, C. A., y Geiser, F. (2017). Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 187(2), 385–393. https://doi.org/10.1007/s00360-016-1039-4 | spa |
dc.relation.references | 96. McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403 | spa |
dc.relation.references | 97. McNab, B. K. (1984). Physiological convergence amongst ant‐eating and termite‐eating mammals. Journal of Zoology, 203(4), 485–510. https://doi.org/10.1111/j.1469-7998.1984.tb02345.x | spa |
dc.relation.references | 98. Medri, Í. M., y Mourão, G. (2005). Home range of giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetland, Brazil. Journal of Zoology, 266(4), 365–375. https://doi.org/10.1017/S0952836905007004 | spa |
dc.relation.references | 99. Meza-Elizalde, M. C., et al. (2021). Perspectivas para el manejo integral del fuego en la cuenca del río Bita. Grupo de Investigación en Ecología del Paisaje y Modelación de Ecosistemas, Facultad de Ciencias, Universidad Nacional de Colombia. | spa |
dc.relation.references | 100. Mills, D., Fattebert, J., Hunter, L., y Slotow, R. (2019). Maximising camera trap data: Using attractants to improve detection of elusive species in multi species surveys. PloS one, 14(5), e0216447. | spa |
dc.relation.references | 101. Miranda, A. C., Miranda, H. S., Dias, I. D. F. O., & de Souza Dias, B. F. (1993). Soil and air temperatures during prescribed cerated fires in Central Brazil. Journal of tropical ecology, 9(3), 313-320. | spa |
dc.relation.references | 102. Miranda, F., Bertassoni, A., y Abba, A. M. (2014). Myrmecophaga tridactyla (Giant Anteater). April. http://maps.iucnredlist.org/map.html?id=14224 | spa |
dc.relation.references | 103. Miranda, F., Chiarello, A., Röhe, F., Braga, F., Mourão, G., Braga, G., Silva, K., Faria-Correa, M., Vaz, S., & Silva, S. (2015). Avaliação do risco de extinção de Myrmecophaga tridactyla Linnaeus,1758 no Brasil. In Instituto Chico Mendes de Conservação da Biodiversidade (Ed.), Avaliação do Risco de Extinção dos Xenartros Brasileiros (Estado de Conservação da Fauna Brasileira, No. 2, pp. 89-105). ICMBio. | spa |
dc.relation.references | 104. Montenegro, J., y Acosta, A. (2008). PROGRAMA INNOVADOR PARA EVALUAR USO Y INNOVATIVE PROGRAM FOR HABITAT USE AND PREFERENCE EVALUATION. 13, 208–217. | spa |
dc.relation.references | 105. Montgomery, G. G., & Lubin, Y. D. (1977). Prey influences on movements of Neotropical anteaters. In R. L. Phillips & C. Jonkel (Eds.), Proceedings of the 1975 predator symposium (pp. 103–131). Montana Forest and Conservation Experiment Station, University of Montana, Missoula. | spa |
dc.relation.references | 106. Morais H. C. & Benson W. W. (1987) Recolonização de vegetação de cerrado após queimada por formigas arborícolas. Rev. Bras. Biol. 48, 459–66. | spa |
dc.relation.references | 107. Mowat EJ, Webb JK, Crowther MS. (2015). Fire-mediated niche separation between two sympatric small mammal species. Austral Ecol. 40(1):50–59 | spa |
dc.relation.references | 108. Müller, D., Suess, S., y Hoffmann, A. A. (2013). The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD + in the Lao PDR. https://doi.org/10.1007/s10745-013-9565-0 | spa |
dc.relation.references | 109. O’Connell AF, Nichols JD, Karanth KU. (2010). Camera Traps in Animal Ecology: Methods and Analyses. Springer Science & Business Media | spa |
dc.relation.references | 110. Parr, C. L., & Bishop, T. R. (2022). The response of ants to climate change. Global Change Biology, 28(10), 3188–3205. | spa |
dc.relation.references | 111. Pausas, J. G., & Parr, C. L. (2018). Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology, 32(2), 113-125. | spa |
dc.relation.references | 112. Pearson R.G. (2007). Species’ distribution modeling conservation educators and practitioners. Synthesis, American Museum of Natural History, New York | spa |
dc.relation.references | 113. Pearson, R. G. (2006). Climate change and the migration capacity of species. Trends in Ecology & Evolution, 21, 111–113. | spa |
dc.relation.references | 114. Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. https://doi.org/10.32614/RJ-2018-009 terra: | spa |
dc.relation.references | 115. Peterson, A. T., Ball, L. G., & Cohoon, K. P. (2002). Predicting distribution of Mexican birds using ecological niche modeling methods. Ibis, 144, E27–E32. | spa |
dc.relation.references | 116. Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510. | spa |
dc.relation.references | 117. Petrazzini, P. B., & Aguiar, L. M. (2021). You say goodbye, and I say hello: the giant anteater (Myrmecophaga tridactyla) activity pattern in response to temperature and human presence. Mastozoología neotropical, 28(1), 469-469. | spa |
dc.relation.references | 118. Prada, M. (2001). Effects of fire on the abundance of large mammalian herbivores in Mato Grosso, Brazil. Mammalia, 65(1), 55–62. https://doi.org/10.1515/mamm.2001.65.1.55 | spa |
dc.relation.references | 119. Prada, M., y Marinho-Filho, J. (2004). Effects of fire on the abundance of xenarthrans in Mato Grosso, Brazil. Austral Ecology, 29(5), 568–573. https://doi.org/10.1111/j.1442-9993.2004.01391.x | spa |
dc.relation.references | 120. Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349-361. | spa |
dc.relation.references | 121. Quiroga, V. A., Noss, A. J., Boaglio, G. I., & Di Bitetti, M. S. (2016). Local and continental determinants of giant anteater (Myrmecophaga tridactyla) abundance: biome, human and jaguar roles in population regulation. Mammalian Biology, 81, 274-280. | spa |
dc.relation.references | 122. Radford, I. J. (2012). Threatened mammals become more predatory after small-scale prescribed fires in a high-rainfall rocky savanna. Austral Ecology, 37(8), 926–935. https://doi.org/10.1111/j.1442-9993.2011.02352.x | spa |
dc.relation.references | 123. Raybuck, A. L., Moorman, C. E., Greenberg, C. H., DePerno, C. S., Gross, K., Simon, D. M., y Warburton, G. S. (2012). Short-term response of small mammals following oak regeneration silviculture treatments. Forest Ecology and Management, 274, 10–16. https://doi.org/10.1016/j.foreco.2012.02.012 | spa |
dc.relation.references | 124. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ... & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic change, 109, 33-57. | spa |
dc.relation.references | 125. Rodríguez-Posada M. E., D. Gutiérrez-Sanabria, D. Burbano, C. F.-R. y B. G.-V. (2018). Plan de Conservación de los Osos Hormigueros. In Fundación Reserva Natural La Palmita Centro de Investigación, Corporación Autónoma Regional de la Orinoquia - Corporino. In Fundación Reserva Natural La Palmita Centro de Investigación, Corporación Autónoma Regional de la Orinoquia - Corporinoquia. | spa |
dc.relation.references | 126. Rojano Bolaño, C., Giraldo, M. E. L., Miranda-Cortés, L., y Ávila, R. A. (2015). Área de vida y uso de hábitats de dos individuos de oso palmero (Myrmecophaga tridactyla) en Pore, Casanare, Colombia. Edentata, 16, 37– 45. http://www.xenarthrans.org/newsletter/view/id/21 | spa |
dc.relation.references | 127. Rojano Bolaño, C., Miranda-Cortés, L., y Ávila, R. A. (2015). Densidad poblacional y biomasa del Oso hormiguero gigante (Myrmecophaga tridactyla) en Pore, Casanare, Colombia. Revista Biodiversidad Neotropical, 5(1), 64–70. https://doi.org/10.18636/bioneotropical.v5i1.169 | spa |
dc.relation.references | 128. Rojano, C., y Monsalve, S. (2014). Manual de Rehabilitación de Hormigueros de Colombia (Issue January). | spa |
dc.relation.references | 129. Rojano, C., Padilla, H., Giraldo, A., Álvarez, G., y Ramo, E. (2015). Registro de presencia del oso palmero (Myrmecophaga tridactyla) en plantaciones forestales comerciales en Colombia. Edentata, 16(December), 72–77. http://www.xenarthrans.org | spa |
dc.relation.references | 130. Rojano, C., Humanez-López, E. & Rincón-Aranguri, M. (Eds). (2023). Manual de campo para el estudio de hormigueros. Fundación Cunaguaro, Parex Resources Colombia Ltd. Sucursal, Corporinoquia. | spa |
dc.relation.references | 131. Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence–absence data or point counts. Ecology, 84(3), 777-790. | spa |
dc.relation.references | 132. Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. | spa |
dc.relation.references | 133. Salazar, N., Meza, M. C., Espelta, J. M., y Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021 | spa |
dc.relation.references | 134. Sandoval-Gómez, V. E., Ramérez-Chaves, H. E., y Marín, D. (2012). Registros de Hormigas y Termitas Presentes en la Dieta de Osos Hormigueros (Mammalia: Myrmecophagidae) en Tres Localidades de Colombia. Edentata. https://doi.org/10.5537/020.013.0104 | spa |
dc.relation.references | 135. Santos, P. M., Bocchiglieri, A., y Chiarello, A. G. (2019). NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. April. https://doi.org/10.1002/ecy.2663 | spa |
dc.relation.references | 136. Santos, P. M., Bocchiglieri, A., Chiarello, A. G., Paglia, A. P., Moreira, A., de Souza, A. C., Abba, A. M., Paviolo, A., Gatica, A., Medeiro, A. Z., Costa, A. N., Gallina, A. G., Yanosky, A. A., Jesus, A., Bertassoni, A., Rocha, A., Bovo, A. A. A., Bager, A., Mol, A. C., … Galetti, M. (2019). NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. Ecology, 100(7). https://doi.org/10.1002/ecy.2663 | spa |
dc.relation.references | 137. Semper-Pascual, A., Decarre, J., Baumann, M., Camino, M., Di Blanco, Y., Gómez-Valencia, B., y Kuemmerle, T. (2020). Using occupancy models to assess the direct and indirect impacts of agricultural expansion on species’ populations. Biodiversity and Conservation, 29(13), 3669–3688. https://doi.org/10.1007/s10531-020-02042-1 | spa |
dc.relation.references | 138. Shaw, J. H., Machado-Neto, J., y Carter, T. S. (1987). Behavior of Free-Living Giant Anteaters (Myrmecophaga tridactyla). Biotropica, 19(3), 255. https://doi.org/10.2307/2388344 | spa |
dc.relation.references | 139. Silveira, L., Rodrigues, F. H. G., De Jacorno, A. T. A., y Diniz, J. A. F. (1999). Impact of wildfires on the megafauna of Emas National Park, central Brazil. ORYX, 33(2), 108–114. https://doi.org/10.1046/j.1365-3008.1999.00039.x | spa |
dc.relation.references | 140. Silveira, Leandro, Henrique, F., Rodrigues, G., de Almeida Jácomo, A. T., y Filho, J. A. F. D. (1999). Impact of wildfires on the megafauna of Emas National Park, central Brazil. Oryx, 33(02), 108. https://doi.org/10.1017/s0030605300030362 | spa |
dc.relation.references | 141. Simon, N. P. P., Stratton, C. B., Forbes, G. J., y Schwab, F. E. (2002). Similarity of small mammal abundance in post-fire and clearcut forests. Forest Ecology and Management, 165(1–3), 163–172. https://doi.org/10.1016/S0378-1127(01)00613-2 | spa |
dc.relation.references | 142. Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing Classifier Performance in R. Bioinformatics, 21(20), 3940-3941. https://doi.org/10.1093/bioinformatics/bti623 | spa |
dc.relation.references | 143. Siqueira, M. F. D., & Peterson, A. T. (2003). Consequences of global climate change for geographic distributions of Cerrado tree species. Biota Neotropica, 3, 1–14. | spa |
dc.relation.references | 144. Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56(4), 740-749. | spa |
dc.relation.references | 145. Sondej, I., & Domisch, T. (2024). Impact of large-scale fire and habitat type on ant nest density and species abundance in Biebrza National Park, Poland. Forests, 15(1), 123. | spa |
dc.relation.references | 146. Stawski, C., Matthews, J. K., Körtner, G., y Geiser, F. (2015). Physiological and behavioural responses of a small heterothermic mammal to fire stimuli. Physiology and Behavior, 151, 617–622. https://doi.org/10.1016/j.physbeh.2015.09.002 | spa |
dc.relation.references | 147. Swan, M., Christie, F., Sitters, H., York, A., Di Stefano, J. (2015). Predicting faunal fire responses in heterogeneous landscapes: The role of habitat structure. Ecological Applications, 25(8), 2293–2305. https://doi.org/10.1890/14-1533.1 | spa |
dc.relation.references | 148. Timo, T. P. C., Lyra-Jorge, M. C., Gheler-Costa, C., y Verdade, L. M. (2014). Effect of the plantation age on the use of eucalyptus stands by medium to large-sized wild mammals in south-eastern brazil. IForest, 8(April), 108–113. https://doi.org/10.3832/ifor1237-008 | spa |
dc.relation.references | 149. Trujillo, F. y C. A. Lasso (Eds.). –(2017). IV. Biodiversidad del río Bita, Vichada, Colombia. Serie Editorial Fauna Silvestre Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia. 349 pp | spa |
dc.relation.references | 150. Urbanek, S. (2023). rJava: Low-Level R to Java Interface. R package version 1.0-6. https://CRAN.R-project.org/package=rJava | spa |
dc.relation.references | 151. Del Valle SM, Halloy M. (2003). El oso hormiguero, Myrmecophaga tridactyla: crecimiento e independización de una cría. Mastozool Neotropical. 10(2):323-30. | spa |
dc.relation.references | 152. Versiani, N. F. et al. (2021). Protected areas and unpaved roads mediate habitat use of the giant anteater in anthropogenic landscapes. Journal of Mammalogy. | spa |
dc.relation.references | 153. Villabona, D. A., y Pascual, D. A. (2012). Fire incidence on vegetation in Cundinamarca and Bogota D.C. (Colombia) during the 2001-2010 period. Acta Biológica Colombiana, 17(1), 143–158. | spa |
dc.relation.references | 154. Vieira, J., Camarota, F., & Vasconcelos, H. L. (2021). Trophic ecology of the arboreal and ground ant communities in forests and savannas of central Brazil. Ecological Entomology, 46, 936–945. | spa |
dc.relation.references | 155. Wei, T., & Simko, V. (2021). An introduction to corrplot package. R Package. tidyverse: | spa |
dc.relation.references | 156. Wickham, H. (2019). Tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. https://CRAN.R-project.org/package=tidyversesf: | spa |
dc.relation.references | 157. Wu T., Li W., Ji J., Xin X., et al. (2012) The 20th century global carbon cycle from the Beijing Climate Center Climate System Model (BCC_CSM). Submitted to J. Climate (Full text) | spa |
dc.relation.references | 158. Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting Colors for Statistical Graphics. Computational Statistics & Data Analysis, 53(9), 3259-3270. https://doi.org/10.1016/j.csda.2008.11.033 | spa |
dc.relation.references | 159. Zimbres, B. Q., de Aquino, P. D. P. U., Machado, R. B., Silveira, L., Jácomo, A. T., Sollmann, R., & Marinho-Filho, J. (2012). Range shifts under climate change and the role of protected areas for armadillos and anteaters. Biological Conservation, 152, 53–61. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.subject.agrovoc | Habitat | spa |
dc.subject.agrovoc | Incendio forestal | spa |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.ddc | 590 - Animales::599 - Mamíferos | spa |
dc.subject.proposal | Fototrampeo | spa |
dc.subject.proposal | Incendios forestales | spa |
dc.subject.proposal | Uso de hábitat | spa |
dc.subject.proposal | Post-fuego | spa |
dc.subject.proposal | Xenarthra | spa |
dc.subject.wikidata | Xenartros | spa |
dc.title | Uso de hábitat del Oso hormiguero gigante Myrmecophaga tridactyla en paisajes afectados por incendios en el Departamento del Vichada, Orinoquia colombiana | spa |
dc.title.translated | Habitat use of the giant anteater Myrmecophaga tridactyla in fire-affected landscapes in the Department of Vichada, Colombian Orinoquia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032452290.2025.pdf
- Tamaño:
- 2.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: