Evolución del metabolismo de los glicoalcaloides esteroidales en especies del género Solanum desde una perspectiva multi-ómica
dc.contributor.advisor | Roda Fornaguera, Federico | spa |
dc.contributor.advisor | Bermúdez Santana, Clara Isabel | spa |
dc.contributor.author | Pérez Mesa, Pablo Andrés | spa |
dc.contributor.orcid | Pablo Pérez [0000000259642257] | spa |
dc.contributor.researchgroup | Rnomica Teórica y Computacional | spa |
dc.contributor.researchgroup | Genómica Evolutiva del Metabolismo Especializado | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-07-10T12:14:35Z | |
dc.date.available | 2025-07-10T12:14:35Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones a color, diagramas, mapas | spa |
dc.description.abstract | Las plantas producen diferentes tipos de metabolitos especializados que median las interacciones bióticas y abióticas asociadas con la defensa, reproducción y supervivencia de los individuos. En la familia Solanaceae, diferentes especies producen metabolitos con importancia medicinal, nutricional y económica. Entre los metabolitos de mayor interés por sus características medicinales y ecológicas se encuentran los glicoalcaloides esteroidales (SGAs), los cuales principalmente se encuentran en especies del género Solanum. Estos compuestos, facilitan la defensa de las plantas contra patógenos y herbívoros y se ha registrado que generan toxicidad en humanos y en otros organismos herbívoros. Análisis genómicos y de co-expresión de genes, han identificado que muchos de los genes de la ruta metabólica de los SGAs se encuentran agrupados en diferentes regiones cromosómicas. Debido a su toxicidad, los humanos han seleccionado de las plantas cultivables las variedades que presentan menor contenido de SGAs. Estos procesos de domesticación han permitido identificar cambios genómicos estructurales sobre la secuencia y organización de los genes de SGAs, lo cual está asociado con cambios en la diversidad y concentración de metabolitos entre las especies. Sin embargo, aún se desconoce la diversidad de SGAs en especies silvestres y medicinales del género Solanum y los posibles cambios genómicos que han generado esta diversidad. En este proyecto estudiamos desde la genómica estructural, funcional y evolutiva, la diversidad de compuestos metabólicos de la ruta de los SGAs en especies silvestres de la familia Solanaceae con potenciales usos medicinales. Realizamos análisis de sintenia, de expresión de genes y metabolitos, para identificar los genes y compuestos que se producen entre las diferentes especies de la familia Solanaceae. Finalmente, evaluamos la diversificación de las especies de la familia, con respecto a la evolución del metabolismo de los SGAs, en función de la distancia filogenética y metabólica entre las especies (Texto tomado de la fuente). | spa |
dc.description.abstract | Plants produce a wide variety of specialized metabolites that mediate biotic and abiotic interactions related to defense, reproduction, and survival. In the Solanaceae family, different species produce metabolites with medicinal, nutritional, and economic importance. Among the metabolites of greatest interest due to their medicinal and ecological characteristics are steroidal glycoalkaloids (SGAs), which are primarily found in species of the Solanum genus. These compounds contribute to the plant's defense against potential pathogens and herbivores and have been reported to cause toxicity in humans and other herbivorous organisms. Genomic and gene co-expression analyses have identified that many of the genes involved in the SGA metabolic pathway are clustered in different chromosomal regions. Due to their toxicity, humans have selected cultivable plant varieties with lower SGA content. These domestication processes have allowed the identification of structural genomic changes in the sequence and organization of SGA genes, which are associated with changes in metabolite diversity and concentration among species. However, the diversity of SGAs in wild and medicinal species of the Solanum genus and the potential genomic changes responsible for this diversity remain unknown. In this project, we investigate the diversity of SGA pathway metabolites in wild Solanaceae species with potential medicinal uses from a structural, functional, and evolutionary genomic perspective. We performed synteny analysis, gene expression, and metabolic profile characterization studies to identify the genes and compounds produced across different Solanaceae species. Finally, we investigated the diversification of solanaceous species concerning the evolution of SGA metabolism and considered the phylogenetic and metabolic distance among species. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctorado en Ciencias - Biología | spa |
dc.description.methods | To achieve our research objectives, we implemented genomic, transcriptomic, and metabolomic information from wild and medicinal plants from Solanaceae, to uncover by phylogenetic and bioinformatic approaches the evolution and diversification of the alkaloid metabolism. | spa |
dc.description.researcharea | Evolución del metabolismo en Plantas | spa |
dc.description.sponsorship | Acuerdo 566 de 2014 entre la Universidad Nacional de Colombia y Colciencias, con el apoyo del Instituto Max Planck de Fisiologia en Plantas en Potsdam. Tambien esta financiado por el DAAD (Deutscher Akademischer Austauschdients) y los recursos Computacionales de la Facultad de Ciencias y el laboratorio de biologia computacional de la Facultad de Ciencias de la Universidad Nacional de Colombia. | spa |
dc.format.extent | 118 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88318 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Biología | spa |
dc.relation.references | Agrawal, A. A., & Weber, M. G. (2015). On the study of plant defense and herbivory using comparative approaches: How important are secondary plant compounds. Ecology Letters, 18(10), 985–991. https://doi.org/10.1111/ele.12482. | spa |
dc.relation.references | Akiyama, R., Watanabe, B., Nakayasu, M., Lee, H. J., Kato, J., Umemoto, N., Muranaka, T., Saito, K., Sugimoto, Y., & Mizutani, M. (2021). The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21546-0. | spa |
dc.relation.references | Akiyama, R., Umemoto, N., & Mitzunari, M. (2023). Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum. Plant Biotechnology, 40, 185-191 (2023). DOI:10.5511/plantbiotechnology.23.0717b. | spa |
dc.relation.references | Alam, O., & Purugganan, M. D. (2024). Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. Plant Cell. May 1;36(5):1227-1241. doi: 10.1093/plcell/koae013. PMID: 38243576; PMCID: PMC11062453. | spa |
dc.relation.references | Aubriot, X., & Knapp, S. (2022). A revision of the "spiny solanums" of Tropical Asia (Solanum, the Leptostemonum Clade, Solanaceae). PhytoKeys. Jun 1;198:1-270. doi: 10.3897/phytokeys.198.79514. PMID: 36760991; PMCID: PMC9849010. | spa |
dc.relation.references | Bai, F., Shu, P., Deng, H., Wu, Y., Chen, Y., Wu, M., Ma, T., Zhang, Y., Pirello, J., Li, Z., Hong, Y., Bouzayen, M., & Liu, M. (2024). A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nature Communication, 15:2894. https://doi.org/10.1038/s41467-024-47292-7. | spa |
dc.relation.references | Bandi, V., & Gutwin, C. (2020). Interactive Exploration of Genomic Conservation. In Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Canadian Human-Computer Communications Society, Waterloo, CAN. | spa |
dc.relation.references | Bar-Akiva, A., Ovadia, R., Rogachev, I., Bar-Or, C., Bar, E., Freiman, Z., Nissim-Levi, A., Gollop, N., Lewinsohn, E., Aharoni, A., Weiss, D., Koltai, H., & Oren-Shamir, M. (2010). Metabolic networking in Brunfelsia calycina petals after flower opening. Journal of Experimental Botany, 61(5), 1393–1403. https://doi.org/10.1093/jxb/erq008. | spa |
dc.relation.references | Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., Andolfo, G., Aprea, G., Avanzato, C., Bassolino, L., Comino, C., Molin, A. D., Ferrarini, A., Maor, L. C., Portis, E., Reyes-Chin-Wo, S., Rinaldi, R., Sala, T., Scaglione, D., …, & Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47985-w. | spa |
dc.relation.references | Bednarek, P. et al. (2009). A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense.Science323,101-106.DOI:10.1126/science.1163732. | spa |
dc.relation.references | Bohs, L. (2005). MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA. FESTSCHRIFT FOR WILLIAM G. D’ARCY, 3:27-49. | spa |
dc.relation.references | Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sørensen, I., Lichtenstein, G., Fich, E. A., Conte, M., Keller, H., Schneeberger, K., Schwacke, R., Ofner, I., Vrebalov, J., Xu, Y., Osorio, S., …, & Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034–1038. https://doi.org/10.1038/ng.3046. | spa |
dc.relation.references | Bombarely, A., Moser, M., Amrad, A., Bao, M., Bapaume, L., Barry, C. S., Bliek, M., Boersma, M. R., Borghi, L., Bruggmann, R., Bucher, M., D’Agostino, N., Davies, K., Druege, U., Dudareva, N., Egea-Cortines, M., Delledonne, M., Fernandez-Pozo, N., Franken, P., …, & Kuhlemeier, C. (2016). Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2. https://doi.org/10.1038/nplants.2016.74. | spa |
dc.relation.references | Bonthala, V. S., & Stich, B. (2024). StCoExpNet: a global co-expression network analysis facilitates identifying genes underlying agronomic traits in potatoes. Plant Cell Rep 43, 117. https://doi.org/10.1007/s00299-024-03201-2. | spa |
dc.relation.references | Borghi, M., Fernie, A. R., Schiestl, F. P., & Bouwmeester, H. J. (2017). The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. In Trends in Plant Science (Vol. 22, Issue 4, pp. 338–350). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2016.12.009. | spa |
dc.relation.references | Bourguiba, H., Audergon, J. M., Krichen, L., & et al. (2012). Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12, 49. https://doi.org/10.1186/1471-2229-12-49. | spa |
dc.relation.references | Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. In Plant Journal (Vol. 100, Issue 5, pp. 892–907). Blackwell Publishing Ltd. https://doi.org/10.1111/tpj.14496. | spa |
dc.relation.references | Boycheva, S., Daviet, L., Wolfender, J. L., & Fitzpatrick, T. B. (2014). The rise of operon-like gene clusters in plants. In Trends in Plant Science (Vol. 19, Issue 7, pp. 447–459). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2014.01.013. | spa |
dc.relation.references | Buchfink, B., Xie, C. & Huson, D. (2015). Fast and sensitive protein alignment using DIAMOND. Nat Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176. | spa |
dc.relation.references | Cárdenas, P. D., Sonawane, P. D., Heinig, U., Bocobza, S. E., Burdman, S., & Aharoni, A. (2015). The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. In Phytochemistry (Vol. 113, pp. 24–32). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2014.12.010. | spa |
dc.relation.references | Cárdenas, P. D., Sonawane, P. D., Pollier, J., vanden Bossche, R., Dewangan, V., Weithorn, E., Tal, L., Meir, S., Rogachev, I., Malitsky, S., Giri, A. P., Goossens, A., Burdman, S., & Aharoni, A. (2016). GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications, 7. https://doi.org/10.1038/ncomms10654. | spa |
dc.relation.references | Cárdenas, P. D., Sonawane, P. D., Heinig, U., Jozwiak, A., Panda, S., Abebie, B., Kazachkova, Y., Pliner, M., Unger, T., Wolf, D., Ofner, I., Vilaprinyo, E., Meir, S., Davydov, O., Gal-on, A., Burdman, S., Giri, A., Zamir, D., Scherf, T., …, & Aharoni, A. (2019). Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13211-4. | spa |
dc.relation.references | Carrillo-Galván, G., Bye, R., Eguiarte, L. E., Cristians, S., Pérez-López, P., Vergara-Silva, F., & Luna-Cavazos, M. (2020). Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)- An ethnobotanical, morpho-physiological, and phytochemical analysis. Journal of Ethnobiology and Ethnomedicine, 16(1). https://doi.org/10.1186/s13002-020-00368-2. | spa |
dc.relation.references | de Boer, K., Tilleman, S., Pauwels, L., vanden Bossche, R., de Sutter, V., Vanderhaeghen, R., Hilson, P., Hamill, J.D., Goossens, A. (2011). APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant Journal, 66(6), 1053–1065. | spa |
dc.relation.references | D’ Arcy, W. G. (1973). Section Melongena sensu D’Arcy. En: Ann. Missouri Bot. Gard. 60: 698. | spa |
dc.relation.references | De Luca, V., Salim, V., Atsumi, M., & Yu, F. (2012). Mining the Biodiversity of Plants: A Revolution in the Making. http://science.sciencemag.org/. | spa |
dc.relation.references | Dodsworth, S., Chase, M.W., Särkinen, T., Knapp, S., Leitch, A.R. (2016). Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biological Journal of the Linnean Society 117: 96–105. | spa |
dc.relation.references | Doebley, J. F., Gaut, B. S., & Smith, B. D. (2006). The molecular genetics of crop domestication. Cell, 127, 1309−1321. | spa |
dc.relation.references | Echeverría-Londoño, S., Särkinen, T., Fenton, I.S., Purvis, A. & Knapp, S. (2020). Dynamism and context-dependency in diversification of the megadiverse plant genus Solanum (Solanaceae). J. Syst. Evol., 58: 767-782. https://doi.org/10.1111/jse.12638. | spa |
dc.relation.references | Edgar, R. C. (2022). Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nature Communications 13.1: 6968. https://www.nature.com/articles/s41467-022-34630-w.pdf. | spa |
dc.relation.references | Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32: 1792–7. | spa |
dc.relation.references | Eich, E. (2008). Solanaceae and Convolvulaceae: Secondary Metabolites. Springer. | spa |
dc.relation.references | Emms, D.M., Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238. | spa |
dc.relation.references | Esteves-Souza, A., & Echevarria, A. (2002). Cytotoxic Activities Against Ehrlich Carcinoma and Human K562 Leukaemia of Alkaloids and Flavonoid from Two Solanum Species. In J. Braz. Chem. Soc (Vol. 13, Issue 6). | spa |
dc.relation.references | Facchini, P. J. (2001). ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. In Annu. Rev. Plant Physiol. Plant Mol. Biol (Vol. 52). www.annualreviews.org. | spa |
dc.relation.references | Fan, P., Wang, P., Lou, Y. R., Leong, B. J., Moore, B. M., Schenck, C. A., Combs, R., Cao, P., Brandizzi, F., Shiu, S. H., & Last, R. L. (2020). Evolution of a plant gene cluster in solanaceae and emergence of metabolic diversity. ELife, 9, 1–26. https://doi.org/10.7554/eLife.56717. | spa |
dc.relation.references | Fiehn, O. (2002). Metabolomics-the link between genotypes and phenotypes. In Plant Molecular Biology (Vol. 48). | spa |
dc.relation.references | Fiesel, P. D., Kerwin, R. E., Jones, A. D., Last, R. L. (2024). Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes, Plant Physiology, Volume 196, Issue 2, October 2024, Pages 1231–1253, https://doi.org/10.1093/plphys/kiae279. | spa |
dc.relation.references | Flint-Garcia, S. A. (2013). Genetics and Consequences of Crop Domestication. Journal of Agricultural and Food Chemistry 2013 61 (35), 8267-8276. DOI: 10.1021/jf305511d. | spa |
dc.relation.references | Friedman, M., & Levin, C. E. (1998). Dehydrotomatine content in tomatoes. Journal of Agricultural and Food Chemistry, 46(11), 4571–4576. https://doi.org/10.1021/jf9804589. | spa |
dc.relation.references | Friedman, M. (2002). Tomato glycoalkaloids: Role in the plant and in the diet. In Journal of Agricultural and Food Chemistry (Vol. 50, Issue 21, pp. 5751–5780). https://doi.org/10.1021/jf020560c. | spa |
dc.relation.references | Friedman, M., Lee, K. R., Kim, H. J., Lee, I. S., & Kozukue, N. (2005). Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. Journal of Agricultural and Food Chemistry, 53(15), 6162–6169. https://doi.org/10.1021/jf050620p. | spa |
dc.relation.references | Friedman, M. (2006). Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. In Journal of Agricultural and Food Chemistry (Vol. 54, Issue 23, pp. 8655–8681). https://doi.org/10.1021/jf061471t. | spa |
dc.relation.references | Frodin, D. G. (2004). History and Concepts of Big Plant. In Source: Taxon (Vol. 53, Issue 3). | spa |
dc.relation.references | Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150–3152. | spa |
dc.relation.references | Gabriel, L., Brůna, T., Hoff, K.J., Ebel, M., Lomsadze, A., Borodovsky, M., Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. bioRxiv [Preprint]. 2024 Feb 29:2023.06.10.544449. doi: 10.1101/2023.06.10.544449. Update in: Genome Res. 2024 Jun 25;34(5):769-777. doi: 10.1101/gr.278090.123. PMID: 37398387; PMCID: PMC10312602. | spa |
dc.relation.references | Gagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aubriot, X., Giacomin, L., Gouvêa, Y., Bragionis, T., Stehmann, J. R., Bohs, L., Dodsworth, S., Martine, C., Poczai, P., Knapp, S., & Särkinen, T. (2022). Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. American Journal of Botany, 109(4), 580–601. https://doi.org/10.1002/ajb2.1827. | spa |
dc.relation.references | Gagnon, E., Baldaszti, L., Moonlight, P., Knapp, S., Lehmann, C. E. R., & Särkinen, T. (2023). Functional and ecological diversification of underground organs in Solanum. Front. Genet. 14:1231413. doi: 10.3389/fgene.2023.1231413. | spa |
dc.relation.references | Garbowicz, K., Liu, Z., Alseekh, S., Tieman, D., Taylor, M., Kuhalskaya, A., Ofner, I., Zamir, D., Klee, H. J., Fernie, A. R., & Brotman, Y. (2018). Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. Molecular Plant, 11(9), 1147–1165. https://doi.org/10.1016/j.molp.2018.06.003. | spa |
dc.relation.references | Gatter, T., & Stadler, P. F. (2019). Ryūtō: network-flow based transcriptome reconstruction. BMC Bioinformatics 20, 190. https://doi.org/10.1186/s12859-019-2786-5. | spa |
dc.relation.references | Gebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. In Theoretical and Applied Genetics (Vol. 129, Issue 12, pp. 2281–2294). Springer Verlag. https://doi.org/10.1007/s00122-016-2804-1. | spa |
dc.relation.references | Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., Servaes, A., & Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science 168:319–327. | spa |
dc.relation.references | Gramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10. | spa |
dc.relation.references | Guadalupe-Dominguez, P., Niittylä, T. (2022). Mobile forms of carbon in trees: metabolism and transport, Tree Physiology, Volume 42, Issue 3, March 2022, Pages 458–487, https://doi.org/10.1093/treephys/tpab123. | spa |
dc.relation.references | Guo, H., Mao, M., Deng, Y., Sun, L., Chen, R., Cao, P., Lai, J., Zhang, Y., Wang, C., Li, C., et al. (2022). Multi-Omics Analysis Reveals That SlERF.D6 Synergistically Regulates SGAs and Fruit Development. Frontiers in Plant Science 13: 1–14. | spa |
dc.relation.references | Hardigan, M. A., Laimbeer, F. P. E., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B., Wiegert-Rininger, K., Wood, J. C., Douches, D. S., Farré, E. M., Veilleux, R. E., & Buell, C. R. (2017). Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America, 114(46), E9999–E10008. https://doi.org/10.1073/pnas.1714380114. | spa |
dc.relation.references | Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B.O., Lieber, M. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8: 1494–1512. | spa |
dc.relation.references | Hilgenhof, R., Gagnon, E., Knapp, S., Aubriot, X., Tepe, E. J., Bohs, L., Giacomin, L., Gouvêa, Y. F., Martine, C. T., Orejuela, A., Orozco, C. I., Peralta, I. E., & Särkinen, T. (2023). Morphological trait evolution in Solanum (Solanaceae): Evolutionary lability of key taxonomic characters. TAXON, 72: 811-847. https://doi.org/10.1002/tax.12990. | spa |
dc.relation.references | Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., Saito, K. (2005). Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem. 2005 Jul 8;280(27):25590-5. doi: 10.1074/jbc.M502332200. Epub 2005 May 2. PMID: 15866872. | spa |
dc.relation.references | Huang, J., Xu, W., Zhai, J., Hu, Y., Guo, J., Zhang, C., Zhao, Y., Zhang, L., Martine, C., Ma, H. (2023). Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. Plant Communications. | spa |
dc.relation.references | Itkin, M., Rogachev, I., Alkan, N., Rosenberg, T., Malitsky, S., Masini, L., Meir, S., Iijima, Y., Aoki, K., de Vos, R., Prusky, D., Burdman, S., Beekwilder, J., & Aharoni, A. (2011). GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell, 23(12), 4507–4525. https://doi.org/10.1105/tpc.111.088732. | spa |
dc.relation.references | Itkin, M., Heinig, U., Tzfadia, O., Bhide, A. J., Shinde, B., Cardenas, P. D., Bocobza, S. E., Unger, T., Malitsky, S., Finkers, R., Tikunov, Y., Bovy, A., Chikate, Y., Singh, P., Rogachev, I., Beekwilder, J., Giri, A. P., & Aharoni, A. (2013). Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science, 341(6142), 175–179. https://doi.org/10.1126/science.1240230. | spa |
dc.relation.references | Johnson, M. T. J., Smith, S. D., & Rausher, M. D. (2009). Plant sex and the evolution of plant defenses against herbivores. Proc. Natl. Acad. Sci. USA. 106, 18079–18084. | spa |
dc.relation.references | Jørgensen P. M., Ulloa Ulloa C., León B., León-Yánez S., Beck S. G., Nee M., Zarucchi J. L., Celis M., Bernal R., & Gradstein R. (2011). Regional patterns of vascular plant diversity and endemism. In: Herzog S.K., Herzog S.K., Martínez R., Jørgensen P.M., Tiessen H. (Eds). Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 192–203. | spa |
dc.relation.references | Joshi, J. R., Yao, L., Charkowski, A. O., & Heuberger, A. L. (2021). Metabolites from wild potato inhibit virulence factors of the soft rot and blackleg 2 pathogen Pectobacterium brasiliense. | spa |
dc.relation.references | Kantar, M. B., Nashoba, A. R., Anderson, J. E., Blackman, B. K., & Rieseberg, L. H. (2017). The Genetics and Genomics of Plant Domestication. Bioscience, 67, 971–982. | spa |
dc.relation.references | Kazachkova, Y., Zemach, I., Panda, S., Bocobza, S., Vainer, A., Rogachev, I., Dong, Y., Ben-Dor, S., Veres, D., Kanstrup, C., Lambertz, S. K., Crocoll, C., Hu, Y., Shani, E., Michaeli, S., Nour-Eldin, H. H., Zamir, D., & Aharoni, A. (2021). The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nature Plants, 7(4), 468–480. https://doi.org/10.1038/s41477-021-00865-6. | spa |
dc.relation.references | Kaunda, J. S., & Zhang, Y. J. (2019). The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. In Natural Products and Bioprospecting. Vol. 9, Issue 2, pp. 77–137. Springer. https://doi.org/10.1007/s13659-019-0201-6. | spa |
dc.relation.references | Kerwin, R.E., Hart, J.E., Fiesel, P.D., Lou, Y.R., Fan, P., Jones, A.D., Last, R.L. (2024). Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. Science Advances 10: eadn3991. | spa |
dc.relation.references | Kim, N., Estrada, O., Chavez, B., Stewart, C., D’Auria, J.C. (2016). Tropane and granatane alkaloid biosynthesis: A systematic analysis. Molecules 21: 1–25. | spa |
dc.relation.references | Kohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules. Feb 22;24(4):796. doi: 10.3390/molecules24040796. PMID: 30813289; PMCID: PMC6412926. | spa |
dc.relation.references | Kolmogorov, M., Yuan, J., Lin, Y., & et al. (2019). Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37, 540–546. https://doi.org/10.1038/s41587-019-0072-8. | spa |
dc.relation.references | Knapp S. (2002). Solanum section Geminata (G. Don) Walpers (Solanaceae). Flora Neotropica 84: 1–405. | spa |
dc.relation.references | Knapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae - A model for linking genomics with biodiversity. In Comparative and Functional Genomics (Vol. 5, Issue 3, pp. 285–291). https://doi.org/10.1002/cfg.393. | spa |
dc.relation.references | Knoch E, et al. (2018). Third DWF1 paralog in Solanaceae, sterol Δ(24)-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc Natl Acad Sci U S A. 115:E8096–E8103. | spa |
dc.relation.references | Kuo, K.-W., Hsu, S.-H., Li, Y.-P., Lin, W.-L., Liu, L.-F., Chang, L.-C., Lin, C.-C., Lin, C.-N., & Sheu, H.-M. (2000). Anticancer Activity Evaluation of the Solanum Glycoalkaloid Solamargine TRIGGERING APOPTOSIS IN HUMAN HEPATOMA CELLS. In BIOCHEM PHARMACOL (Vol. 60). | spa |
dc.relation.references | Lachman J., Hamouz K., Orsak M. & Pivec V. (2001) Potato glycoalkaloids and their significance in plant protection and human nutrition - Review. Series Rostlinna. 47, 181-191. | spa |
dc.relation.references | Langfelder, P., Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. | spa |
dc.relation.references | Lei, Z., Li, Z., Zhang, W., He, D., & Zhang, Y. (2024). From wild to cultivated crops: general shift in morphological and physiological traits for yield enhancement following domestication. Volume 3, Issue 3. Pages 138-146. ISSN 2773-126X. https://doi.org/10.1016/j.crope.2024.03.001. | spa |
dc.relation.references | Leisner, C. P., Hamilton, J. P., Crisovan, E., Manrique-Carpintero, N. C., Marand, A. P., Newton, L., Pham, G. M., Jiang, J., Douches, D. S., Jansky, S. H., & Buell, C. R. (2018). Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018 May;94(3):562-570. doi: 10.1111/tpj.13857. Epub 2018 Mar 22. Erratum in: Plant J. Oct;96(2):482. doi: 10.1111/tpj.14075. PMID: 29405524. | spa |
dc.relation.references | Levin, R. A. , Myers, N. R., & Bohs, L (2006). Phylogenetic relationships among the ‘spiny solanums’ (Solanum subgenus Leptostemonum, Solanaceae). American Journal of Botany93: 157–169. | spa |
dc.relation.references | Li, W., Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659. | spa |
dc.relation.references | Lin, X., Jia, Y., Heal, R., & et al. (2023). Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat Genet 55, 1579–1588. https://doi.org/10.1038/s41588-023-01486-9. | spa |
dc.relation.references | Liu, S., Cheng, Y., Zhao, X. et al. (2024) The transcription factor StMYB113 regulates light-induced greening by modulating steroidal glycoalkaloid biosynthesis in potatoes (Solanum tuberosum L.). HORTIC. ADV. 2, 7. https://doi.org/10.1007/s44281-023-00025-0. | spa |
dc.relation.references | Lucier, R., Kamileen, M. O., Nakamura, Y., Serediuk, S., Barbole, R., Wurlitzer, J., Kunert, M., Heinicke, S., O’Connor, S. E., Sonawane, P. D. (2024). Steroidal scaffold decorations in Solanum alkaloid biosynthesis. Molecular Plant, 17, 8:1236-1254. https://doi.org/10.1016/j.molp.2024.06.013. | spa |
dc.relation.references | McCue, K. F., & et al. (2006). The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67, 1590–1597. | spa |
dc.relation.references | Moghe, G. D., & Last, R. L. (2015). Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 169(3), 1512–1523. https://doi.org/10.1104/pp.15.00994. | spa |
dc.relation.references | Mahood, E.H., Kruse, L.H., Moghe, G.D. (2020). Machine learning: a powerful tool for gene function prediction in plants. Applications in Plant Sciences 8: e11376. | spa |
dc.relation.references | Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing genomic data quality and beyond. Current Protocols, 1(12), 1–41. https://doi.org/10.1002/cpz1.323. | spa |
dc.relation.references | Mano, A., Tuller T., Béjà O., & Pinter, R. Y. (2010). Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics. Jan 18;11 Suppl 1(Suppl 1):S38. doi: 10.1186/1471-2105-11-S1-S38. PMID: 20122211; PMCID: PMC3009510. | spa |
dc.relation.references | Matias, L. J., Mercadante-Simões, M. O., Royo, V. A., Ribeiro, L. M., Santos, A. C., & Fonseca, J. M. S. (2016). Structure and histochemistry of medicinal species of Solanum. Revista Brasileira de Farmacognosia, 26(2), 147–160. https://doi.org/10.1016/j.bjp.2015.11.002. | spa |
dc.relation.references | Marcet-Houben, M., Gabaldón, T. (2019). Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 4, 2383–2392. https://doi.org/10.1038/s41564-019-0552-0. | spa |
dc.relation.references | Martínez-Ainsworth, N. E., & Tenaillon, M. I. (2016). Superheroes and masterminds of plant domestication. C R Biol. 2016 Jul-Aug;339(7-8):268-73. doi: 10.1016/j.crvi.2016.05.005. Epub. Jun 15. PMID: 27317057. | spa |
dc.relation.references | Milner, S. E., Brunton, N. P., Jones, P. W., O Brien, N. M., Collins, S. G., & Maguire, A. R. (2011). Bioactivities of glycoalkaloids and their aglycones from solanum species. In Journal of Agricultural and Food Chemistry (Vol. 59, Issue 8, pp. 3454–3484). https://doi.org/10.1021/jf200439q. | spa |
dc.relation.references | Moghe, G. D., & Last, R. L. (2015). Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 169(3), 1512–1523. https://doi.org/10.1104/pp.15.00994. | spa |
dc.relation.references | Moghe, G. D., Leong, B. J., Hurney, S. M., Jones, A. D., & Last, R. L. (2017). Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. https://doi.org/10.7554/eLife.28468.001. | spa |
dc.relation.references | Morris, S. C., & Petermann, J. B. (1985). Genetic and Environmental Effects on Levels of Glycoalkaloids in Cultivars of Potato (Solanum tuberosum L.). In Food Chemistry (Vol. 18). | spa |
dc.relation.references | Mweetwa, A. M., Hunter, D., Poe, R., Harich, K. C., Ginzberg, I., Veilleux, R. E., & Tokuhisa, J. G. (2012). Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry, 75, 32–40. https://doi.org/10.1016/j.phytochem.2011.12.003. | spa |
dc.relation.references | Nakayasu, M., Umemoto, N., Ohyama, K., Fujimoto, Y., Jae Lee, H., Watanabe, B., Muranaka, T., Saito, K., Sugimoto, Y., & Mizutani, M. (2017). A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant Physiology, 175(1):120-133. doi:10.1104/pp.17.00501.Epub. | spa |
dc.relation.references | Nakayasu, M., et al. (2020). Identification of α-tomatine 23-hydroxy involved in the detoxification of a bitter glycoalkaloid. Plant Cell Physiol. 61, 21-28. | spa |
dc.relation.references | Nee, M. (1999). Synopsis of Solanum in the New World. In M. Nee, D. E. Symon, R. N. Lester, and J. P. Jessop [eds.], Solanaceae IV: advances in biology and utilization, 285–333. Royal Botanic Gardens, Kew, Richmond, Surrey, UK. | spa |
dc.relation.references | Ng, J., & Smith, S. D. (2016). Widespread flower color convergence in Solanaceae via alternate biochemical pathways. New Phytol. Jan;209(1):407-17. doi: 10.1111/nph.13576. Epub 2015 Jul 29. PMID: 26224118. | spa |
dc.relation.references | Negrão, R., Monro, A. K., Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia. | spa |
dc.relation.references | Nurk, S., Walenz, B. P., Rhie, A., Vollger, M. R., Logsdon, G. A., Grothe, R., Miga, K. H., Eichler, E. E., Phillippy, A. M., & Koren, S. (2020). HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020 Sep;30(9):1291-1305. doi: 10.1101/gr.263566.120. Epub 2020 Aug 14. PMID: 32801147; PMCID: PMC7545148. | spa |
dc.relation.references | Nützmann, H.W., Huang, A., Osbourn, A. (2016). Plant metabolic clusters – from genetics to genomics. New Phytologist 211: 771–789. | spa |
dc.relation.references | Nützmann, H.-W., Doerr, D., Ramírez-Colmenero, A., Sotelo-Fonseca, J.E., Wegel, E., Di Stefano, M., Wingett, S.W., Fraser, P., Hurst, L., Fernandez-Valverde, S.L. (2020). Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proceedings of the National Academy of Sciences 117: 13800–13809. | spa |
dc.relation.references | Olmstead, R. G., & Palmer, J. D. (1997). Implications for the Phylogeny, Classification, and Biogeography of Solanum from cpDNA Restriction Site Variation (Vol. 22, Issue 1). http://www.jstor.orgURL:http://www.jstor.org/stable/. | spa |
dc.relation.references | Olmstead, R. G., Bohs, L., Migid, H. A., Santiago-Valentin, E., Garcia, V. F., & Collier, S. M. (2008). A molecular phylogeny of the Solanaceae. Taxon 57: 1159–1181. | spa |
dc.relation.references | Orozco, C. I., Alba, A., Beltrán, G., Orejuela, A., Sarmiento, Y., & Vélez, J. M. (2015). Solanum. In: Bernal R., Gradstein S.R., Celis M. (Eds) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co [accessed 01.12.2021]. | spa |
dc.relation.references | Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature methods 14: 417–419. | spa |
dc.relation.references | Paul, P., Singh, S.K., Patra, B., Liu, X., Pattanaik, S., Yuan, L. (2020). Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in Plants. Plant Physiology, 182(2), 840–856. | spa |
dc.relation.references | Pichersky, E., & Lewinsohn, E. (2011). Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 62, 549–566. https://doi.org/10.1146/annurev-arplant-042110-103814. | spa |
dc.relation.references | Powell, A. F., Feder, A., Li, J., Schmidt, M. H. W., Courtney, L., Alseekh, S., Jobson, E. M., Vogel, A., Xu, Y., Lyon, D., Dumschott, K., McHale, M., Sulpice, R., Bao, K., Lal, R., Duhan, A., Hallab, A., Denton, A. K., Bolger, M. E., …, & Usadel, B. (2022). A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. Plant Journal, 110(6), 1791–1810. https://doi.org/10.1111/tpj.15770. | spa |
dc.relation.references | Roddick, J. G. (1989). THE ACETYLCHOLINESTERASE-INHIBITORY ACTIVITY OF STEROIDAL GLYCOALKALOIDS AND THEIR AGLYCONES (Vol. 28, Issue 10). | spa |
dc.relation.references | Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490. | spa |
dc.relation.references | Proffit, M., Lapeyre, B., Buatois, B. et al. (2020). Chemical signal is in the blend: bases of plant-pollinator encounter in a highly specialized interaction. Sci Rep 10, 10071. https://doi.org/10.1038/s41598-020-66655-w. | spa |
dc.relation.references | Pucker, B., Walker‐Hale, N., Dzurlic, J., Yim, W.C., Cushman, J.C., Crum, A., Yang, Y., Brockington, S.F. (2024). Multiple mechanisms explain loss of anthocyanins from betalain‐pigmented Caryophyllales, including repeated wholesale loss of a key anthocyanidin synthesis enzyme. New Phytologist 241: 471–489. | spa |
dc.relation.references | R Core Team. (2020). R: A language and environment for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/. | spa |
dc.relation.references | Rambaut, A. (2014). FigTree: Tree Figure Drawing Tool, Version 1.4.2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac. uk/software/fgtree/. Accessed 1 Apr 2015. | spa |
dc.relation.references | Ramon, C., & Stelling, J. (2023). Functional comparison of metabolic networks across species. Nat Commun 14, 1699. https://doi.org/10.1038/s41467-023-37429-5. | spa |
dc.relation.references | Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications 11, 1432. https://doi.org/10.1038/s41467-020-14998-3. | spa |
dc.relation.references | Ren, Y., Yang, J., Lu, B., Jiang, Y., Chen, H., Hong, Y., Wu, B., Miao, Y. (2017). Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. Int J Mol Sci. 2017 Sep 8;18(9):1923. doi: 10.3390/ijms18091923. PMID: 28885552; PMCID: PMC5618572. | spa |
dc.relation.references | Revell, L.J., Harrison, A.S. (2008). PCCA: a program for phylogenetic canonical correlation analysis. Bioinformatics 24: 1018–1020. | spa |
dc.relation.references | Rieseberg, T.P., Dadras, A., Fürst-Jansen, J.M.R., Ashok, A.D., Darienko, T., De Vries, S., Irisarri, I., De Vries, J. (2023). Crossroads in the evolution of plant specialized metabolism. In: Seminars in cell & developmental biology. Elsevier, 37–58. | spa |
dc.relation.references | Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616. | spa |
dc.relation.references | Rokas, A., Wisecaver, J.H. & Lind, A.L. (2018). The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16, 731–744. https://doi.org/10.1038/s41579-018-0075-3. | spa |
dc.relation.references | Salgotra, R. K., & Bhagirath, S. C. (2023). "Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources" Genes 14, no. 1: 174. https://doi.org/10.3390/genes14010174. | spa |
dc.relation.references | Sánchez-Mata, M. C., Yokoyama, W. E., Hong, Y. J., & Prohens, J. (2010). α-Solasonine and α-solamargine contents of gboma (solanum macrocarpon l.) and scarlet (solanum aethiopicum l.) eggplants. Journal of Agricultural and Food Chemistry, 58(9), 5502–5508. https://doi.org/10.1021/jf100709g. | spa |
dc.relation.references | Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): A dated 1000-tip tree. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-214. | spa |
dc.relation.references | Särkinen, T., Gonzáles, P., & Knapp, S. (2015). Four new non-spiny Solanum (Solanaceae) species from South America. PhytoKeys, 44(1), 39–64. https://doi.org/10.3897/phytokeys.44.8693. | spa |
dc.relation.references | Satterlee, J. W., & et al. (2024). Convergent evolution of plant prickles by repeated gene co-option over deep time.Science385,eado1663(2024).DOI:10.1126/science.ado1663. | spa |
dc.relation.references | Sato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S., Kaneko, T., Nakamura, Y., Shibata, D., Aoki, K., Egholm, M., Knight, J., Bogden, R., Li, C., Shuang, Y., Xu, X., Pan, S., Cheng, S., Liu, X., …, & Gianese, G. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119. | spa |
dc.relation.references | Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K., & Umemoto, N. (2014). Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 26(9), 3763–3774. https://doi.org/10.1105/tpc.114.130096. | spa |
dc.relation.references | Schwahn, K., de Souza, L. P., Fernie, A. R., & Tohge, T. (2014). Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology, 56(9), 864–875. https://doi.org/10.1111/jipb.12274. | spa |
dc.relation.references | Scossa, F., & Fernie, A. R. (2020). The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J. Feb 20;18:482-500. doi: 10.1016/j.csbj.2020.02.009. PMID: 32180906; PMCID: PMC7063335. | spa |
dc.relation.references | Shakya, R., & Navarre, D. A. (2008). LC/MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). Journal of Agricultural and Food Chemistry, 56(16), 6949–6958. https://doi.org/10.1021/jf8006618. | spa |
dc.relation.references | Shoji, T., Hashimoto, T. (2011). Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-Locus ERF genes. Plant and Cell Physiology, 52(6), 1117–1130. | spa |
dc.relation.references | Sierra-Reyes, G. P. (2021). Estudio taxonómico de Solanum sección Torva Nees (Solanaceae) para Colombia. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias. Tesis de Maestría. | spa |
dc.relation.references | Singh, J., van der Knaap, E. (2022). Unintended Consequences of Plant Domestication, Plant and Cell Physiology, Volume 63, Issue 11, November 2022, Pages 1573–1583, https://doi.org/10.1093/pcp/pcac083. | spa |
dc.relation.references | Skirycz, A., Kierszniowska, S., Méret, M., Willmitzer, L., & Tzotzos, G. (2016). Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado? In Trends in Biotechnology (Vol. 34, Issue 10, pp. 781–790). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2016.03.006. | spa |
dc.relation.references | Smit, S. J., & Lichman, B. R. (2022). Plant biosynthetic gene clusters in the context of metabolic evolution. In Natural Product Reports (Vol. 39, Issue 7, pp. 1465–1482). Royal Society of Chemistry. https://doi.org/10.1039/d2np00005a. | spa |
dc.relation.references | Sonawane, P. D., Pollier, J., Panda, S., Szymanski, J., Massalha, H., Yona, M., Unger, T., Malitsky, S., Arendt, P., Pauwels, L., Almekias-Siegl, E., Rogachev, I., Meir, S., Cárdenas, P. D., Masri, A., Petrikov, M., Schaller, H., Schaffer, A. A., Kamble, A., …, & Aharoni, A. (2016). Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 3. https://doi.org/10.1038/nplants.2016.205. | spa |
dc.relation.references | Sonawane, P. D., Heinig, U., Panda, S., Gilboa, N. S., Yona, M., Pradeep Kumar, S., Alkan, N., Unger, T., Bocobza, S., Pliner, M., Malitsky, S., Tkachev, M., Meir, S., Rogachev, I., & Aharoni, A. (2018). Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proceedings of the National Academy of Sciences of the United States of America, 115(23), E5419–E5428. https://doi.org/10.1073/pnas.1804835115. | spa |
dc.relation.references | Sonawane, P. D., Jozwiak, A., Panda, S., & Aharoni, A. (2020). ‘Hijacking’ core metabolism: a new panache for the evolution of steroidal glycoalkaloids structural diversity. In Current Opinion in Plant Biology (Vol. 55, pp. 118–128). Elsevier Ltd. https://doi.org/10.1016/j.pbi.2020.03.008. | spa |
dc.relation.references | Sonawane, P. D., Jozwiak, A., Barbole, R., Panda, S., Abebie, B., Kazachkova, Y., Gharat, S. A., Ramot, O., Unger, T., Wizler, G., Meir, S., Rogachev, I., Doron-Faigenboim, A., Petreikov, M., Schaffer, A., Giri, A. P., Scherf, T., & Aharoni, A. (2022). 2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum. New Phytologist, 234(4), 1394–1410. https://doi.org/10.1111/nph.18064. | spa |
dc.relation.references | Speed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251–1263. https://doi.org/10.1111/nph.13560. | spa |
dc.relation.references | Stern, S. R., Weese, T., & Bohs, L. A. (2010). Phylogenetic relationships in solanum section Androceras (Solanaceae). Systematic Botany, 35(4), 885–893. https://doi.org/10.1600/036364410X539934. | spa |
dc.relation.references | Stern, S., de Fátima Agra, M., & Bohs, L. (2011). Molecular delimitation of clades within new world species of the “spiny solanums” (Solanum subg. Leptostemonum). Taxon, 60(5), 1429–1441. https://doi.org/10.1002/tax.605018. | spa |
dc.relation.references | Suzuki, M., & Muranaka, T. (2007). Molecular genetics of plant sterol backbone synthesis. Lipids, 42(1), 47–54. https://doi.org/10.1007/s11745-006-1000-5. | spa |
dc.relation.references | Swinnen, G., De Meyer, M., Pollier, J., Molina‐Hidalgo, F.J., Ceulemans, E., Venegas‐Molina, J., De Milde, L., Fernández‐Calvo, P., Ron, M., Pauwels, L. (2022). The basic helix–loop–helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress‐inducible specialized metabolism in tomato. New Phytologist 236: 911–928. | spa |
dc.relation.references | Szymański, J., Bocobza, S., Panda, S., Sonawane, P., Cárdenas, P. D., Lashbrooke, J., Kamble, A., Shahaf, N., Meir, S., Bovy, A., Beekwilder, J., Tikunov, Y., Romero de la Fuente, I., Zamir, D., Rogachev, I., & Aharoni, A. (2020). Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nature Genetics, 52(10), 1111–1121. https://doi.org/10.1038/s41588-020-0690-6. | spa |
dc.relation.references | Takei, H., Shirasawa, K., Kuwabara, K., Toyoda, A., Matsuzawa, Y., Iioka, S., & Ariizumi, T. (2021). De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme, by long-read sequencing. DNA Research, 28(1). https://doi.org/10.1093/dnares/dsaa029. | spa |
dc.relation.references | Thagun, C., Imanishi, S., Kudo, T., Nakabayashi, R., Ohyama, K., Mori, T., Kawamoto, K., Nakamura, Y., Katayama, M., Nonaka, S., Matsukura, C., Yano, K., Ezura, H., Saito, K., Hashimoto, T., & Shoji, T. (2016). Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant and Cell Physiology, 57(5), 961–975. https://doi.org/10.1093/pcp/pcw067. | spa |
dc.relation.references | Timoneda, A., Feng, T., Sheehan, H., Walker‐Hale, N., Pucker, B., Lopez‐Nieves, S., Guo, R., Brockington, S. (2019). The evolution of betalain biosynthesis in Caryophyllales. New Phytologist 224: 71–85. | spa |
dc.relation.references | Tingey, W.M., Plaisted, R.L., Laubengayer, J.E., & et al. (1982). Green peach aphid resistance by glandular trichomes in Solanum tuberosum x S. berthaultii hybrids. American Potato Journal. 59, 241–251. https://doi.org/10.1007/BF02856560. | spa |
dc.relation.references | Ullrich, S.F., Hagels, H., Kayser, O. (2017). Scopolamine: a journey from the field to clinics. Phytochemistry Reviews 16: 333–353. | spa |
dc.relation.references | Umemoto, N., Nakayasu, M., Ohyama, K., Yotsu-Yamashita, M., Mizutani, M., Seki, H., Saito, K., & Muranaka, T. (2016). Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiology, 171(4), 2458–2467. https://doi.org/10.1104/pp.16.00137. | spa |
dc.relation.references | Wang, C., Meng, L., Gao, Y., Grierson, D., Fu D. (2018). Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. Front. Plant Sci. 9:437. doi: 10.3389/fpls.2018.00437. | spa |
dc.relation.references | Wang, X., Gao, L., Jiao, C., Stravoravdis, S., Hosmani, P. S., Saha, S., Zhang, J., Mainiero, S., Strickler, S. R., Catala, C., Martin, G. B., Mueller, L. A., Vrebalov, J., Giovannoni, J. J., Wu, S., & Fei, Z. (2020). Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun. 2020 Nov 16;11(1):5817. doi: 10.1038/s41467-020-19682-0. PMID: 33199703; PMCID: PMC7670462. | spa |
dc.relation.references | Weese, T. L., & Bohs, L. (2007). A Three-Gene Phylogeny of the Genus Solanum (Solanaceae). Systematic Botany, 32(2), 445–463. http://www.jstor.org/stable/25064255. | spa |
dc.relation.references | Weißenborn, S., & Walther, D. (2017). Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study. Front. Plant Sci. 8:1831. doi: 10.3389/fpls.2017.01831. | spa |
dc.relation.references | Whalen, M. D. (1984). Conspectus of species groups in Solanum subgenus Leptostemonum. Gentes Herbarum 12: 179–282. | spa |
dc.relation.references | Wu, F., & Tanksley, S. D. (2010). Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-182. | spa |
dc.relation.references | Wu, M., Kostyun, J. L., & Moyle, L. C. (2019). Genome sequence of Jaltomata addresses rapid reproductive trait evolution and enhances comparative genomics in the hyper-diverse Solanaceae. Genome Biology and Evolution, 11(2), 335–349. https://doi.org/10.1093/gbe/evy274. | spa |
dc.relation.references | Wurtzel, E. T. & Kutchan, T. M. (2016). Plant metabolism, the diverse chemistry set of the future. Science. 353, 1232–1236. | spa |
dc.relation.references | Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, J., Orjeda, G., Guzman, F., Torres, M., Lozano, R., Ponce, O., Martinez, D., de La Cruz, G., Chakrabarti, S. K., Patil, V. U., …, & Visser, R. G. F. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189–195. https://doi.org/10.1038/nature10158. | spa |
dc.relation.references | Xiang, M.L., Hu, B.Y., Qi, Z.H., Wang, X.N., Xie, T.Z., Wang, Z.J., Ma, D.Y., Zeng, Q., Luo, X.D. (2022). Chemistry and bioactivities of natural steroidal alkaloids. Natural Products and Bioprospecting 12. | spa |
dc.relation.references | Xu, S., et al. (2017). Wild tobacco genomes reveal the evolution of nicotine biosynthesis. PNAS, 114, 23:6133-6138. | spa |
dc.relation.references | Yang, J., Wu, Y., Zhang, P., Ma, J., Yao, Y.J, Ma, Y.L., Zhang, L., Yang, Y., Zhao, C., Wu, J. (2023). Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family. Nature Communications 14: 8457. | spa |
dc.relation.references | Yu, G., Li, C., Zhang, L., Zhu, G., Munir, S., Shi, C., Zhang, H., Ai, G., Gao, S., Zhang, Y., Yang, C., Zhang, J., Li, H., & Ye, Z. (2020). An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. J Exp Bot. 14, 71(9):2527-2536. | spa |
dc.relation.references | Young, K. R., Ulloa, C. U., Luteyn, J. L., & Knapp, S. (n.d.). Plant Evolution and Endemism in Andean South America: An Introduction. In The Botanical Review (Vol. 68, Issue 1). | spa |
dc.relation.references | Zhang, C., Mirarab, S. (2022). ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics (Oxford, England) 38: 4949–4950. | spa |
dc.relation.references | Zhang, H., Chen, H., Tan, J., Huang, S., Chen, X., Dong, H., Zhang, R., Wang, Y., Wang, B., Xiao, X., Hong, Z., Zhang, J., Hu, J., & Zhang, M. (2023). The chromosome-scale reference genome and transcriptome analysis of Solanum torvum provides insights into resistance to root-knot nematodes. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1210513. | spa |
dc.relation.references | Zhao, D. K., Zhao, Y., Chen, S. Y., & Kennelly, E. J. (2021). Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. In Natural Product Reports (Vol. 38, Issue 8, pp. 1423–1444). Royal Society of Chemistry. https://doi.org/10.1039/d1np00001b. | spa |
dc.relation.references | Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12. https://doi.org/10.1016/j.cell.2017.12.019. | spa |
dc.relation.references | Zhang, F., Qiu, F., Zeng, J., Xu, Z., Tang, Y., Zhao, T., Gou, Y., Su, F., Wang, S., Sun, X. et al. (2023). Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nature Communications 14. | spa |
dc.relation.references | Knapp, S., Barboza, G. E., Bohs, L., & Särkinen, T. (2019). A revision of the Morelloid Clade of Solanum L. (Solanaceae) in North and Central America and the Caribbean. PhytoKeys, 123(2019), 1– 144. https://doi.org/10.3897/phytokeys.123.31738. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas | spa |
dc.subject.ddc | 580 - Plantas | spa |
dc.subject.lemb | METABOLISMO VEGETAL | spa |
dc.subject.lemb | Plants - metabolism | eng |
dc.subject.lemb | FISIOLOGIA VEGETAL | spa |
dc.subject.lemb | Plant physiology | eng |
dc.subject.lemb | PATOLOGIA VEGETAL | spa |
dc.subject.lemb | Plant diseases | eng |
dc.subject.lemb | MAPAS GENETICOS EN VEGETALES | spa |
dc.subject.lemb | Plant genome mapping | eng |
dc.subject.lemb | GENETICA MOLECULAR DE LAS PLANTAS | spa |
dc.subject.lemb | Plant molecular genetics | eng |
dc.subject.lemb | PLANTAS HERBACEAS | spa |
dc.subject.lemb | Herbaceous plants | eng |
dc.subject.lemb | PLANTAS TREPADORAS | spa |
dc.subject.lemb | Climbing plants | eng |
dc.subject.proposal | Solanaceae | lat |
dc.subject.proposal | Solanum | lat |
dc.subject.proposal | Comparative genomics | eng |
dc.subject.proposal | Medicinal plants | eng |
dc.subject.proposal | Metabolism | eng |
dc.subject.proposal | Metabolomics | eng |
dc.subject.proposal | Genómica Comparativa | spa |
dc.subject.proposal | Metabolismo | spa |
dc.subject.proposal | Metabolómica | spa |
dc.subject.proposal | Plantas medicinales | spa |
dc.subject.proposal | Phylogenetic diversity | eng |
dc.subject.proposal | Steroidal glycoalkaloids (SGAs) | eng |
dc.subject.proposal | Transcriptomics | eng |
dc.subject.proposal | Biodiversidad filogenética | spa |
dc.subject.proposal | Glicoalcaloides esteroidales (SGAs) | spa |
dc.subject.proposal | Transcriptómica | spa |
dc.title | Evolución del metabolismo de los glicoalcaloides esteroidales en especies del género Solanum desde una perspectiva multi-ómica | spa |
dc.title.translated | Evolution of steroidal glycoalkaloid metabolism in species of the genus Solanum from a multi-omics perspective | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | This study was financed thanks to Agreement 566 of 2014 between Universidad Nacional de Colombia (https://unal.edu.co/) and Colciencias (now Minciencias - https://minciencias.gov.co/) and with the support from the Max Planck Institute of Molecular Plant Physiology in Potsdam (contact@mpimp-golm.mpg.de). It was also supported by the DAAD (Deutscher Akademischer Austauschdients) equipment program subsidized by the Faculty of Sciences and facilities in the Computational Biology laboratory of the Faculty of Sciences at the Universidad Nacional de Colombia. | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037612680.2025.pdf
- Tamaño:
- 6.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: