Uso de hábitat del Oso hormiguero gigante Myrmecophaga tridactyla en paisajes afectados por incendios en el Departamento del Vichada, Orinoquia colombiana

dc.contributor.advisorArmenteras, Dolors
dc.contributor.advisorGonzález, Tania
dc.contributor.authorMoreno Niño, Nathalia
dc.contributor.cvlacMoreno Niño, Nathaliaspa
dc.contributor.orcidMoreno Niño, Nathalia [0000000212192017]spa
dc.contributor.researchgateMoreno Niño, Nathalia [Nathalia-Moreno-Nino]spa
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemasspa
dc.date.accessioned2025-04-07T13:56:57Z
dc.date.available2025-04-07T13:56:57Z
dc.date.issued2025
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractEsta tesis investiga el uso del hábitat del Oso hormiguero gigante (Myrmecophaga tridactyla) en paisajes afectados por incendios en el Departamento del Vichada, Colombia. Reconociendo la importancia ecológica de esta especie y los impactos que la alteración del hábitat provoca en la fauna debido a los incendios, el objetivo de este estudio fue comprender cómo estos cambios ambientales influyen en las preferencias y el uso del hábitat del hormiguero. Utilizando un enfoque de métodos mixtos que incluye trampas cámara, análisis espacial y observaciones de campo, la investigación se llevó a cabo en dos áreas afectadas por incendios dentro del departamento del Vichada. Los resultados indican que no hay cambios significativos en la disponibilidad de recursos entre ambos sitios. Además, nuestros hallazgos sugieren que el uso del hábitat esta mediado principalmente por su comportamiento de termorregulación, similar a lo reportado en otros estudios. Estos resultados sugieren una resiliencia en la especie, evidenciando su capacidad para adaptarse a entornos alterados. Asimismo, se evaluó la distribución potencial de la especie en los escenarios de cambio climático más catastróficos, indicando que para el año 2070 se prevé una reducción en las áreas ideales para su distribución. En este caso, las variables bioclimáticas, como BIO12 y BIO1, mostraron la mayor influencia en los modelos, mientras que la probabilidad de ocurrencia de incendios también tiene un impacto negativo sobre la distribución del hábitat. En este contexto, a nivel local no se evidencia ninguna afectación de los incendios forestales sobre el uso del hábitat de la especie, pero a nivel regional se observa que sí hay un efecto de los incendios sobre la distribución potencial. Sin embargo, es necesario implementar estrategias de conservación que mitiguen los impactos a largo plazo del fuego en sus hábitats. Este estudio contribuye a una comprensión más amplia de la adaptación de la vida silvestre a los incendios forestales y ofrece perspectivas sobre medidas de conservación efectivas para el Oso hormiguero gigante en ecosistemas afectados por incendios (Texto tomado de la fuente)spa
dc.description.abstractThis thesis investigates the habitat use of the Giant Anteater (Myrmecophaga tridactyla) in fire-affected landscapes in the Vichada Department, Colombia. Recognizing the ecological importance of this species and the impacts that habitat alteration due to fires has on wildlife, the objective of this study was to understand how these environmental changes influence the preferences and habitat use of the anteater. Using a mixed-methods approach that includes camera traps, spatial analysis with GIS, and field observations, the research was conducted in two fire-affected areas within the Vichada Department. The results indicate that there are no significant changes in resource availability between the two sites. Furthermore, although our findings are not conclusive, they suggest that habitat use is very similar to that reported in other studies, where habitat use is primarily mediated by thermoregulation behavior. It was found that the savanna provides the most information regarding habitat use, albeit with a negative influence. These results suggest resilience in the species, demonstrating its capacity to adapt to altered environments. Additionally, the potential distribution of the species was evaluated in scenarios of more catastrophic climate change, indicating that by 2070 there is an expected reduction in the ideal areas for its distribution. In this case, bioclimatic variables such as BIO12 and BIO1 showed the greatest influence in the models, while the probability of fire occurrence also negatively impacted habitat distribution. In this context, there is no evidence of any effect of forest fires on the species' habitat use at the local level; however, at the regional level, it is observed that there is indeed an effect of fires on potential distribution. Nonetheless, it is essential to implement conservation strategies that mitigate the long-term impacts of fire on their habitats. This study contributes to a broader understanding of wildlife adaptation to wildfires and offers insights into effective conservation measures for the Giant Anteater in fire-affected ecosystems. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaEcologíaspa
dc.description.sponsorshipIdea Wildspa
dc.description.sponsorshipNeotropical Grassland Conservancyspa
dc.format.extent106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87856
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedAgrovocspa
dc.relation.references1. Aguilar-Garavito, M., Isaacs-Cubides, P., Ruiz-Santacruz, J. S., y Cortina Segarra, J. (2021). Wildfire dynamics and impacts on a tropical andean oak forest. International Journal of Wildland Fire, 30(2), 112-124. doi:10.1071/WF20030spa
dc.relation.references2. Aguilar-Isaza, Nathalia; Plese, Tinka; Rojano, C. (2016). Programa nacional para la conservación y uso sostenible de las especies del superorden Xenarthra presentes en Colombia. Plan de acción 2014 - 2023.spa
dc.relation.references3. Anacleto, T. C. S., & Marinho-Filho, J. (2001). Hábito alimentar do tatu canastra (Xenarthra, Dasypodidae) em uma área de Cerrado do Brasil Central. Revista Brasileira de Zoologia, 18, 681–688.spa
dc.relation.references4. Anacleto, T. C. S. (2007). Food habits of four Armadillo species in the Cerrado Area, Mato Grosso, Brazil. Zoological Studies, 46, 529–537.spa
dc.relation.references5. Anderson, T. M., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A.,... y Packer, C. (2016). The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150314.spa
dc.relation.references6. Andersen, A. N., & Yen, A. L. (1985). Immediate effects of fire on ants in the semi-arid mallee region of northwestern Victoria. Austral Ecology, 10, 25–30.spa
dc.relation.references7. Andrade-Ponce, G. P., Cepeda-Duque, J. C., Mandujano, S., Velásquez, K., Gómez-Valencia, B., & Lizcano, D. (2021). Modelos de Ocupación para datos de cámaras trampa: de los conceptos a la interpretación. Mammalogy Notes, 7(1), 1-23.spa
dc.relation.references8. Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., y Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002spa
dc.relation.references9. Armenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., y Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347spa
dc.relation.references10. Armenteras, D, Romero, M., y Galindo, G. (2005). Vegetation fire in the savannas of the Llanos orientales of Colombia. World Resource Review, 17(4), 628–647.spa
dc.relation.references11. Armenteras, Dolors, González-Alonso, F., y Aguilera, C. F. (2009). Distribución geográfica y temporal de incendios en Colombia utilizando datos de anomalías térmicas. Caldasia, 31(2), 303–318.spa
dc.relation.references12. Armenteras, Dolors, González, T. M., Ríos, O. V., Elizalde, M. C. M., y Oliveras, I. (2020). Fire in the ecosystems of northern South America: Advances in the ecology of tropical fires in Colombia, Ecuador and Peru. Caldasia, 42(1), 1–16. https://doi.org/10.15446/caldasia.v42n1.77353spa
dc.relation.references13. Armenteras D (2022) Cambios en los patrones espaciales de área quemada en Colombia, ¿qué ha pasado en las dos primeras décadas del siglo XXI?. ACCEFYN 1–13. https://doi.org/10.18257/raccefyn.1514spa
dc.relation.references14. Avitabile, S. C., Nimmo, D. G., Bennett, A. F., & Clarke, M. F. (2015). Termites are resistant to the effects of fire at multiple spatial scales. PLoS One, 10(11), e0140114. https://doi.org/10.1371/journal.pone.0140114spa
dc.relation.references15. Baddeley, A., & Turner, R. (2005). spatstat: An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software, 12(6), 1-42. https://doi.org/10.18637/jss.v012.i06spa
dc.relation.references16. Bailey, L. L., MacKenzie, D. I., & Nichols, J. D. (2014). Advances and applications of occupancy models. Methods in Ecology and Evolution, 5(12), 1269-1279.spa
dc.relation.references17. Banks, S. C., Knight, E. J., McBurney, L., Blair, D., y Lindenmayer, D. B. (2011). The effects of wildfire on mortality and resources for an arboreal marsupial: Resilience to fire events but susceptibility to fire regime change. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0022952spa
dc.relation.references18. Barreto JS (2020) Modelo de riesgo de fuego para la ecorregión de los Llanos colombo-venezolanos. Dissertation, Universidad Nacional de Colombiaspa
dc.relation.references19. Barreto, J. S., & Armenteras, D. (2020). Open data and machine learning to model the occurrence of fire in the ecoregion of “llanos colombo–venezolanos”. Remote Sensing, 12(23), 3921.spa
dc.relation.references20. Bertassoni, A., & Costa, L. C. M. (2010). Behavioral repertoire of giant anteater (Myrmecophaga tridactyla, Linnaeus 1758) in nature at Serra da Canastra National Park, MG and in captivity at Curitiba Zoo, PR, Brazil. Revista de Etologia, 9(2), 21–30.spa
dc.relation.references21. Bertassoni, A., Mourão, G., & Bianchi, R. D. C. (2020). Space use by giant anteaters (Myrmecophaga tridactyla) in a protected area within human‐modified landscape. Ecology and Evolution, 10(15), 7981-7994.spa
dc.relation.references22. Bertassoni, A., y Ribeiro, M. C. (2019). Space use by the giant anteater (Myrmecophaga tridactyla): a review and key directions for future research. European Journal of Wildlife Research, 65(6). https://doi.org/10.1007/s10344-019-1334-yspa
dc.relation.references23. Bertassoni, A., Mourão, G., & Bianchi, R. D. C. (2020). Space use by giant anteaters (Myrmecophaga tridactyla) in a protected area within human‐modified landscape. Ecology and Evolution, 10(15), 7981-7994.spa
dc.relation.references24. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Jean, M., Cochrane, M. A., Antonio, C. M. D., Defries, R. S., Doyle, J. C., Harrison, P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., … Pyne, S. J. (2009). Supporting Online Material for Fire in the Earth System. May. https://doi.org/10.1126/science.1163886spa
dc.relation.references25. Bowman, D. M. J. S., y Haberle, S. G. (2010). Paradise burnt: How colonizing humans transform landscapes with fire. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21234–21235. https://doi.org/10.1073/pnas.1016393108spa
dc.relation.references26. Bradstock, R. A., Hammill, K. A., Collins, L., & Price, O. (2010). Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landscape Ecology, 25, 607-619.spa
dc.relation.references27. Braga, F. G., Souza, N. J., Batista, A. C., & Lima, P. P. (2014). Consumo de formigas cortadeiras por tamanduá-bandeira Myrmecophaga tridactyla (Linnaeus, 1758) em plantios de Pinus spp. no Paraná, Brasil. Edentata, 15, 1–8.spa
dc.relation.references28. Bujan, J., Yanoviak, S. P., & Kaspari, M. (2016). Desiccation resistance in tropical insects: Causes and mechanisms underlying variability in a Panama ant community. Ecology and Evolution, 6(17), 6282–6291. https://doi.org/10.1002/ece3.2355xspa
dc.relation.references29. Camilo-Alves, C. de S. e P., y Mourão, G. de M. (2006). Responses of a Specialized Insectivorous Mammal (Myrmecophaga tridactyla). Biotropica, 38(1), 52–56. https://doi.org/https://doi.org/10.1111/j.1744- 7429.2006.00106.xspa
dc.relation.references30. Catling, P. C., y Burt, R. J. (1995). Studies of the ground-dwelling mammals of eucalypt forests in south-eastern New South Wales: The effect of environmental variables on distribution and abundance. Wildlife Research, 22(6), 669–685. https://doi.org/10.1071/WR9950669spa
dc.relation.references31. Chamberlain S (2024). ccafs: Client for 'CCAFS' 'GCM' Data_. R package version 0.3.0spa
dc.relation.references32. Chia, E.K., Bassett, M., Leonard, S. W. J., Holland, G. J., Ritchie, E. G., Clarke, M. F., y Bennett, A. F. (2016). Effects of the fire regime on mammal occurrence after wildfire: Site effects vs landscape context in fire-prone forests. Forest Ecology and Management, 363, 130–139. https://doi.org/10.1016/j.foreco.2015.12.008spa
dc.relation.references33. Chia, E.K., Bassett, M., Nimmo, D. G., Leonard, S. W. J., Ritchie, E. G., Clarke, M. F., Bennett, A. F., y Peters, D. P. C. (2015). Fire severity and fire induced landscape heterogeneity affect arboreal mammals in fire-prone forests. Ecosphere, 6(10). https://doi.org/10.1890/ES15-00327.1spa
dc.relation.references34. Chia, Evelyn K., Bassett, M., Leonard, S. W. J., Holland, G. J., Ritchie, E. G., Clarke, M. F., y Bennett, A. F. (2016). Effects of the fire regime on mammal occurrence after wildfire: Site effects vs landscape context in fire-prone forests. Forest Ecology and Management, 363, 130–139. https://doi.org/10.1016/j.foreco.2015.12.008spa
dc.relation.references35. Dalerum, F., Boutin, S., y Dunford, J. S. (2007). Wildfire effects on home range size and fidelity of boreal caribou in Alberta, Canada. Canadian Journal of Zoology, 85(1), 26–32. https://doi.org/10.1139/Z06-186 .spa
dc.relation.references36. Davies, A. B., Parr, C. L., & van Rensburg, B. J. (2010). Termites and fire: Current understanding and future research directions for improved savanna conservation. Austral Ecology, 35, 482–486.spa
dc.relation.references37. Davies, A. B., Eggleton, P., van Rensburg, B. J., & Parr, C. L. (2012). The pyrodiversity–biodiversity hypothesis: A test with savanna termite assemblages. Journal of Applied Ecology, 49(2), 422–430.spa
dc.relation.references38. Davies, A. B., Levick, S. R., Asner, G. P., Robertson, M. P., van Rensburg, B. J., & Parr, C. L. (2014). Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 37(9), 852–862.spa
dc.relation.references39. Dawes-Gromadzki, T. Z. (2007). Short-term effects of low intensity fire on soil macroinvertebrate assemblages in different vegetation patch types in an Australian tropical savanna. Austral Ecology, 32, 663–668.spa
dc.relation.references40. de Freitas, C. H., Justino, C. S., y Setz, E. Z. F. (2014). Road-kills of the giant anteater in south-eastern Brazil: 10 years monitoring spatial and temporal determinants. Wildlife Research, 41(8), 673. https://doi.org/10.1071/WR14220spa
dc.relation.references41. De Frenne , F. Zellweger , F. Rodríguez-Sánchez , BR Scheffers , K. Hylander , M. Luoto , M. Vellend , M. Verheyen , J. Lenoir. (2019). Amortiguación global de las temperaturas bajo las copas de los árboles Ecología y evolución de la naturaleza, 3 (5), págs. 744-749, 10.1038/s41559-019-0842-1spa
dc.relation.references42. Delfín-Alfonso, C. A. D., Gallina-Tessaro, S. A. G., & Lopez-González, L. (2009). El hábitat: definición, dimensiones y escalas de evaluación para la fauna silvestre. Manual de Técnicas para el estudio de la Fauna, 317.spa
dc.relation.references43. Denés, F. v., l. F. Silveira, y S. r. BeiSSinGer. (2015). Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution 6:543–556.spa
dc.relation.references44. DeSouza, O., Albuquerque, L. B., Tonello, V. M., Pinto, L. P., & Junior, R. R. (2003). Effects of fire on termite generic richness in a savanna-like ecosystem (‘Cerrado’) of central Brazil. Sociobiology, 42, 639–649.spa
dc.relation.references45. Di Blanco, Y. E., Spørring, K. L., y Di Bitetti, M. S. (2016). Daily activity pattern of reintroduced giant anteaters (Myrmecophaga tridactyla): Effects of seasonality and experience. Mammalia, 81(1), 11–21. https://doi.org/10.1515/mammalia-2015-0088spa
dc.relation.references46. Diniz M. F., Brito D. (2015). Protected areas effectiveness in maintaining viable giant anteater (Myrmecophaga tridactyla) populations in an agricultural frontier. Natureza & Conservação.;13(2):145–151. doi: 10.1016/j.ncon.2015.08.001.spa
dc.relation.references47. Doser, J. W., Finley, A. O., Kéry, M., & Zipkin, E. F. (2022). spOccupancy: An R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 13(8), 1670-1678.spa
dc.relation.references48. Driscoll, D. A., Lindenmayer, D. B., Bennett, A. F., Bode, M., Bradstock, R. A., Cary, G. J., Clarke, M. F., Dexter, N., Fensham, R., Friend, G., Gill, M., James, S., Kay, G., Keith, D. A., MacGregor, C., Russell-Smith, J., Salt, D., Watson James, J. E. M., Williams Richard J., R. J., y York, A. (2010). Fire management for biodiversity conservation: Key research questions and our capacity to answer them. Biological Conservation, 143(9), 1928–1939. https://doi.org/10.1016/j.biocon.2010.05.026spa
dc.relation.references49. Drumond, M. A. (1992). Padrões de Forrageamento do tamanduá-bandeira (Myrmecophaga tridactyla) no Parque Nacional da Serra da Canastra: Dieta, comportamento alimentar e efeito de queimadas (p. 95). https://www.ufmg.br/pos/ecologia/index.php/dissertacoes/64-1991-1995spa
dc.relation.references50. Dunnington, D. (2021). ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.7. https://CRAN.R-project.org/package=ggspatialspa
dc.relation.references51. Federación Nacional de Industriales de la Madera. (2024). Plantaciones forestales comerciales en Colombia. Consultado en: https://fedemaderas.org.co/plantaciones-forestales-comerciales-2/spa
dc.relation.references52. Ferrar, P. (1982). Termites of a South African savanna III. Comparative attack on toilet roll baits in subhabitats. Oecologia, 52, 139–146.spa
dc.relation.references53. Fiske, I., & Chandler, R. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of statistical software, 43, 1-23.spa
dc.relation.references54. Fordyce, A., Hradsky, B. A., Ritchie, E. G., y Di Stefano, J. (2016). Fire affects microhabitat selection, movement patterns, and body condition of an Australian rodent (Rattus fuscipes). Journal of Mammalogy, 97(1), 102–111. https://doi.org/10.1093/jmammal/gyv159spa
dc.relation.references55. Gaudin, T. J., Hicks, P., & Di Blanco, Y. (2018). Myrmecophaga tridactyla (pilosa: myrmecophagidae). Mammalian Species, 50(956), 1-13.spa
dc.relation.references56. Giroux, A., Ortega, Z., Bertassoni, A., Desbiez, A. L. J., Kluyber, D., Massocato, G. F., ... & OLIVEIRA‐SANTOS, L. G. R. (2022). The role of environmental temperature on movement patterns of giant anteaters. Integrative Zoology, 17(2), 285-296.spa
dc.relation.references57. Giroux, A., Ortega, Z., Attias, N., Desbiez, A. L. J., Valle, D., Börger, L., & Oliveira-Santos, L. G. R. (2023). Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour, 201, 191-209.spa
dc.relation.references58. González, T. M., González-Trujillo, J. D., Muñoz, A., y Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005spa
dc.relation.references59. Greenwell, B. M., Boehmke, B. C., & Cunningham, J. (2023). gbm: Generalized Boosted Regression Models. R package version 2.1.8. https://CRAN.R-project.org/package=gbmspa
dc.relation.references60. Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009 Hijmans, R. J. (2023). terra: Spatial Data Analysis. R package version 1.7-23. https://CRAN.R-project.org/package=terra colorspace:spa
dc.relation.references61. Figel, J. J., Botero-Cañola, S., Forero-Medina, G., Sánchez-Londoño, J. D., Valenzuela, L., & Noss, R. F. (2019). Wetlands are keystone habitats for jaguars in an intercontinental biodiversity hotspot. PLoS One, 14(9), e0221705.spa
dc.relation.references62. Hall, L. S., Krausman, P. R., y Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25(1), 173– 182.spa
dc.relation.references63. Haslem, A., Kelly, L. T., Nimmo, D. G., Watson, S. J., Kenny, S. A., Taylor, R. S., et al. (2011). Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. Journal of Applied Ecology, 48, 247–256.spa
dc.relation.references64. Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J., & Hijmans, M. R. J. (2017). Package ‘dismo’. Circles, 9(1), 1-68.spa
dc.relation.references65. Hijmans, R. J. (2022). terra: Spatial Data Analysis. R package version 1.5-21.spa
dc.relation.references66. Hoffmann, B. D., & Andersen, A. N. (2023). Patterns of European ant communities reveal a functionally coherent Holarctic fauna. Diversity, 15, 341.spa
dc.relation.references67. Hohnen, R., Tuft, K. D., Legge, S., Radford, I. J., Carver, S., y Johnson, C. N. (2015). Post-fire habitat use of the golden-backed tree-rat (Mesembriomys macrurus) in the northwest Kimberley, Western Australia. Austral Ecology, 40(8), 941–952. https://doi.org/10.1111/aec.12278spa
dc.relation.references68. Instituto Geográfico Agustin Codazi (IGAC). Datos Abiertos Cartografía y Geografía. https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia. Consultado 2024.spa
dc.relation.references69. Jenkins, C. N., et al. (2011). Global diversity in light of climate change: The case of ants. Diversity and Distributions, 17(4), 652–662. https://doi.org/10.1111/j.1472-4642.2011.00770.xspa
dc.relation.references70. Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, 1211–1219.spa
dc.relation.references71. Jorge, M. H., Garrison, E. P., Conner, L. M., y Cherry, M. J. (2020). Fire and land cover drive predator abundances in a pyric landscape. Forest Ecology and Management, 461. https://doi.org/10.1016/j.foreco.2020.117939spa
dc.relation.references72. Kays R, Arbogast BS, Baker‐Whatton M, Beirne C, Boone HM, Bowler M, Burneo SF, Cove MV, Ding P, Espinosa S. (2020). An empirical evaluation of camera trap study design: how many, how long, and when? Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13370spa
dc.relation.references73. Kreutz, K., Fischer, F., & Linsenmair, R. E. (2012). Timber plantations as favourite habitat for giant anteaters. Mammalia, 76, 137–142.spa
dc.relation.references74. Körtner, G., Pavey, C. R., y Geiser, F. (2007). Spatial ecology of the mulgara in arid Australia: Impact of fire history on home range size and burrow use. Journal of Zoology, 273(4), 350–357. https://doi.org/10.1111/j.1469- 7998.2007.00334.xspa
dc.relation.references75. Kreutz, K., Fischer, F., y Linsenmair, K. E. (2012). Timber plantations as favorite habitat for giant anteaters. Mammalia, 76(2), 137–142. https://doi.org/10.1515/mammalia-2011-0049spa
dc.relation.references76. Laurance, W. F., & Williamson, G. B. (2001). Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15, 1529–1535.spa
dc.relation.references77. Leahy, L., Legge, S. M., Tuft, K., McGregor, H. W., Barmuta, L. A., Jones, M. E., y Johnson, C. N. (2015). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research, 42(8), 705–716. https://doi.org/10.1071/WR15011spa
dc.relation.references78. Lindenmayer, D. B., Welsh, A., Donnelly, C. F., & Cunningham, R. B. (1996). Use of nest trees by the Mountain Brushtail Possum (Trichosurus caninus) (Phalangeridae: Marsupialia). II. Characteristics of occupied trees. Wildlife Research, 23, 531–545.spa
dc.relation.references79. Lindenmayer, D. B., Blanchard, W., Mcburney, L., Blair, D., Banks, S. C., y Driscoll, D. (2013). Fire severity and landscape context effects on arboreal marsupials. BIOLOGICAL CONSERVATION, 167, 137–148. https://doi.org/10.1016/j.biocon.2013.07.028spa
dc.relation.references80. Lindenmayer, D. B., MacGregor, C., Welsh, A., Donnelly, C., Crane, M., Michael, D., Montague-Drake, R., Cunningham, R. B., Brown, D., Fortescue, M., Hudson, M., y Gill, A. M. (2008). Contrasting mammal responses to vegetation type and fire. Wildlife Research, 35(5), 395–408. https://doi.org/10.1071/WR07156spa
dc.relation.references81. Lindenmayer, D. B., et al. (2010). Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation, 143, 1587–1593.spa
dc.relation.references82. Litt, A. R., y Steidl, R. J. (2011). Interactive effects of fire and nonnative plants on small mammals in Grasslands. Wildlife Monographs, 176, 1–31. https://doi.org/10.1002/wmon.2spa
dc.relation.references83. Lizcano D.J. (2019). Simulación y análisis de ocupación. Entendiendo las simulaciones y el modelo básico de ocupación (Version 1). Zenodo. http://doi.org/10.5281/zenodo.4028019spa
dc.relation.references84. Lorena, A. C., Jacintho, L. F., Siqueira, M. F., De Giovanni, R., Lohmann, L. G., De Carvalho, A. C., & Yamamoto, M. (2011). Comparing machine learning classifiers in potential distribution modelling. Expert Systems with Applications, 38(5), 5268-5275.spa
dc.relation.references85. Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist, 156(2), 201–219.spa
dc.relation.references86. Lubin, Y. D., Montgomery, G. G., & Young, O. P. (1977). Food resources of anteaters (Edentata: Myrmecophagidae) I. A year’s census of arboreal nests of ants and termites on Barro Colorado Island, Panama Canal Zone. Biotropica, 9(1), 26–34.spa
dc.relation.references87. Maravalhas, J., & Vasconcelos, H. L. (2014). Revisando la hipótesis de la pirodiversidad y la biodiversidad: Regímenes de incendios a largo plazo y la estructura de las comunidades de hormigas en un punto crítico de la sabana neotropical. Journal of Applied Ecology, 51, 1661–1668.spa
dc.relation.references88. Marini, M. Â., Barbet-Massin, M., Lopes, L. E., & Jiguet, F. (2009). Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conservation Biology, 23, 1–9.spa
dc.relation.references89. Mboukou-Kimbatsa, I. M. C., Bernhard-Reversat, F., & Loumeto, J. J. (1998). Change in soil macrofauna and vegetation when fast-growing trees are planted on savanna soils. Forest Ecology and Management, 110, 1–12.spa
dc.relation.references90. McKenzie, D., Z. Gedalof, D.L. Peterson, and P. Mote. (2004). Climatic change, wildfire, and conservation. Conservation Biology 18: 890–902.spa
dc.relation.references91. MacKenzie, D. I., J. D.Nichols, G. B.Lachman, S.Droege, A. J.Royle, and C. A.Langtimm. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology83:2248–2255.spa
dc.relation.references92. MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84(8), 2200–2207. doi: 10.1890/02-3090spa
dc.relation.references93. McKenzie, D., Miller, C., & Falk, D. A. (Eds.). (2011). The Landscape Ecology of Fire. Ecological Studies. doi:10.1007/978-94-007-0301-8spa
dc.relation.references94. Matthews, A., Lunney, D., Gresser, S., y Maitz, W. (2016). Movement patterns of koalas in remnant forest after fire. Australian Mammalogy, 38(1), 91–104. https://doi.org/10.1071/AM14010spa
dc.relation.references95. Matthews, J. K., Stawski, C., Körtner, G., Parker, C. A., y Geiser, F. (2017). Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 187(2), 385–393. https://doi.org/10.1007/s00360-016-1039-4spa
dc.relation.references96. McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403spa
dc.relation.references97. McNab, B. K. (1984). Physiological convergence amongst ant‐eating and termite‐eating mammals. Journal of Zoology, 203(4), 485–510. https://doi.org/10.1111/j.1469-7998.1984.tb02345.xspa
dc.relation.references98. Medri, Í. M., y Mourão, G. (2005). Home range of giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetland, Brazil. Journal of Zoology, 266(4), 365–375. https://doi.org/10.1017/S0952836905007004spa
dc.relation.references99. Meza-Elizalde, M. C., et al. (2021). Perspectivas para el manejo integral del fuego en la cuenca del río Bita. Grupo de Investigación en Ecología del Paisaje y Modelación de Ecosistemas, Facultad de Ciencias, Universidad Nacional de Colombia.spa
dc.relation.references100. Mills, D., Fattebert, J., Hunter, L., y Slotow, R. (2019). Maximising camera trap data: Using attractants to improve detection of elusive species in multi species surveys. PloS one, 14(5), e0216447.spa
dc.relation.references101. Miranda, A. C., Miranda, H. S., Dias, I. D. F. O., & de Souza Dias, B. F. (1993). Soil and air temperatures during prescribed cerated fires in Central Brazil. Journal of tropical ecology, 9(3), 313-320.spa
dc.relation.references102. Miranda, F., Bertassoni, A., y Abba, A. M. (2014). Myrmecophaga tridactyla (Giant Anteater). April. http://maps.iucnredlist.org/map.html?id=14224spa
dc.relation.references103. Miranda, F., Chiarello, A., Röhe, F., Braga, F., Mourão, G., Braga, G., Silva, K., Faria-Correa, M., Vaz, S., & Silva, S. (2015). Avaliação do risco de extinção de Myrmecophaga tridactyla Linnaeus,1758 no Brasil. In Instituto Chico Mendes de Conservação da Biodiversidade (Ed.), Avaliação do Risco de Extinção dos Xenartros Brasileiros (Estado de Conservação da Fauna Brasileira, No. 2, pp. 89-105). ICMBio.spa
dc.relation.references104. Montenegro, J., y Acosta, A. (2008). PROGRAMA INNOVADOR PARA EVALUAR USO Y INNOVATIVE PROGRAM FOR HABITAT USE AND PREFERENCE EVALUATION. 13, 208–217.spa
dc.relation.references105. Montgomery, G. G., & Lubin, Y. D. (1977). Prey influences on movements of Neotropical anteaters. In R. L. Phillips & C. Jonkel (Eds.), Proceedings of the 1975 predator symposium (pp. 103–131). Montana Forest and Conservation Experiment Station, University of Montana, Missoula.spa
dc.relation.references106. Morais H. C. & Benson W. W. (1987) Recolonização de vegetação de cerrado após queimada por formigas arborícolas. Rev. Bras. Biol. 48, 459–66.spa
dc.relation.references107. Mowat EJ, Webb JK, Crowther MS. (2015). Fire-mediated niche separation between two sympatric small mammal species. Austral Ecol. 40(1):50–59spa
dc.relation.references108. Müller, D., Suess, S., y Hoffmann, A. A. (2013). The Value of Satellite-Based Active Fire Data for Monitoring, Reporting and Verification of REDD + in the Lao PDR. https://doi.org/10.1007/s10745-013-9565-0spa
dc.relation.references109. O’Connell AF, Nichols JD, Karanth KU. (2010). Camera Traps in Animal Ecology: Methods and Analyses. Springer Science & Business Mediaspa
dc.relation.references110. Parr, C. L., & Bishop, T. R. (2022). The response of ants to climate change. Global Change Biology, 28(10), 3188–3205.spa
dc.relation.references111. Pausas, J. G., & Parr, C. L. (2018). Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology, 32(2), 113-125.spa
dc.relation.references112. Pearson R.G. (2007). Species’ distribution modeling conservation educators and practitioners. Synthesis, American Museum of Natural History, New Yorkspa
dc.relation.references113. Pearson, R. G. (2006). Climate change and the migration capacity of species. Trends in Ecology & Evolution, 21, 111–113.spa
dc.relation.references114. Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. https://doi.org/10.32614/RJ-2018-009 terra:spa
dc.relation.references115. Peterson, A. T., Ball, L. G., & Cohoon, K. P. (2002). Predicting distribution of Mexican birds using ecological niche modeling methods. Ibis, 144, E27–E32.spa
dc.relation.references116. Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510.spa
dc.relation.references117. Petrazzini, P. B., & Aguiar, L. M. (2021). You say goodbye, and I say hello: the giant anteater (Myrmecophaga tridactyla) activity pattern in response to temperature and human presence. Mastozoología neotropical, 28(1), 469-469.spa
dc.relation.references118. Prada, M. (2001). Effects of fire on the abundance of large mammalian herbivores in Mato Grosso, Brazil. Mammalia, 65(1), 55–62. https://doi.org/10.1515/mamm.2001.65.1.55spa
dc.relation.references119. Prada, M., y Marinho-Filho, J. (2004). Effects of fire on the abundance of xenarthrans in Mato Grosso, Brazil. Austral Ecology, 29(5), 568–573. https://doi.org/10.1111/j.1442-9993.2004.01391.xspa
dc.relation.references120. Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349-361.spa
dc.relation.references121. Quiroga, V. A., Noss, A. J., Boaglio, G. I., & Di Bitetti, M. S. (2016). Local and continental determinants of giant anteater (Myrmecophaga tridactyla) abundance: biome, human and jaguar roles in population regulation. Mammalian Biology, 81, 274-280.spa
dc.relation.references122. Radford, I. J. (2012). Threatened mammals become more predatory after small-scale prescribed fires in a high-rainfall rocky savanna. Austral Ecology, 37(8), 926–935. https://doi.org/10.1111/j.1442-9993.2011.02352.xspa
dc.relation.references123. Raybuck, A. L., Moorman, C. E., Greenberg, C. H., DePerno, C. S., Gross, K., Simon, D. M., y Warburton, G. S. (2012). Short-term response of small mammals following oak regeneration silviculture treatments. Forest Ecology and Management, 274, 10–16. https://doi.org/10.1016/j.foreco.2012.02.012spa
dc.relation.references124. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ... & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic change, 109, 33-57.spa
dc.relation.references125. Rodríguez-Posada M. E., D. Gutiérrez-Sanabria, D. Burbano, C. F.-R. y B. G.-V. (2018). Plan de Conservación de los Osos Hormigueros. In Fundación Reserva Natural La Palmita Centro de Investigación, Corporación Autónoma Regional de la Orinoquia - Corporino. In Fundación Reserva Natural La Palmita Centro de Investigación, Corporación Autónoma Regional de la Orinoquia - Corporinoquia.spa
dc.relation.references126. Rojano Bolaño, C., Giraldo, M. E. L., Miranda-Cortés, L., y Ávila, R. A. (2015). Área de vida y uso de hábitats de dos individuos de oso palmero (Myrmecophaga tridactyla) en Pore, Casanare, Colombia. Edentata, 16, 37– 45. http://www.xenarthrans.org/newsletter/view/id/21spa
dc.relation.references127. Rojano Bolaño, C., Miranda-Cortés, L., y Ávila, R. A. (2015). Densidad poblacional y biomasa del Oso hormiguero gigante (Myrmecophaga tridactyla) en Pore, Casanare, Colombia. Revista Biodiversidad Neotropical, 5(1), 64–70. https://doi.org/10.18636/bioneotropical.v5i1.169spa
dc.relation.references128. Rojano, C., y Monsalve, S. (2014). Manual de Rehabilitación de Hormigueros de Colombia (Issue January).spa
dc.relation.references129. Rojano, C., Padilla, H., Giraldo, A., Álvarez, G., y Ramo, E. (2015). Registro de presencia del oso palmero (Myrmecophaga tridactyla) en plantaciones forestales comerciales en Colombia. Edentata, 16(December), 72–77. http://www.xenarthrans.orgspa
dc.relation.references130. Rojano, C., Humanez-López, E. & Rincón-Aranguri, M. (Eds). (2023). Manual de campo para el estudio de hormigueros. Fundación Cunaguaro, Parex Resources Colombia Ltd. Sucursal, Corporinoquia.spa
dc.relation.references131. Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence–absence data or point counts. Ecology, 84(3), 777-790.spa
dc.relation.references132. Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.spa
dc.relation.references133. Salazar, N., Meza, M. C., Espelta, J. M., y Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021spa
dc.relation.references134. Sandoval-Gómez, V. E., Ramérez-Chaves, H. E., y Marín, D. (2012). Registros de Hormigas y Termitas Presentes en la Dieta de Osos Hormigueros (Mammalia: Myrmecophagidae) en Tres Localidades de Colombia. Edentata. https://doi.org/10.5537/020.013.0104spa
dc.relation.references135. Santos, P. M., Bocchiglieri, A., y Chiarello, A. G. (2019). NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. April. https://doi.org/10.1002/ecy.2663spa
dc.relation.references136. Santos, P. M., Bocchiglieri, A., Chiarello, A. G., Paglia, A. P., Moreira, A., de Souza, A. C., Abba, A. M., Paviolo, A., Gatica, A., Medeiro, A. Z., Costa, A. N., Gallina, A. G., Yanosky, A. A., Jesus, A., Bertassoni, A., Rocha, A., Bovo, A. A. A., Bager, A., Mol, A. C., … Galetti, M. (2019). NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. Ecology, 100(7). https://doi.org/10.1002/ecy.2663spa
dc.relation.references137. Semper-Pascual, A., Decarre, J., Baumann, M., Camino, M., Di Blanco, Y., Gómez-Valencia, B., y Kuemmerle, T. (2020). Using occupancy models to assess the direct and indirect impacts of agricultural expansion on species’ populations. Biodiversity and Conservation, 29(13), 3669–3688. https://doi.org/10.1007/s10531-020-02042-1spa
dc.relation.references138. Shaw, J. H., Machado-Neto, J., y Carter, T. S. (1987). Behavior of Free-Living Giant Anteaters (Myrmecophaga tridactyla). Biotropica, 19(3), 255. https://doi.org/10.2307/2388344spa
dc.relation.references139. Silveira, L., Rodrigues, F. H. G., De Jacorno, A. T. A., y Diniz, J. A. F. (1999). Impact of wildfires on the megafauna of Emas National Park, central Brazil. ORYX, 33(2), 108–114. https://doi.org/10.1046/j.1365-3008.1999.00039.xspa
dc.relation.references140. Silveira, Leandro, Henrique, F., Rodrigues, G., de Almeida Jácomo, A. T., y Filho, J. A. F. D. (1999). Impact of wildfires on the megafauna of Emas National Park, central Brazil. Oryx, 33(02), 108. https://doi.org/10.1017/s0030605300030362spa
dc.relation.references141. Simon, N. P. P., Stratton, C. B., Forbes, G. J., y Schwab, F. E. (2002). Similarity of small mammal abundance in post-fire and clearcut forests. Forest Ecology and Management, 165(1–3), 163–172. https://doi.org/10.1016/S0378-1127(01)00613-2spa
dc.relation.references142. Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing Classifier Performance in R. Bioinformatics, 21(20), 3940-3941. https://doi.org/10.1093/bioinformatics/bti623spa
dc.relation.references143. Siqueira, M. F. D., & Peterson, A. T. (2003). Consequences of global climate change for geographic distributions of Cerrado tree species. Biota Neotropica, 3, 1–14.spa
dc.relation.references144. Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56(4), 740-749.spa
dc.relation.references145. Sondej, I., & Domisch, T. (2024). Impact of large-scale fire and habitat type on ant nest density and species abundance in Biebrza National Park, Poland. Forests, 15(1), 123.spa
dc.relation.references146. Stawski, C., Matthews, J. K., Körtner, G., y Geiser, F. (2015). Physiological and behavioural responses of a small heterothermic mammal to fire stimuli. Physiology and Behavior, 151, 617–622. https://doi.org/10.1016/j.physbeh.2015.09.002spa
dc.relation.references147. Swan, M., Christie, F., Sitters, H., York, A., Di Stefano, J. (2015). Predicting faunal fire responses in heterogeneous landscapes: The role of habitat structure. Ecological Applications, 25(8), 2293–2305. https://doi.org/10.1890/14-1533.1spa
dc.relation.references148. Timo, T. P. C., Lyra-Jorge, M. C., Gheler-Costa, C., y Verdade, L. M. (2014). Effect of the plantation age on the use of eucalyptus stands by medium to large-sized wild mammals in south-eastern brazil. IForest, 8(April), 108–113. https://doi.org/10.3832/ifor1237-008spa
dc.relation.references149. Trujillo, F. y C. A. Lasso (Eds.). –(2017). IV. Biodiversidad del río Bita, Vichada, Colombia. Serie Editorial Fauna Silvestre Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia. 349 ppspa
dc.relation.references150. Urbanek, S. (2023). rJava: Low-Level R to Java Interface. R package version 1.0-6. https://CRAN.R-project.org/package=rJavaspa
dc.relation.references151. Del Valle SM, Halloy M. (2003). El oso hormiguero, Myrmecophaga tridactyla: crecimiento e independización de una cría. Mastozool Neotropical. 10(2):323-30.spa
dc.relation.references152. Versiani, N. F. et al. (2021). Protected areas and unpaved roads mediate habitat use of the giant anteater in anthropogenic landscapes. Journal of Mammalogy.spa
dc.relation.references153. Villabona, D. A., y Pascual, D. A. (2012). Fire incidence on vegetation in Cundinamarca and Bogota D.C. (Colombia) during the 2001-2010 period. Acta Biológica Colombiana, 17(1), 143–158.spa
dc.relation.references154. Vieira, J., Camarota, F., & Vasconcelos, H. L. (2021). Trophic ecology of the arboreal and ground ant communities in forests and savannas of central Brazil. Ecological Entomology, 46, 936–945.spa
dc.relation.references155. Wei, T., & Simko, V. (2021). An introduction to corrplot package. R Package. tidyverse:spa
dc.relation.references156. Wickham, H. (2019). Tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. https://CRAN.R-project.org/package=tidyversesf:spa
dc.relation.references157. Wu T., Li W., Ji J., Xin X., et al. (2012) The 20th century global carbon cycle from the Beijing Climate Center Climate System Model (BCC_CSM). Submitted to J. Climate (Full text)spa
dc.relation.references158. Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping RGBland: Selecting Colors for Statistical Graphics. Computational Statistics & Data Analysis, 53(9), 3259-3270. https://doi.org/10.1016/j.csda.2008.11.033spa
dc.relation.references159. Zimbres, B. Q., de Aquino, P. D. P. U., Machado, R. B., Silveira, L., Jácomo, A. T., Sollmann, R., & Marinho-Filho, J. (2012). Range shifts under climate change and the role of protected areas for armadillos and anteaters. Biological Conservation, 152, 53–61.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.subject.agrovocHabitatspa
dc.subject.agrovocIncendio forestalspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.proposalFototrampeospa
dc.subject.proposalIncendios forestalesspa
dc.subject.proposalUso de hábitatspa
dc.subject.proposalPost-fuegospa
dc.subject.proposalXenarthraspa
dc.subject.wikidataXenartrosspa
dc.titleUso de hábitat del Oso hormiguero gigante Myrmecophaga tridactyla en paisajes afectados por incendios en el Departamento del Vichada, Orinoquia colombianaspa
dc.title.translatedHabitat use of the giant anteater Myrmecophaga tridactyla in fire-affected landscapes in the Department of Vichada, Colombian Orinoquiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032452290.2025.pdf
Tamaño:
2.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: