Quantum error correction via quantum convolutional neural networks

dc.contributor.advisorViviescas Ramírez, Carlos Leonardospa
dc.contributor.authorFalla León, José Luisspa
dc.contributor.orcidFalla, Jose [0000-0001-9918-2198]spa
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2024-06-05T20:53:10Z
dc.date.available2024-06-05T20:53:10Z
dc.date.issued2024-04-05
dc.descriptionilustraciones, diagramasspa
dc.description.abstractA sub-class of variational quantum algorithms (VQAs), the quantum convolutional neural network (QCNN), has emerged as an efficient quantum error correction (QEC) algorithm and full quantum error-correcting code. Through hybrid quantum-classical optimization of a QCNN architecture for a particular error model, it is possible to "train" a neural network to decrease the logical error rates for specific error models. Going into the noisy intermediate-scale quantum (NISQ) technology era, effective quantum error correction is necessary for accurate quantum computing with noisy qubits, and VQAs can bring about near-term, intermediate-scale, reliable quantum computing.eng
dc.description.abstractComo una subclase de algoritmos cuánticos variacionales (VQAs), la red neuronal convolucional cuántica (QCNN), ha surgido como un algoritmo eficiente de corrección de errores cuánticos (QEC) y un código de corrección de errores cuánticos completo. A través de la optimización híbrida cuántico-clásica de una arquitectura QCNN para un modelo de error particular, es posible "entrenar" una red neuronal para reducir las tasas de error lógico para modelos de errores específicos. Entrando en la era de la tecnología cuántica de escala intermedia ruidosa (NISQ), la corrección de errores cuánticos efectiva es necesaria para la computación cuántica precisa con qubits ruidosos, y los VQAs pueden propiciar una computación cuántica confiable a corto plazo y a escala intermedia. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaComputación cuánticaspa
dc.format.extent52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86209
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesJohn Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. arXiv: 1801.00862.spa
dc.relation.referencesJacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195{202, September 2017.spa
dc.relation.referencesArute, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, October 2019.spa
dc.relation.referencesXiao Liang, Sheng Liu, Yan Li, and Yong-Sheng Zhang. Generation of Bose-Einstein Condensates' Ground State Through Machine Learning. arXiv:1712.10093 [quant-ph], December 2017.spa
dc.relation.referencesG. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated. Physical Review Letters, 101(11):110501, September 2008.spa
dc.relation.referencesNobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306, June 2019.spa
dc.relation.referencesIris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273-1278, December 2019.spa
dc.relation.referencesRaymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Perfect Quantum Error Correcting Code. Physical Review Letters, 77(1):198-201, July 1996.spa
dc.relation.referencesPeter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4):R2493-R2496, October 1995.spa
dc.relation.referencesA. M. Steane. Error Correcting Codes in Quantum Theory. Physical Review Letters, 77(5):793-797, July 1996.spa
dc.relation.referencesA. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098-1105, August 1996.spa
dc.relation.referencesM. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382-385, February 2012.spa
dc.relation.referencesP. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Experimental Repetitive Quantum Error Correction. Science, 332(6033):1059-1061, May 2011.spa
dc.relation.referencesCharles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. A surface code quantum computer in silicon. Science Advances, 1(9):e1500707, October 2015.spa
dc.relation.referencesWright, et al. Benchmarking an 11-qubit quantum computer. Nature Communications, 10(1):5464, November 2019.spa
dc.relation.referencesKosuke Fukui, Akihisa Tomita, and Atsushi Okamoto. Tracking quantum error correction. Physical Review A, 98(2):022326, August 2018.spa
dc.relation.referencesKjaergaard et al. Superconducting Qubits: Current State of Play. arXiv:1905.13641, May 2019.spa
dc.relation.referencesBharti et al. Noisy intermediate-scale quantum (NISQ) algorithms. Reviews of Modern Physics, 94(1):015004, February 2022. arXiv:2101.08448 [cond-mat, physics:quant-ph].spa
dc.relation.referencesF. Vatan, V. P. Roychowdhury, and M. P. Anantram. Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes. arXiv:quant-ph/9704019, April 1997.spa
dc.relation.referencesChi-Kwong Li, Mikio Nakahara, Yiu-Tung Poon, Nung-Sing Sze, and Hiroyuki Tomita. Efficient Quantum Error Correction for Fully Correlated Noise. Physics Letters A, 375(37):3255-3258, August 2011.spa
dc.relation.referencesEmanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of Quantum Error Correction for General Noise. arXiv:quant-ph/9908066, August 1999.spa
dc.relation.referencesM. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625{644, August 2021.spa
dc.relation.referencesMichael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.spa
dc.relation.referencesRamamurti Shankar. Principles of quantum mechanics. Plenum, New York, NY, 1980.spa
dc.relation.referencesSimon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76(7):076001, July 2013.spa
dc.relation.referencesT. Brun, I. Devetak, and M.-H. Hsieh. Correcting Quantum Errors with Entanglement. Science, 314(5798):436{439, October 2006.spa
dc.relation.referencesP.G. Kwiat and D.F.V. James. Quantum optics -- entanglement and quantum information. In Robert D. Guenther, editor, Encyclopedia of Modern Optics, pages 256-264. Elsevier, Oxford, 2005.spa
dc.relation.referencesJ. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432(7017):602-605, December 2004.spa
dc.relation.referencesA. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Error Correction and Orthogonal Geometry. Physical Review Letters, 78(3):405-408, January 1997.spa
dc.relation.referencesDaniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052, May 1997.spa
dc.relation.referencesH. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43(5):2097, 2002.spa
dc.relation.referencesPhilipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban, A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, and Rainer Blatt. Undoing a Quantum Measurement. Physical Review Letters, 110(7):070403, February 2013.spa
dc.relation.referencesD. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nature Communications, 6(1):6983, November 2015.spa
dc.relation.referencesKristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119(18):180509, November 2017.spa
dc.relation.referencesYing Li and Simon C. Benjamin. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Physical Review X, 7(2):021050, June 2017.spa
dc.relation.referencesAlberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014.spa
dc.relation.referencesDave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical quantum variational algorithms. Physical Review A, 92(4):042303, October 2015.spa
dc.relation.referencesJarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, February 2016.spa
dc.relation.referencesDavid Fumo. Types of machine learning algorithms you should know [blog]. https://www.scientificstyleandformat.org/Tools/SSF-Citation-Quick-Guide.html. Accessed: 2021-11-22.spa
dc.relation.referencesAshish Sukhadeve. Understanding neural networks: A beginner's guide [blog]. https://www.datasciencecentral.com/profiles/blogs/understanding-neural-network-a-beginner-s-guide. Accessed: 2021-11-22.spa
dc.relation.referencesDenny Novikov. Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data Mining. Independently Published, 2019.spa
dc.relation.referencesG. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz. An effective algorithm for hyperparameter optimization of neural networks. IBM Journal of Research and Development, 61(4/5):9:1-9:11, 2017.spa
dc.relation.referencesKevin Gurney. Introduction to Neural Networks. Taylor & Francis, Oxford, 1997. OCLC: 892785047.spa
dc.relation.referencesYann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436{444, May 2015.spa
dc.relation.referencesAlexandra Nagy and Vincenzo Savona. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters, 122(25):250501, June 2019.spa
dc.relation.referencesMichael J. Hartmann and Giuseppe Carleo. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. Physical Review Letters, 122(25):250502, June 2019.spa
dc.relation.referencesFilippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. Physical Review Letters, 122(25):250503, June 2019.spa
dc.relation.referencesRichard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, page 22, 1982.spa
dc.relation.referencesRoman Orus. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics, 349:117-158, October 2014.spa
dc.relation.referencesPeter D. Johnson, Jonathan Romero, Jonathan Olson, Yudong Cao, and Alan Aspuru-Guzik. QVECTOR: an algorithm for device-tailored quantum error correction, November 2017. arXiv:1711.02249 [quant-ph].spa
dc.relation.referencesAustin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, September 2012.spa
dc.relation.referencesG. Vidal. Entanglement Renormalization. Physical Review Letters, 99(22):220405, November 2007.spa
dc.relation.referencesGeoffrey Hinton. Lecture Notes for CSC2515: Lecture 6, 2007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.proposalQuantum error correctioneng
dc.subject.proposalQuantum convolutional neural networkeng
dc.subject.proposalQuantum computingeng
dc.subject.proposalQuantum algorithmseng
dc.subject.proposalCorrección de error cuánticospa
dc.subject.proposalRedes neuronales convolucionales cuánticasspa
dc.subject.proposalComputación cuánticaspa
dc.subject.proposalAlgoritmos cuánticosspa
dc.subject.wikidataredes neuronales convolucionalesspa
dc.subject.wikidataconvolutional neural networkeng
dc.subject.wikidatacorrección de errores cuánticaspa
dc.subject.wikidataquantum error correctioneng
dc.subject.wikidataquantum algorithmspa
dc.subject.wikidataalgoritmo cuánticoeng
dc.titleQuantum error correction via quantum convolutional neural networkseng
dc.title.translatedCorrección de error cuántico mediante redes neuronales convolucionales cuánticasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1127215778.2024.pdf
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: