Evolución del metabolismo de los glicoalcaloides esteroidales en especies del género Solanum desde una perspectiva multi-ómica

dc.contributor.advisorRoda Fornaguera, Federicospa
dc.contributor.advisorBermúdez Santana, Clara Isabelspa
dc.contributor.authorPérez Mesa, Pablo Andrésspa
dc.contributor.orcidPablo Pérez [0000000259642257]spa
dc.contributor.researchgroupRnomica Teórica y Computacionalspa
dc.contributor.researchgroupGenómica Evolutiva del Metabolismo Especializadospa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-07-10T12:14:35Z
dc.date.available2025-07-10T12:14:35Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramas, mapasspa
dc.description.abstractLas plantas producen diferentes tipos de metabolitos especializados que median las interacciones bióticas y abióticas asociadas con la defensa, reproducción y supervivencia de los individuos. En la familia Solanaceae, diferentes especies producen metabolitos con importancia medicinal, nutricional y económica. Entre los metabolitos de mayor interés por sus características medicinales y ecológicas se encuentran los glicoalcaloides esteroidales (SGAs), los cuales principalmente se encuentran en especies del género Solanum. Estos compuestos, facilitan la defensa de las plantas contra patógenos y herbívoros y se ha registrado que generan toxicidad en humanos y en otros organismos herbívoros. Análisis genómicos y de co-expresión de genes, han identificado que muchos de los genes de la ruta metabólica de los SGAs se encuentran agrupados en diferentes regiones cromosómicas. Debido a su toxicidad, los humanos han seleccionado de las plantas cultivables las variedades que presentan menor contenido de SGAs. Estos procesos de domesticación han permitido identificar cambios genómicos estructurales sobre la secuencia y organización de los genes de SGAs, lo cual está asociado con cambios en la diversidad y concentración de metabolitos entre las especies. Sin embargo, aún se desconoce la diversidad de SGAs en especies silvestres y medicinales del género Solanum y los posibles cambios genómicos que han generado esta diversidad. En este proyecto estudiamos desde la genómica estructural, funcional y evolutiva, la diversidad de compuestos metabólicos de la ruta de los SGAs en especies silvestres de la familia Solanaceae con potenciales usos medicinales. Realizamos análisis de sintenia, de expresión de genes y metabolitos, para identificar los genes y compuestos que se producen entre las diferentes especies de la familia Solanaceae. Finalmente, evaluamos la diversificación de las especies de la familia, con respecto a la evolución del metabolismo de los SGAs, en función de la distancia filogenética y metabólica entre las especies (Texto tomado de la fuente).spa
dc.description.abstractPlants produce a wide variety of specialized metabolites that mediate biotic and abiotic interactions related to defense, reproduction, and survival. In the Solanaceae family, different species produce metabolites with medicinal, nutritional, and economic importance. Among the metabolites of greatest interest due to their medicinal and ecological characteristics are steroidal glycoalkaloids (SGAs), which are primarily found in species of the Solanum genus. These compounds contribute to the plant's defense against potential pathogens and herbivores and have been reported to cause toxicity in humans and other herbivorous organisms. Genomic and gene co-expression analyses have identified that many of the genes involved in the SGA metabolic pathway are clustered in different chromosomal regions. Due to their toxicity, humans have selected cultivable plant varieties with lower SGA content. These domestication processes have allowed the identification of structural genomic changes in the sequence and organization of SGA genes, which are associated with changes in metabolite diversity and concentration among species. However, the diversity of SGAs in wild and medicinal species of the Solanum genus and the potential genomic changes responsible for this diversity remain unknown. In this project, we investigate the diversity of SGA pathway metabolites in wild Solanaceae species with potential medicinal uses from a structural, functional, and evolutionary genomic perspective. We performed synteny analysis, gene expression, and metabolic profile characterization studies to identify the genes and compounds produced across different Solanaceae species. Finally, we investigated the diversification of solanaceous species concerning the evolution of SGA metabolism and considered the phylogenetic and metabolic distance among species.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ciencias - Biologíaspa
dc.description.methodsTo achieve our research objectives, we implemented genomic, transcriptomic, and metabolomic information from wild and medicinal plants from Solanaceae, to uncover by phylogenetic and bioinformatic approaches the evolution and diversification of the alkaloid metabolism.spa
dc.description.researchareaEvolución del metabolismo en Plantasspa
dc.description.sponsorshipAcuerdo 566 de 2014 entre la Universidad Nacional de Colombia y Colciencias, con el apoyo del Instituto Max Planck de Fisiologia en Plantas en Potsdam. Tambien esta financiado por el DAAD (Deutscher Akademischer Austauschdients) y los recursos Computacionales de la Facultad de Ciencias y el laboratorio de biologia computacional de la Facultad de Ciencias de la Universidad Nacional de Colombia.spa
dc.format.extent118 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88318
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAgrawal, A. A., & Weber, M. G. (2015). On the study of plant defense and herbivory using comparative approaches: How important are secondary plant compounds. Ecology Letters, 18(10), 985–991. https://doi.org/10.1111/ele.12482.spa
dc.relation.referencesAkiyama, R., Watanabe, B., Nakayasu, M., Lee, H. J., Kato, J., Umemoto, N., Muranaka, T., Saito, K., Sugimoto, Y., & Mizutani, M. (2021). The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21546-0.spa
dc.relation.referencesAkiyama, R., Umemoto, N., & Mitzunari, M. (2023). Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum. Plant Biotechnology, 40, 185-191 (2023). DOI:10.5511/plantbiotechnology.23.0717b.spa
dc.relation.referencesAlam, O., & Purugganan, M. D. (2024). Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. Plant Cell. May 1;36(5):1227-1241. doi: 10.1093/plcell/koae013. PMID: 38243576; PMCID: PMC11062453.spa
dc.relation.referencesAubriot, X., & Knapp, S. (2022). A revision of the "spiny solanums" of Tropical Asia (Solanum, the Leptostemonum Clade, Solanaceae). PhytoKeys. Jun 1;198:1-270. doi: 10.3897/phytokeys.198.79514. PMID: 36760991; PMCID: PMC9849010.spa
dc.relation.referencesBai, F., Shu, P., Deng, H., Wu, Y., Chen, Y., Wu, M., Ma, T., Zhang, Y., Pirello, J., Li, Z., Hong, Y., Bouzayen, M., & Liu, M. (2024). A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nature Communication, 15:2894. https://doi.org/10.1038/s41467-024-47292-7.spa
dc.relation.referencesBandi, V., & Gutwin, C. (2020). Interactive Exploration of Genomic Conservation. In Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Canadian Human-Computer Communications Society, Waterloo, CAN.spa
dc.relation.referencesBar-Akiva, A., Ovadia, R., Rogachev, I., Bar-Or, C., Bar, E., Freiman, Z., Nissim-Levi, A., Gollop, N., Lewinsohn, E., Aharoni, A., Weiss, D., Koltai, H., & Oren-Shamir, M. (2010). Metabolic networking in Brunfelsia calycina petals after flower opening. Journal of Experimental Botany, 61(5), 1393–1403. https://doi.org/10.1093/jxb/erq008.spa
dc.relation.referencesBarchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., Andolfo, G., Aprea, G., Avanzato, C., Bassolino, L., Comino, C., Molin, A. D., Ferrarini, A., Maor, L. C., Portis, E., Reyes-Chin-Wo, S., Rinaldi, R., Sala, T., Scaglione, D., …, & Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47985-w.spa
dc.relation.referencesBednarek, P. et al. (2009). A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense.Science323,101-106.DOI:10.1126/science.1163732.spa
dc.relation.referencesBohs, L. (2005). MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA. FESTSCHRIFT FOR WILLIAM G. D’ARCY, 3:27-49.spa
dc.relation.referencesBolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sørensen, I., Lichtenstein, G., Fich, E. A., Conte, M., Keller, H., Schneeberger, K., Schwacke, R., Ofner, I., Vrebalov, J., Xu, Y., Osorio, S., …, & Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46(9), 1034–1038. https://doi.org/10.1038/ng.3046.spa
dc.relation.referencesBombarely, A., Moser, M., Amrad, A., Bao, M., Bapaume, L., Barry, C. S., Bliek, M., Boersma, M. R., Borghi, L., Bruggmann, R., Bucher, M., D’Agostino, N., Davies, K., Druege, U., Dudareva, N., Egea-Cortines, M., Delledonne, M., Fernandez-Pozo, N., Franken, P., …, & Kuhlemeier, C. (2016). Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2. https://doi.org/10.1038/nplants.2016.74.spa
dc.relation.referencesBonthala, V. S., & Stich, B. (2024). StCoExpNet: a global co-expression network analysis facilitates identifying genes underlying agronomic traits in potatoes. Plant Cell Rep 43, 117. https://doi.org/10.1007/s00299-024-03201-2.spa
dc.relation.referencesBorghi, M., Fernie, A. R., Schiestl, F. P., & Bouwmeester, H. J. (2017). The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. In Trends in Plant Science (Vol. 22, Issue 4, pp. 338–350). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2016.12.009.spa
dc.relation.referencesBourguiba, H., Audergon, J. M., Krichen, L., & et al. (2012). Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12, 49. https://doi.org/10.1186/1471-2229-12-49.spa
dc.relation.referencesBouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. In Plant Journal (Vol. 100, Issue 5, pp. 892–907). Blackwell Publishing Ltd. https://doi.org/10.1111/tpj.14496.spa
dc.relation.referencesBoycheva, S., Daviet, L., Wolfender, J. L., & Fitzpatrick, T. B. (2014). The rise of operon-like gene clusters in plants. In Trends in Plant Science (Vol. 19, Issue 7, pp. 447–459). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2014.01.013.spa
dc.relation.referencesBuchfink, B., Xie, C. & Huson, D. (2015). Fast and sensitive protein alignment using DIAMOND. Nat Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176.spa
dc.relation.referencesCárdenas, P. D., Sonawane, P. D., Heinig, U., Bocobza, S. E., Burdman, S., & Aharoni, A. (2015). The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. In Phytochemistry (Vol. 113, pp. 24–32). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2014.12.010.spa
dc.relation.referencesCárdenas, P. D., Sonawane, P. D., Pollier, J., vanden Bossche, R., Dewangan, V., Weithorn, E., Tal, L., Meir, S., Rogachev, I., Malitsky, S., Giri, A. P., Goossens, A., Burdman, S., & Aharoni, A. (2016). GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications, 7. https://doi.org/10.1038/ncomms10654.spa
dc.relation.referencesCárdenas, P. D., Sonawane, P. D., Heinig, U., Jozwiak, A., Panda, S., Abebie, B., Kazachkova, Y., Pliner, M., Unger, T., Wolf, D., Ofner, I., Vilaprinyo, E., Meir, S., Davydov, O., Gal-on, A., Burdman, S., Giri, A., Zamir, D., Scherf, T., …, & Aharoni, A. (2019). Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13211-4.spa
dc.relation.referencesCarrillo-Galván, G., Bye, R., Eguiarte, L. E., Cristians, S., Pérez-López, P., Vergara-Silva, F., & Luna-Cavazos, M. (2020). Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)- An ethnobotanical, morpho-physiological, and phytochemical analysis. Journal of Ethnobiology and Ethnomedicine, 16(1). https://doi.org/10.1186/s13002-020-00368-2.spa
dc.relation.referencesde Boer, K., Tilleman, S., Pauwels, L., vanden Bossche, R., de Sutter, V., Vanderhaeghen, R., Hilson, P., Hamill, J.D., Goossens, A. (2011). APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant Journal, 66(6), 1053–1065.spa
dc.relation.referencesD’ Arcy, W. G. (1973). Section Melongena sensu D’Arcy. En: Ann. Missouri Bot. Gard. 60: 698.spa
dc.relation.referencesDe Luca, V., Salim, V., Atsumi, M., & Yu, F. (2012). Mining the Biodiversity of Plants: A Revolution in the Making. http://science.sciencemag.org/.spa
dc.relation.referencesDodsworth, S., Chase, M.W., Särkinen, T., Knapp, S., Leitch, A.R. (2016). Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biological Journal of the Linnean Society 117: 96–105.spa
dc.relation.referencesDoebley, J. F., Gaut, B. S., & Smith, B. D. (2006). The molecular genetics of crop domestication. Cell, 127, 1309−1321.spa
dc.relation.referencesEcheverría-Londoño, S., Särkinen, T., Fenton, I.S., Purvis, A. & Knapp, S. (2020). Dynamism and context-dependency in diversification of the megadiverse plant genus Solanum (Solanaceae). J. Syst. Evol., 58: 767-782. https://doi.org/10.1111/jse.12638.spa
dc.relation.referencesEdgar, R. C. (2022). Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nature Communications 13.1: 6968. https://www.nature.com/articles/s41467-022-34630-w.pdf.spa
dc.relation.referencesEdgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32: 1792–7.spa
dc.relation.referencesEich, E. (2008). Solanaceae and Convolvulaceae: Secondary Metabolites. Springer.spa
dc.relation.referencesEmms, D.M., Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238.spa
dc.relation.referencesEsteves-Souza, A., & Echevarria, A. (2002). Cytotoxic Activities Against Ehrlich Carcinoma and Human K562 Leukaemia of Alkaloids and Flavonoid from Two Solanum Species. In J. Braz. Chem. Soc (Vol. 13, Issue 6).spa
dc.relation.referencesFacchini, P. J. (2001). ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. In Annu. Rev. Plant Physiol. Plant Mol. Biol (Vol. 52). www.annualreviews.org.spa
dc.relation.referencesFan, P., Wang, P., Lou, Y. R., Leong, B. J., Moore, B. M., Schenck, C. A., Combs, R., Cao, P., Brandizzi, F., Shiu, S. H., & Last, R. L. (2020). Evolution of a plant gene cluster in solanaceae and emergence of metabolic diversity. ELife, 9, 1–26. https://doi.org/10.7554/eLife.56717.spa
dc.relation.referencesFiehn, O. (2002). Metabolomics-the link between genotypes and phenotypes. In Plant Molecular Biology (Vol. 48).spa
dc.relation.referencesFiesel, P. D., Kerwin, R. E., Jones, A. D., Last, R. L. (2024). Trading acyls and swapping sugars: metabolic innovations in Solanum trichomes, Plant Physiology, Volume 196, Issue 2, October 2024, Pages 1231–1253, https://doi.org/10.1093/plphys/kiae279.spa
dc.relation.referencesFlint-Garcia, S. A. (2013). Genetics and Consequences of Crop Domestication. Journal of Agricultural and Food Chemistry 2013 61 (35), 8267-8276. DOI: 10.1021/jf305511d.spa
dc.relation.referencesFriedman, M., & Levin, C. E. (1998). Dehydrotomatine content in tomatoes. Journal of Agricultural and Food Chemistry, 46(11), 4571–4576. https://doi.org/10.1021/jf9804589.spa
dc.relation.referencesFriedman, M. (2002). Tomato glycoalkaloids: Role in the plant and in the diet. In Journal of Agricultural and Food Chemistry (Vol. 50, Issue 21, pp. 5751–5780). https://doi.org/10.1021/jf020560c.spa
dc.relation.referencesFriedman, M., Lee, K. R., Kim, H. J., Lee, I. S., & Kozukue, N. (2005). Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. Journal of Agricultural and Food Chemistry, 53(15), 6162–6169. https://doi.org/10.1021/jf050620p.spa
dc.relation.referencesFriedman, M. (2006). Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. In Journal of Agricultural and Food Chemistry (Vol. 54, Issue 23, pp. 8655–8681). https://doi.org/10.1021/jf061471t.spa
dc.relation.referencesFrodin, D. G. (2004). History and Concepts of Big Plant. In Source: Taxon (Vol. 53, Issue 3).spa
dc.relation.referencesFu, L., Niu, B., Zhu, Z., Wu, S., Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150–3152.spa
dc.relation.referencesGabriel, L., Brůna, T., Hoff, K.J., Ebel, M., Lomsadze, A., Borodovsky, M., Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. bioRxiv [Preprint]. 2024 Feb 29:2023.06.10.544449. doi: 10.1101/2023.06.10.544449. Update in: Genome Res. 2024 Jun 25;34(5):769-777. doi: 10.1101/gr.278090.123. PMID: 37398387; PMCID: PMC10312602.spa
dc.relation.referencesGagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aubriot, X., Giacomin, L., Gouvêa, Y., Bragionis, T., Stehmann, J. R., Bohs, L., Dodsworth, S., Martine, C., Poczai, P., Knapp, S., & Särkinen, T. (2022). Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. American Journal of Botany, 109(4), 580–601. https://doi.org/10.1002/ajb2.1827.spa
dc.relation.referencesGagnon, E., Baldaszti, L., Moonlight, P., Knapp, S., Lehmann, C. E. R., & Särkinen, T. (2023). Functional and ecological diversification of underground organs in Solanum. Front. Genet. 14:1231413. doi: 10.3389/fgene.2023.1231413.spa
dc.relation.referencesGarbowicz, K., Liu, Z., Alseekh, S., Tieman, D., Taylor, M., Kuhalskaya, A., Ofner, I., Zamir, D., Klee, H. J., Fernie, A. R., & Brotman, Y. (2018). Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. Molecular Plant, 11(9), 1147–1165. https://doi.org/10.1016/j.molp.2018.06.003.spa
dc.relation.referencesGatter, T., & Stadler, P. F. (2019). Ryūtō: network-flow based transcriptome reconstruction. BMC Bioinformatics 20, 190. https://doi.org/10.1186/s12859-019-2786-5.spa
dc.relation.referencesGebhardt, C. (2016). The historical role of species from the Solanaceae plant family in genetic research. In Theoretical and Applied Genetics (Vol. 129, Issue 12, pp. 2281–2294). Springer Verlag. https://doi.org/10.1007/s00122-016-2804-1.spa
dc.relation.referencesGousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., Servaes, A., & Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science 168:319–327.spa
dc.relation.referencesGramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10.spa
dc.relation.referencesGuadalupe-Dominguez, P., Niittylä, T. (2022). Mobile forms of carbon in trees: metabolism and transport, Tree Physiology, Volume 42, Issue 3, March 2022, Pages 458–487, https://doi.org/10.1093/treephys/tpab123.spa
dc.relation.referencesGuo, H., Mao, M., Deng, Y., Sun, L., Chen, R., Cao, P., Lai, J., Zhang, Y., Wang, C., Li, C., et al. (2022). Multi-Omics Analysis Reveals That SlERF.D6 Synergistically Regulates SGAs and Fruit Development. Frontiers in Plant Science 13: 1–14.spa
dc.relation.referencesHardigan, M. A., Laimbeer, F. P. E., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B., Wiegert-Rininger, K., Wood, J. C., Douches, D. S., Farré, E. M., Veilleux, R. E., & Buell, C. R. (2017). Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America, 114(46), E9999–E10008. https://doi.org/10.1073/pnas.1714380114.spa
dc.relation.referencesHaas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B.O., Lieber, M. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols 8: 1494–1512.spa
dc.relation.referencesHilgenhof, R., Gagnon, E., Knapp, S., Aubriot, X., Tepe, E. J., Bohs, L., Giacomin, L., Gouvêa, Y. F., Martine, C. T., Orejuela, A., Orozco, C. I., Peralta, I. E., & Särkinen, T. (2023). Morphological trait evolution in Solanum (Solanaceae): Evolutionary lability of key taxonomic characters. TAXON, 72: 811-847. https://doi.org/10.1002/tax.12990.spa
dc.relation.referencesHirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., Saito, K. (2005). Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem. 2005 Jul 8;280(27):25590-5. doi: 10.1074/jbc.M502332200. Epub 2005 May 2. PMID: 15866872.spa
dc.relation.referencesHuang, J., Xu, W., Zhai, J., Hu, Y., Guo, J., Zhang, C., Zhao, Y., Zhang, L., Martine, C., Ma, H. (2023). Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. Plant Communications.spa
dc.relation.referencesItkin, M., Rogachev, I., Alkan, N., Rosenberg, T., Malitsky, S., Masini, L., Meir, S., Iijima, Y., Aoki, K., de Vos, R., Prusky, D., Burdman, S., Beekwilder, J., & Aharoni, A. (2011). GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell, 23(12), 4507–4525. https://doi.org/10.1105/tpc.111.088732.spa
dc.relation.referencesItkin, M., Heinig, U., Tzfadia, O., Bhide, A. J., Shinde, B., Cardenas, P. D., Bocobza, S. E., Unger, T., Malitsky, S., Finkers, R., Tikunov, Y., Bovy, A., Chikate, Y., Singh, P., Rogachev, I., Beekwilder, J., Giri, A. P., & Aharoni, A. (2013). Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science, 341(6142), 175–179. https://doi.org/10.1126/science.1240230.spa
dc.relation.referencesJohnson, M. T. J., Smith, S. D., & Rausher, M. D. (2009). Plant sex and the evolution of plant defenses against herbivores. Proc. Natl. Acad. Sci. USA. 106, 18079–18084.spa
dc.relation.referencesJørgensen P. M., Ulloa Ulloa C., León B., León-Yánez S., Beck S. G., Nee M., Zarucchi J. L., Celis M., Bernal R., & Gradstein R. (2011). Regional patterns of vascular plant diversity and endemism. In: Herzog S.K., Herzog S.K., Martínez R., Jørgensen P.M., Tiessen H. (Eds). Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), 192–203.spa
dc.relation.referencesJoshi, J. R., Yao, L., Charkowski, A. O., & Heuberger, A. L. (2021). Metabolites from wild potato inhibit virulence factors of the soft rot and blackleg 2 pathogen Pectobacterium brasiliense.spa
dc.relation.referencesKantar, M. B., Nashoba, A. R., Anderson, J. E., Blackman, B. K., & Rieseberg, L. H. (2017). The Genetics and Genomics of Plant Domestication. Bioscience, 67, 971–982.spa
dc.relation.referencesKazachkova, Y., Zemach, I., Panda, S., Bocobza, S., Vainer, A., Rogachev, I., Dong, Y., Ben-Dor, S., Veres, D., Kanstrup, C., Lambertz, S. K., Crocoll, C., Hu, Y., Shani, E., Michaeli, S., Nour-Eldin, H. H., Zamir, D., & Aharoni, A. (2021). The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nature Plants, 7(4), 468–480. https://doi.org/10.1038/s41477-021-00865-6.spa
dc.relation.referencesKaunda, J. S., & Zhang, Y. J. (2019). The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. In Natural Products and Bioprospecting. Vol. 9, Issue 2, pp. 77–137. Springer. https://doi.org/10.1007/s13659-019-0201-6.spa
dc.relation.referencesKerwin, R.E., Hart, J.E., Fiesel, P.D., Lou, Y.R., Fan, P., Jones, A.D., Last, R.L. (2024). Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. Science Advances 10: eadn3991.spa
dc.relation.referencesKim, N., Estrada, O., Chavez, B., Stewart, C., D’Auria, J.C. (2016). Tropane and granatane alkaloid biosynthesis: A systematic analysis. Molecules 21: 1–25.spa
dc.relation.referencesKohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules. Feb 22;24(4):796. doi: 10.3390/molecules24040796. PMID: 30813289; PMCID: PMC6412926.spa
dc.relation.referencesKolmogorov, M., Yuan, J., Lin, Y., & et al. (2019). Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37, 540–546. https://doi.org/10.1038/s41587-019-0072-8.spa
dc.relation.referencesKnapp S. (2002). Solanum section Geminata (G. Don) Walpers (Solanaceae). Flora Neotropica 84: 1–405.spa
dc.relation.referencesKnapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae - A model for linking genomics with biodiversity. In Comparative and Functional Genomics (Vol. 5, Issue 3, pp. 285–291). https://doi.org/10.1002/cfg.393.spa
dc.relation.referencesKnoch E, et al. (2018). Third DWF1 paralog in Solanaceae, sterol Δ(24)-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc Natl Acad Sci U S A. 115:E8096–E8103.spa
dc.relation.referencesKuo, K.-W., Hsu, S.-H., Li, Y.-P., Lin, W.-L., Liu, L.-F., Chang, L.-C., Lin, C.-C., Lin, C.-N., & Sheu, H.-M. (2000). Anticancer Activity Evaluation of the Solanum Glycoalkaloid Solamargine TRIGGERING APOPTOSIS IN HUMAN HEPATOMA CELLS. In BIOCHEM PHARMACOL (Vol. 60).spa
dc.relation.referencesLachman J., Hamouz K., Orsak M. & Pivec V. (2001) Potato glycoalkaloids and their significance in plant protection and human nutrition - Review. Series Rostlinna. 47, 181-191.spa
dc.relation.referencesLangfelder, P., Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.spa
dc.relation.referencesLei, Z., Li, Z., Zhang, W., He, D., & Zhang, Y. (2024). From wild to cultivated crops: general shift in morphological and physiological traits for yield enhancement following domestication. Volume 3, Issue 3. Pages 138-146. ISSN 2773-126X. https://doi.org/10.1016/j.crope.2024.03.001.spa
dc.relation.referencesLeisner, C. P., Hamilton, J. P., Crisovan, E., Manrique-Carpintero, N. C., Marand, A. P., Newton, L., Pham, G. M., Jiang, J., Douches, D. S., Jansky, S. H., & Buell, C. R. (2018). Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018 May;94(3):562-570. doi: 10.1111/tpj.13857. Epub 2018 Mar 22. Erratum in: Plant J. Oct;96(2):482. doi: 10.1111/tpj.14075. PMID: 29405524.spa
dc.relation.referencesLevin, R. A. , Myers, N. R., & Bohs, L (2006). Phylogenetic relationships among the ‘spiny solanums’ (Solanum subgenus Leptostemonum, Solanaceae). American Journal of Botany93: 157–169.spa
dc.relation.referencesLi, W., Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.spa
dc.relation.referencesLin, X., Jia, Y., Heal, R., & et al. (2023). Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat Genet 55, 1579–1588. https://doi.org/10.1038/s41588-023-01486-9.spa
dc.relation.referencesLiu, S., Cheng, Y., Zhao, X. et al. (2024) The transcription factor StMYB113 regulates light-induced greening by modulating steroidal glycoalkaloid biosynthesis in potatoes (Solanum tuberosum L.). HORTIC. ADV. 2, 7. https://doi.org/10.1007/s44281-023-00025-0.spa
dc.relation.referencesLucier, R., Kamileen, M. O., Nakamura, Y., Serediuk, S., Barbole, R., Wurlitzer, J., Kunert, M., Heinicke, S., O’Connor, S. E., Sonawane, P. D. (2024). Steroidal scaffold decorations in Solanum alkaloid biosynthesis. Molecular Plant, 17, 8:1236-1254. https://doi.org/10.1016/j.molp.2024.06.013.spa
dc.relation.referencesMcCue, K. F., & et al. (2006). The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67, 1590–1597.spa
dc.relation.referencesMoghe, G. D., & Last, R. L. (2015). Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 169(3), 1512–1523. https://doi.org/10.1104/pp.15.00994.spa
dc.relation.referencesMahood, E.H., Kruse, L.H., Moghe, G.D. (2020). Machine learning: a powerful tool for gene function prediction in plants. Applications in Plant Sciences 8: e11376.spa
dc.relation.referencesManni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing genomic data quality and beyond. Current Protocols, 1(12), 1–41. https://doi.org/10.1002/cpz1.323.spa
dc.relation.referencesMano, A., Tuller T., Béjà O., & Pinter, R. Y. (2010). Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways. BMC Bioinformatics. Jan 18;11 Suppl 1(Suppl 1):S38. doi: 10.1186/1471-2105-11-S1-S38. PMID: 20122211; PMCID: PMC3009510.spa
dc.relation.referencesMatias, L. J., Mercadante-Simões, M. O., Royo, V. A., Ribeiro, L. M., Santos, A. C., & Fonseca, J. M. S. (2016). Structure and histochemistry of medicinal species of Solanum. Revista Brasileira de Farmacognosia, 26(2), 147–160. https://doi.org/10.1016/j.bjp.2015.11.002.spa
dc.relation.referencesMarcet-Houben, M., Gabaldón, T. (2019). Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 4, 2383–2392. https://doi.org/10.1038/s41564-019-0552-0.spa
dc.relation.referencesMartínez-Ainsworth, N. E., & Tenaillon, M. I. (2016). Superheroes and masterminds of plant domestication. C R Biol. 2016 Jul-Aug;339(7-8):268-73. doi: 10.1016/j.crvi.2016.05.005. Epub. Jun 15. PMID: 27317057.spa
dc.relation.referencesMilner, S. E., Brunton, N. P., Jones, P. W., O Brien, N. M., Collins, S. G., & Maguire, A. R. (2011). Bioactivities of glycoalkaloids and their aglycones from solanum species. In Journal of Agricultural and Food Chemistry (Vol. 59, Issue 8, pp. 3454–3484). https://doi.org/10.1021/jf200439q.spa
dc.relation.referencesMoghe, G. D., & Last, R. L. (2015). Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 169(3), 1512–1523. https://doi.org/10.1104/pp.15.00994.spa
dc.relation.referencesMoghe, G. D., Leong, B. J., Hurney, S. M., Jones, A. D., & Last, R. L. (2017). Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. https://doi.org/10.7554/eLife.28468.001.spa
dc.relation.referencesMorris, S. C., & Petermann, J. B. (1985). Genetic and Environmental Effects on Levels of Glycoalkaloids in Cultivars of Potato (Solanum tuberosum L.). In Food Chemistry (Vol. 18).spa
dc.relation.referencesMweetwa, A. M., Hunter, D., Poe, R., Harich, K. C., Ginzberg, I., Veilleux, R. E., & Tokuhisa, J. G. (2012). Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry, 75, 32–40. https://doi.org/10.1016/j.phytochem.2011.12.003.spa
dc.relation.referencesNakayasu, M., Umemoto, N., Ohyama, K., Fujimoto, Y., Jae Lee, H., Watanabe, B., Muranaka, T., Saito, K., Sugimoto, Y., & Mizutani, M. (2017). A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant Physiology, 175(1):120-133. doi:10.1104/pp.17.00501.Epub.spa
dc.relation.referencesNakayasu, M., et al. (2020). Identification of α-tomatine 23-hydroxy involved in the detoxification of a bitter glycoalkaloid. Plant Cell Physiol. 61, 21-28.spa
dc.relation.referencesNee, M. (1999). Synopsis of Solanum in the New World. In M. Nee, D. E. Symon, R. N. Lester, and J. P. Jessop [eds.], Solanaceae IV: advances in biology and utilization, 285–333. Royal Botanic Gardens, Kew, Richmond, Surrey, UK.spa
dc.relation.referencesNg, J., & Smith, S. D. (2016). Widespread flower color convergence in Solanaceae via alternate biochemical pathways. New Phytol. Jan;209(1):407-17. doi: 10.1111/nph.13576. Epub 2015 Jul 29. PMID: 26224118.spa
dc.relation.referencesNegrão, R., Monro, A. K., Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia.spa
dc.relation.referencesNurk, S., Walenz, B. P., Rhie, A., Vollger, M. R., Logsdon, G. A., Grothe, R., Miga, K. H., Eichler, E. E., Phillippy, A. M., & Koren, S. (2020). HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020 Sep;30(9):1291-1305. doi: 10.1101/gr.263566.120. Epub 2020 Aug 14. PMID: 32801147; PMCID: PMC7545148.spa
dc.relation.referencesNützmann, H.W., Huang, A., Osbourn, A. (2016). Plant metabolic clusters – from genetics to genomics. New Phytologist 211: 771–789.spa
dc.relation.referencesNützmann, H.-W., Doerr, D., Ramírez-Colmenero, A., Sotelo-Fonseca, J.E., Wegel, E., Di Stefano, M., Wingett, S.W., Fraser, P., Hurst, L., Fernandez-Valverde, S.L. (2020). Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proceedings of the National Academy of Sciences 117: 13800–13809.spa
dc.relation.referencesOlmstead, R. G., & Palmer, J. D. (1997). Implications for the Phylogeny, Classification, and Biogeography of Solanum from cpDNA Restriction Site Variation (Vol. 22, Issue 1). http://www.jstor.orgURL:http://www.jstor.org/stable/.spa
dc.relation.referencesOlmstead, R. G., Bohs, L., Migid, H. A., Santiago-Valentin, E., Garcia, V. F., & Collier, S. M. (2008). A molecular phylogeny of the Solanaceae. Taxon 57: 1159–1181.spa
dc.relation.referencesOrozco, C. I., Alba, A., Beltrán, G., Orejuela, A., Sarmiento, Y., & Vélez, J. M. (2015). Solanum. In: Bernal R., Gradstein S.R., Celis M. (Eds) Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co [accessed 01.12.2021].spa
dc.relation.referencesPatro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature methods 14: 417–419.spa
dc.relation.referencesPaul, P., Singh, S.K., Patra, B., Liu, X., Pattanaik, S., Yuan, L. (2020). Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in Plants. Plant Physiology, 182(2), 840–856.spa
dc.relation.referencesPichersky, E., & Lewinsohn, E. (2011). Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 62, 549–566. https://doi.org/10.1146/annurev-arplant-042110-103814.spa
dc.relation.referencesPowell, A. F., Feder, A., Li, J., Schmidt, M. H. W., Courtney, L., Alseekh, S., Jobson, E. M., Vogel, A., Xu, Y., Lyon, D., Dumschott, K., McHale, M., Sulpice, R., Bao, K., Lal, R., Duhan, A., Hallab, A., Denton, A. K., Bolger, M. E., …, & Usadel, B. (2022). A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. Plant Journal, 110(6), 1791–1810. https://doi.org/10.1111/tpj.15770.spa
dc.relation.referencesRoddick, J. G. (1989). THE ACETYLCHOLINESTERASE-INHIBITORY ACTIVITY OF STEROIDAL GLYCOALKALOIDS AND THEIR AGLYCONES (Vol. 28, Issue 10).spa
dc.relation.referencesPrice, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490.spa
dc.relation.referencesProffit, M., Lapeyre, B., Buatois, B. et al. (2020). Chemical signal is in the blend: bases of plant-pollinator encounter in a highly specialized interaction. Sci Rep 10, 10071. https://doi.org/10.1038/s41598-020-66655-w.spa
dc.relation.referencesPucker, B., Walker‐Hale, N., Dzurlic, J., Yim, W.C., Cushman, J.C., Crum, A., Yang, Y., Brockington, S.F. (2024). Multiple mechanisms explain loss of anthocyanins from betalain‐pigmented Caryophyllales, including repeated wholesale loss of a key anthocyanidin synthesis enzyme. New Phytologist 241: 471–489.spa
dc.relation.referencesR Core Team. (2020). R: A language and environment for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.spa
dc.relation.referencesRambaut, A. (2014). FigTree: Tree Figure Drawing Tool, Version 1.4.2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac. uk/software/fgtree/. Accessed 1 Apr 2015.spa
dc.relation.referencesRamon, C., & Stelling, J. (2023). Functional comparison of metabolic networks across species. Nat Commun 14, 1699. https://doi.org/10.1038/s41467-023-37429-5.spa
dc.relation.referencesRanallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications 11, 1432. https://doi.org/10.1038/s41467-020-14998-3.spa
dc.relation.referencesRen, Y., Yang, J., Lu, B., Jiang, Y., Chen, H., Hong, Y., Wu, B., Miao, Y. (2017). Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. Int J Mol Sci. 2017 Sep 8;18(9):1923. doi: 10.3390/ijms18091923. PMID: 28885552; PMCID: PMC5618572.spa
dc.relation.referencesRevell, L.J., Harrison, A.S. (2008). PCCA: a program for phylogenetic canonical correlation analysis. Bioinformatics 24: 1018–1020.spa
dc.relation.referencesRieseberg, T.P., Dadras, A., Fürst-Jansen, J.M.R., Ashok, A.D., Darienko, T., De Vries, S., Irisarri, I., De Vries, J. (2023). Crossroads in the evolution of plant specialized metabolism. In: Seminars in cell & developmental biology. Elsevier, 37–58.spa
dc.relation.referencesRobinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616.spa
dc.relation.referencesRokas, A., Wisecaver, J.H. & Lind, A.L. (2018). The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16, 731–744. https://doi.org/10.1038/s41579-018-0075-3.spa
dc.relation.referencesSalgotra, R. K., & Bhagirath, S. C. (2023). "Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources" Genes 14, no. 1: 174. https://doi.org/10.3390/genes14010174.spa
dc.relation.referencesSánchez-Mata, M. C., Yokoyama, W. E., Hong, Y. J., & Prohens, J. (2010). α-Solasonine and α-solamargine contents of gboma (solanum macrocarpon l.) and scarlet (solanum aethiopicum l.) eggplants. Journal of Agricultural and Food Chemistry, 58(9), 5502–5508. https://doi.org/10.1021/jf100709g.spa
dc.relation.referencesSärkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): A dated 1000-tip tree. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-214.spa
dc.relation.referencesSärkinen, T., Gonzáles, P., & Knapp, S. (2015). Four new non-spiny Solanum (Solanaceae) species from South America. PhytoKeys, 44(1), 39–64. https://doi.org/10.3897/phytokeys.44.8693.spa
dc.relation.referencesSatterlee, J. W., & et al. (2024). Convergent evolution of plant prickles by repeated gene co-option over deep time.Science385,eado1663(2024).DOI:10.1126/science.ado1663.spa
dc.relation.referencesSato, S., Tabata, S., Hirakawa, H., Asamizu, E., Shirasawa, K., Isobe, S., Kaneko, T., Nakamura, Y., Shibata, D., Aoki, K., Egholm, M., Knight, J., Bogden, R., Li, C., Shuang, Y., Xu, X., Pan, S., Cheng, S., Liu, X., …, & Gianese, G. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119.spa
dc.relation.referencesSawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K., & Umemoto, N. (2014). Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell, 26(9), 3763–3774. https://doi.org/10.1105/tpc.114.130096.spa
dc.relation.referencesSchwahn, K., de Souza, L. P., Fernie, A. R., & Tohge, T. (2014). Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology, 56(9), 864–875. https://doi.org/10.1111/jipb.12274.spa
dc.relation.referencesScossa, F., & Fernie, A. R. (2020). The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J. Feb 20;18:482-500. doi: 10.1016/j.csbj.2020.02.009. PMID: 32180906; PMCID: PMC7063335.spa
dc.relation.referencesShakya, R., & Navarre, D. A. (2008). LC/MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). Journal of Agricultural and Food Chemistry, 56(16), 6949–6958. https://doi.org/10.1021/jf8006618.spa
dc.relation.referencesShoji, T., Hashimoto, T. (2011). Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-Locus ERF genes. Plant and Cell Physiology, 52(6), 1117–1130.spa
dc.relation.referencesSierra-Reyes, G. P. (2021). Estudio taxonómico de Solanum sección Torva Nees (Solanaceae) para Colombia. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias. Tesis de Maestría.spa
dc.relation.referencesSingh, J., van der Knaap, E. (2022). Unintended Consequences of Plant Domestication, Plant and Cell Physiology, Volume 63, Issue 11, November 2022, Pages 1573–1583, https://doi.org/10.1093/pcp/pcac083.spa
dc.relation.referencesSkirycz, A., Kierszniowska, S., Méret, M., Willmitzer, L., & Tzotzos, G. (2016). Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado? In Trends in Biotechnology (Vol. 34, Issue 10, pp. 781–790). Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2016.03.006.spa
dc.relation.referencesSmit, S. J., & Lichman, B. R. (2022). Plant biosynthetic gene clusters in the context of metabolic evolution. In Natural Product Reports (Vol. 39, Issue 7, pp. 1465–1482). Royal Society of Chemistry. https://doi.org/10.1039/d2np00005a.spa
dc.relation.referencesSonawane, P. D., Pollier, J., Panda, S., Szymanski, J., Massalha, H., Yona, M., Unger, T., Malitsky, S., Arendt, P., Pauwels, L., Almekias-Siegl, E., Rogachev, I., Meir, S., Cárdenas, P. D., Masri, A., Petrikov, M., Schaller, H., Schaffer, A. A., Kamble, A., …, & Aharoni, A. (2016). Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 3. https://doi.org/10.1038/nplants.2016.205.spa
dc.relation.referencesSonawane, P. D., Heinig, U., Panda, S., Gilboa, N. S., Yona, M., Pradeep Kumar, S., Alkan, N., Unger, T., Bocobza, S., Pliner, M., Malitsky, S., Tkachev, M., Meir, S., Rogachev, I., & Aharoni, A. (2018). Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proceedings of the National Academy of Sciences of the United States of America, 115(23), E5419–E5428. https://doi.org/10.1073/pnas.1804835115.spa
dc.relation.referencesSonawane, P. D., Jozwiak, A., Panda, S., & Aharoni, A. (2020). ‘Hijacking’ core metabolism: a new panache for the evolution of steroidal glycoalkaloids structural diversity. In Current Opinion in Plant Biology (Vol. 55, pp. 118–128). Elsevier Ltd. https://doi.org/10.1016/j.pbi.2020.03.008.spa
dc.relation.referencesSonawane, P. D., Jozwiak, A., Barbole, R., Panda, S., Abebie, B., Kazachkova, Y., Gharat, S. A., Ramot, O., Unger, T., Wizler, G., Meir, S., Rogachev, I., Doron-Faigenboim, A., Petreikov, M., Schaffer, A., Giri, A. P., Scherf, T., & Aharoni, A. (2022). 2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum. New Phytologist, 234(4), 1394–1410. https://doi.org/10.1111/nph.18064.spa
dc.relation.referencesSpeed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251–1263. https://doi.org/10.1111/nph.13560.spa
dc.relation.referencesStern, S. R., Weese, T., & Bohs, L. A. (2010). Phylogenetic relationships in solanum section Androceras (Solanaceae). Systematic Botany, 35(4), 885–893. https://doi.org/10.1600/036364410X539934.spa
dc.relation.referencesStern, S., de Fátima Agra, M., & Bohs, L. (2011). Molecular delimitation of clades within new world species of the “spiny solanums” (Solanum subg. Leptostemonum). Taxon, 60(5), 1429–1441. https://doi.org/10.1002/tax.605018.spa
dc.relation.referencesSuzuki, M., & Muranaka, T. (2007). Molecular genetics of plant sterol backbone synthesis. Lipids, 42(1), 47–54. https://doi.org/10.1007/s11745-006-1000-5.spa
dc.relation.referencesSwinnen, G., De Meyer, M., Pollier, J., Molina‐Hidalgo, F.J., Ceulemans, E., Venegas‐Molina, J., De Milde, L., Fernández‐Calvo, P., Ron, M., Pauwels, L. (2022). The basic helix–loop–helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress‐inducible specialized metabolism in tomato. New Phytologist 236: 911–928.spa
dc.relation.referencesSzymański, J., Bocobza, S., Panda, S., Sonawane, P., Cárdenas, P. D., Lashbrooke, J., Kamble, A., Shahaf, N., Meir, S., Bovy, A., Beekwilder, J., Tikunov, Y., Romero de la Fuente, I., Zamir, D., Rogachev, I., & Aharoni, A. (2020). Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nature Genetics, 52(10), 1111–1121. https://doi.org/10.1038/s41588-020-0690-6.spa
dc.relation.referencesTakei, H., Shirasawa, K., Kuwabara, K., Toyoda, A., Matsuzawa, Y., Iioka, S., & Ariizumi, T. (2021). De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme, by long-read sequencing. DNA Research, 28(1). https://doi.org/10.1093/dnares/dsaa029.spa
dc.relation.referencesThagun, C., Imanishi, S., Kudo, T., Nakabayashi, R., Ohyama, K., Mori, T., Kawamoto, K., Nakamura, Y., Katayama, M., Nonaka, S., Matsukura, C., Yano, K., Ezura, H., Saito, K., Hashimoto, T., & Shoji, T. (2016). Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant and Cell Physiology, 57(5), 961–975. https://doi.org/10.1093/pcp/pcw067.spa
dc.relation.referencesTimoneda, A., Feng, T., Sheehan, H., Walker‐Hale, N., Pucker, B., Lopez‐Nieves, S., Guo, R., Brockington, S. (2019). The evolution of betalain biosynthesis in Caryophyllales. New Phytologist 224: 71–85.spa
dc.relation.referencesTingey, W.M., Plaisted, R.L., Laubengayer, J.E., & et al. (1982). Green peach aphid resistance by glandular trichomes in Solanum tuberosum x S. berthaultii hybrids. American Potato Journal. 59, 241–251. https://doi.org/10.1007/BF02856560.spa
dc.relation.referencesUllrich, S.F., Hagels, H., Kayser, O. (2017). Scopolamine: a journey from the field to clinics. Phytochemistry Reviews 16: 333–353.spa
dc.relation.referencesUmemoto, N., Nakayasu, M., Ohyama, K., Yotsu-Yamashita, M., Mizutani, M., Seki, H., Saito, K., & Muranaka, T. (2016). Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiology, 171(4), 2458–2467. https://doi.org/10.1104/pp.16.00137.spa
dc.relation.referencesWang, C., Meng, L., Gao, Y., Grierson, D., Fu D. (2018). Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. Front. Plant Sci. 9:437. doi: 10.3389/fpls.2018.00437.spa
dc.relation.referencesWang, X., Gao, L., Jiao, C., Stravoravdis, S., Hosmani, P. S., Saha, S., Zhang, J., Mainiero, S., Strickler, S. R., Catala, C., Martin, G. B., Mueller, L. A., Vrebalov, J., Giovannoni, J. J., Wu, S., & Fei, Z. (2020). Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun. 2020 Nov 16;11(1):5817. doi: 10.1038/s41467-020-19682-0. PMID: 33199703; PMCID: PMC7670462.spa
dc.relation.referencesWeese, T. L., & Bohs, L. (2007). A Three-Gene Phylogeny of the Genus Solanum (Solanaceae). Systematic Botany, 32(2), 445–463. http://www.jstor.org/stable/25064255.spa
dc.relation.referencesWeißenborn, S., & Walther, D. (2017). Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study. Front. Plant Sci. 8:1831. doi: 10.3389/fpls.2017.01831.spa
dc.relation.referencesWhalen, M. D. (1984). Conspectus of species groups in Solanum subgenus Leptostemonum. Gentes Herbarum 12: 179–282.spa
dc.relation.referencesWu, F., & Tanksley, S. D. (2010). Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-182.spa
dc.relation.referencesWu, M., Kostyun, J. L., & Moyle, L. C. (2019). Genome sequence of Jaltomata addresses rapid reproductive trait evolution and enhances comparative genomics in the hyper-diverse Solanaceae. Genome Biology and Evolution, 11(2), 335–349. https://doi.org/10.1093/gbe/evy274.spa
dc.relation.referencesWurtzel, E. T. & Kutchan, T. M. (2016). Plant metabolism, the diverse chemistry set of the future. Science. 353, 1232–1236.spa
dc.relation.referencesXu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, J., Orjeda, G., Guzman, F., Torres, M., Lozano, R., Ponce, O., Martinez, D., de La Cruz, G., Chakrabarti, S. K., Patil, V. U., …, & Visser, R. G. F. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189–195. https://doi.org/10.1038/nature10158.spa
dc.relation.referencesXiang, M.L., Hu, B.Y., Qi, Z.H., Wang, X.N., Xie, T.Z., Wang, Z.J., Ma, D.Y., Zeng, Q., Luo, X.D. (2022). Chemistry and bioactivities of natural steroidal alkaloids. Natural Products and Bioprospecting 12.spa
dc.relation.referencesXu, S., et al. (2017). Wild tobacco genomes reveal the evolution of nicotine biosynthesis. PNAS, 114, 23:6133-6138.spa
dc.relation.referencesYang, J., Wu, Y., Zhang, P., Ma, J., Yao, Y.J, Ma, Y.L., Zhang, L., Yang, Y., Zhao, C., Wu, J. (2023). Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family. Nature Communications 14: 8457.spa
dc.relation.referencesYu, G., Li, C., Zhang, L., Zhu, G., Munir, S., Shi, C., Zhang, H., Ai, G., Gao, S., Zhang, Y., Yang, C., Zhang, J., Li, H., & Ye, Z. (2020). An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. J Exp Bot. 14, 71(9):2527-2536.spa
dc.relation.referencesYoung, K. R., Ulloa, C. U., Luteyn, J. L., & Knapp, S. (n.d.). Plant Evolution and Endemism in Andean South America: An Introduction. In The Botanical Review (Vol. 68, Issue 1).spa
dc.relation.referencesZhang, C., Mirarab, S. (2022). ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics (Oxford, England) 38: 4949–4950.spa
dc.relation.referencesZhang, H., Chen, H., Tan, J., Huang, S., Chen, X., Dong, H., Zhang, R., Wang, Y., Wang, B., Xiao, X., Hong, Z., Zhang, J., Hu, J., & Zhang, M. (2023). The chromosome-scale reference genome and transcriptome analysis of Solanum torvum provides insights into resistance to root-knot nematodes. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1210513.spa
dc.relation.referencesZhao, D. K., Zhao, Y., Chen, S. Y., & Kennelly, E. J. (2021). Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. In Natural Product Reports (Vol. 38, Issue 8, pp. 1423–1444). Royal Society of Chemistry. https://doi.org/10.1039/d1np00001b.spa
dc.relation.referencesZhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 172(1–2), 249-261.e12. https://doi.org/10.1016/j.cell.2017.12.019.spa
dc.relation.referencesZhang, F., Qiu, F., Zeng, J., Xu, Z., Tang, Y., Zhao, T., Gou, Y., Su, F., Wang, S., Sun, X. et al. (2023). Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nature Communications 14.spa
dc.relation.referencesKnapp, S., Barboza, G. E., Bohs, L., & Särkinen, T. (2019). A revision of the Morelloid Clade of Solanum L. (Solanaceae) in North and Central America and the Caribbean. PhytoKeys, 123(2019), 1– 144. https://doi.org/10.3897/phytokeys.123.31738.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.ddc580 - Plantasspa
dc.subject.lembMETABOLISMO VEGETALspa
dc.subject.lembPlants - metabolismeng
dc.subject.lembFISIOLOGIA VEGETALspa
dc.subject.lembPlant physiologyeng
dc.subject.lembPATOLOGIA VEGETALspa
dc.subject.lembPlant diseaseseng
dc.subject.lembMAPAS GENETICOS EN VEGETALESspa
dc.subject.lembPlant genome mappingeng
dc.subject.lembGENETICA MOLECULAR DE LAS PLANTASspa
dc.subject.lembPlant molecular geneticseng
dc.subject.lembPLANTAS HERBACEASspa
dc.subject.lembHerbaceous plantseng
dc.subject.lembPLANTAS TREPADORASspa
dc.subject.lembClimbing plantseng
dc.subject.proposalSolanaceaelat
dc.subject.proposalSolanumlat
dc.subject.proposalComparative genomicseng
dc.subject.proposalMedicinal plantseng
dc.subject.proposalMetabolismeng
dc.subject.proposalMetabolomicseng
dc.subject.proposalGenómica Comparativaspa
dc.subject.proposalMetabolismospa
dc.subject.proposalMetabolómicaspa
dc.subject.proposalPlantas medicinalesspa
dc.subject.proposalPhylogenetic diversityeng
dc.subject.proposalSteroidal glycoalkaloids (SGAs)eng
dc.subject.proposalTranscriptomicseng
dc.subject.proposalBiodiversidad filogenéticaspa
dc.subject.proposalGlicoalcaloides esteroidales (SGAs)spa
dc.subject.proposalTranscriptómicaspa
dc.titleEvolución del metabolismo de los glicoalcaloides esteroidales en especies del género Solanum desde una perspectiva multi-ómicaspa
dc.title.translatedEvolution of steroidal glycoalkaloid metabolism in species of the genus Solanum from a multi-omics perspectiveeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameThis study was financed thanks to Agreement 566 of 2014 between Universidad Nacional de Colombia (https://unal.edu.co/) and Colciencias (now Minciencias - https://minciencias.gov.co/) and with the support from the Max Planck Institute of Molecular Plant Physiology in Potsdam (contact@mpimp-golm.mpg.de). It was also supported by the DAAD (Deutscher Akademischer Austauschdients) equipment program subsidized by the Faculty of Sciences and facilities in the Computational Biology laboratory of the Faculty of Sciences at the Universidad Nacional de Colombia.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037612680.2025.pdf
Tamaño:
6.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: