Importancia de los receptores híbridos receptor de insulina/receptor del factor de crecimiento similar a la insulina tipo I (InsR/IGF-1R) en las redes de señalización del sistema IGF

dc.contributor.advisorSánchez de Gómez, Myriamspa
dc.contributor.authorVallejo Pulido, Andrés Felipespa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2020-08-23T04:50:01Zspa
dc.date.available2020-08-23T04:50:01Zspa
dc.date.issued2010-06-01spa
dc.description.abstractLas células son dispositivos de procesamiento de información, que integran millones de señales extracelulares e intracelulares para producir una respuesta celular óptima dentro de un organismo. Muchas enfermedades, por ejemplo el cáncer, pueden ser entendidas como alteraciones patológicas en las redes de señalización. Por lo que el estudio de los mecanismos de procesamiento de señales constituye uno de los problemas más complejos y al mismo tiempo más significativos en las investigaciones biológicas. Los eventos de señalización incluyen intrincadas redes de señalización, que encierran “loops” de retroalimentación, señalización cruzada con otras redes y la integración del estado interno de la célula, todos estos, regulados espacial y temporalmente. El sistema de señalización de los IGFs es una compleja red regulatoria que tiene funciones en todo el organismo, a nivel celular y subcelular. El sistema IGF está relacionado con el desarrollo del organismo y mantenimiento de la función celular normal. Además, ha sido relacionado en diversas condiciones patológicas con un papel particularmente importante en cáncer. Las similaridades estructurales entre el receptor de IGF y el receptor de insulina, permiten la formación de receptores híbridos, en donde una cadena IGF-1R αβ está conectada a una cadena InsR-A o InsR-B. Cuando se coexpresan los receptores de IGF y de insulina en la misma célula, estos receptores híbridos pueden formarse aleatoriamente y representan el tipo de receptor más abundante. Sin embargo, se conoce muy poco sobre su importancia en la transducción de señales y de los efectos biológicos que pueden estar modulando; este trabajo aborda el problema del estudio de la señalización del sistema IGF desde una perspectiva integradora que refleja el entorno biológico en el que se encuentra; haciendo uso tanto de técnicas clásicas de análisis, como técnicas de vanguardia se buscó entender los mecanismos que subyacen en el procesamiento de señales que desencadena en un efecto biológico. Las células de trofoblasto hacen parte de la placenta y son las encargadas de invadir el endometrio materno durante el proceso de implantación del blastocisto, además, evaden los efectores de la respuesta inmune materna, siendo de vital importancia para el desarrollo fetoplacental. La invasión del trofoblasto a la matriz extracelular del útero es un ejemplo de invasión altamente controlada. Este proceso comparte muchas características con tumores metastásicos, sin embargo se encuentra regulado espacial y temporalmente. A partir de la línea de trofoblasto HTR8, se obtuvieron dos líneas celulares establemente silenciadas en los receptores IGF-1R e IGF-2R/M6P con las que se realizaron ensayos de proliferación, migración, invasión, expresión de Mmp-9 y cAMP, paralelamente se efectuó un estudio proteómico de las proteínas activadas por IGF-2 en los modelos normal y silenciados con miras a obtener una visión integral delos fenómenos biológicos inducidos en la célula luego de la estimulación con IGFs. Los resultaron mostraron que los ligandos IGF son mediadores importantes de los fenómenos malignos compartidos entre las células de trofoblasto y las células cancerosas, tales como proliferación, migración e invasión. Estos efectos son mediados por los receptores híbridos InsR/IGF-1R y en ellos participan decenas de proteínas que fueron identificadas por medio de espectrometría de masas. Se estudiaron proteínas activadas por IGF-2 y se construyeron, a partir de ellas, redes de interacción proteína-proteína relacionadas con los principales efectos mediados por este ligando en células trofoblásticas. Empleando electroforesis en dos dimensiones y el modelo celular silenciado para el receptor IGF-1R, se evaluó su papel al analizar los cambios inducidos por su depleción en los mapas activación de proteínas. Finalmente, se empleo la línea celular silenciada establemente en el receptor IGF-2/M6P para estudiar su papel en los efectos bilógicos mediados por los IGFs y en las redes de señalización. Se encontró que la presencia del receptor tipo 2 es clave en la migración, invasión y expresión de Mmp-9. Adicionalmente se obtuvo evidencia de que este receptor puede activar receptores acoplados a proteína G, probablemente con intermediación de la S1P. Este trabajo es el primer estudio que aborda el problema de la señalización del sistema IGF desde una visión que enmarca las proteínas dentro de complejas redes de señalización. Empleando técnicas de análisis de fosfoproteómica en conjunto con ensayos de actividad biológica, se presenta evidencia sólida de la estrecha relación entre los tres receptores del sistema IGF en la regulación de los efectos biológicos mediados por los ligandos IGF-1 e IGF-2. Además, muestra el papel central del receptor IGF-2/M6P en la transducción de señales del sistema IGF y como su ausencia genera cambios notorios en el fosfoproteoma que se ven reflejados en los fenómenos biológicos más importantes en cáncer, migración e invasión. Estos resultados amplían el conocimiento de la señalización mediada por los IGFs, destacan la importancia del receptor IGF-2/M6P como un mediador clave en los fenómenos de transducción de señales; representan el primer estudio a gran escala de las redes de señalización activadas por los IGFs y su relación con fenómenos biológicos importantes para el desarrollo del cáncer.spa
dc.description.abstractCells are information processing devices, which integrate millions of extracellular and intracellular signals to produce an optimal cellular response within of an organism. Many diseases, for example cancer, can be understood as pathological alterations in the signalling networks. Therefore, the study of the signal processing mechanisms constitutes one of the most complex and at the same time more significant in biological research questions. The signaling events include intricate signaling networks, which enclose "feedback loops, cross-signaling with other networks and the integration of the internal state of the cell, all of these, regulated spatially and temporally. The signalling system of the IGFs is a complex regulatory network that has functions throughout the body, at the cellular and sub-cellular levels. The IGF system isrelated to the development of the organism and maintenance of cell function normal. In addition, it has been linked in various pathological conditions to a role particularly important in cancer. The structural similarities between the receptor of IGF and the insulin receptor, allow the formation of hybrid receptors, where an IGF-1R αβ string is connected to an InsR-A or InsR-B string. When co-express IGF and insulin receptors in the same cell, these receptors hybrids can be formed randomly and represent the most abundant receptor form. However, very little is known about its importance in transduction of signals and the biological effects they may be modulating; this paper addresses the problem of studying the signalling of the IGF system from a that reflects the biological environment in which it is found; making use of both of classic analysis techniques, as well as avant-garde techniques, we sought to understand the mechanisms underlying the signal processing that triggers an effect biological. The trophoblast cells are part of the placenta and are responsible for invading the maternal endometrium during the blastocyst implantation process, furthermore, they evade the effectors of the maternal immune response, being of vital importance for the fetoplacental development. The invasion of the trophoblast into the extracellular matrix of the uterus is an example of a highly controlled invasion. This process shares many characteristics with metastatic tumors, however it is spatially regulated and temporarily. From the HTR8 trophoblast line, two lines were obtained Stably silenced cell phones in the IGF-1R and IGF-2R/M6P receptors with which proliferation, migration, invasion, MMP-9 expression and cAMP, a parallel proteomic study of the proteins activated by IGF-2 in normal and silenced models in order to obtain a comprehensive view of biological phenomena induced in the cell after IGF stimulation. The results showed that IGF ligands are important mediators of the malignant phenomena shared between trophoblast cells and cells cancers, such as proliferation, migration and invasion. These effects are mediated by the InsR/IGF-1R hybrid receptors and involve dozens of proteins that were identified by mass spectrometry. Proteins were studied activated by IGF-2 and built from them networks of interaction protein-protein related to the main effects mediated by this ligand in trophoblastic cells. Using two-dimensional electrophoresis and the cell model silenced for the IGF-1R receptor, its role was evaluated by analyzing the induced changes for their depletion in the protein activation maps. Finally, the silenced cell line was used stably in the IGF-2/M6P to study its role in IGF-mediated bilogical effects and in the signalling networks. The presence of the type 2 receptor was found to be key in the migration, invasion and expression of Mmp-9. Additionally, evidence was obtained that this receptor can activate G-protein-coupled receptors, probably with intermediation of the S1P. This work is the first study to address the problem of system signalling IGF from a vision that frames proteins within complex networks of signaling. Using phosphoprotein analysis techniques in conjunction with biological activity tests, there is strong evidence of the close relationship between the three receptors of the IGF system in the regulation of biological effects mediated by ligands IGF-1 and IGF-2. It also shows the central role of the IGF-2/M6P receptor in the signal transduction of the IGF system and how its absence generates noticeable changes in the phosphoprotein which are reflected in the most important biological agents in cancer, migration and invasion. These results extend the knowledge of the signaling mediated by the IGFs, highlight the importance of IGF-2/M6P receptor as a key mediator in the transduction phenomena of signals; they represent the first large-scale study of signalling networks activated by the IGFs and their relationship with biological phenomena important to the development of cancer.spa
dc.description.degreelevelDoctoradospa
dc.format.extent148spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78186
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesPapa, V., et al., Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res, 1993. 53(16): p. 3736-40.spa
dc.relation.referencesPandini, G., et al., Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res, 1999. 5(7): p. 1935-44.spa
dc.relation.referencesPandini, G., et al., Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem, 2002. 277(42): p. 39684-95.spa
dc.relation.referencesSalmon Jr, W., Se Daughaday W. H. J. Lab. Clin. Med, 1957. 49: p. 825.spa
dc.relation.referencesDaughaday, W., et al., Somatomedin: proposed designation for sulphation factor. 1972.spa
dc.relation.referencesRinderknecht, E. and R. Humbel, Primary structure of human insulin-like growth factor II. FEBS Letters, 1978. 89(2): p. 283.spa
dc.relation.referencesBaserga, R., et al., The IGF-I receptor in cell growth, transformation and apoptosis. Biochimica et biophysica acta, CR. Reviews on cancer, 1997. 1332(3).spa
dc.relation.referencesLeRoith, D. and C. Roberts, The insulin-like growth factor system and cancer. Cancer Letters, 2003. 195(2): p. 127-137.spa
dc.relation.referencesDenley, A., et al., Molecular interactions of the IGF system. Cytokine & Growth Factor Reviews, 2005. 16(4-5): p. 421-439.spa
dc.relation.referencesDiaz, L.E., et al., IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 2007. 13(8): p. 567-576.spa
dc.relation.referencesShimatsu, A. and P. Rotwein, Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem, 1987. 262(16): p. 7894-900.spa
dc.relation.referencesHan, V.K., et al., Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab, 1988. 66(2): p. 422-9.spa
dc.relation.referencesHynes, M.A., et al., Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain. Mol Endocrinol, 1988. 2(1): p. 47-54.spa
dc.relation.referencesStylianopoulou, F., et al., Pattern of the insulin-like growth factor II gene expression during rat embryogenesis. Development, 1988. 103(3): p. 497-506.spa
dc.relation.referencesLeRoith, D., et al., Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Reviews, 1995. 16(2): p. 143.spa
dc.relation.referencesUllrich, A., et al., Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. The EMBO Journal, 1986. 5(10): p. 2503.spa
dc.relation.referencesFavelyukis, S., et al., Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nature Structural & Molecular Biology, 2001. 8(12): p. 1058-1063.spa
dc.relation.referencesLi, W. and W. Miller, Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor-tyrosine kinase. Journal of Biological Chemistry, 2006. 281(33): p. 23785.spa
dc.relation.referencesButler, A.A., et al., Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol, 1998. 121(1): p. 19-26.spa
dc.relation.referencesLeRoith and D., The insulin-like growth factor system and cancer. Cancer Letters, 2003.spa
dc.relation.referencesPeruzzi, F., et al., Anti-apoptotic signaling of the insulin-like growth factor-I receptor through mitochondrial translocation of c-Raf and Nedd4. J Biol Chem, 2001. 276(28): p. 25990-6.spa
dc.relation.referencesSamani, A.Y., S; LeRoith, D; Brodt, P, The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocrine Reviews, 2008. 28(1): p. 20 - 47.spa
dc.relation.referencesBaron, V.C., V; Ferrari, P; Alengrin, F; Van Obberghen, E, p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J Biol Chem, 1998. 273: p. 7162–7168.spa
dc.relation.referencesKoval, A.P.K., M; Zick, Y; LeRoith, D Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction. J Biol Chem, 1998. 273: p. 14780–14787.spa
dc.relation.referencesCasamassima, A.R., E Insulin-like growth factor I stimulates tyrosine phosphorylation of p130(Cas), focal adhesion kinase, and paxillin. Role of phosphatidylinositol 3 -kinase and formation of a p130(Cas).Crk complex. J Biol Chem, 1998. 273: p. 26149–26156.spa
dc.relation.referencesDe Meyts, P., Insulin and its receptor: structure, function and evolution. BioEssays, 2004. 26(12): p. 1351-1362.spa
dc.relation.referencesHuang, K., et al., How Insulin Binds: the B-Chain [alpha]-Helix Contacts the L1 [beta]-Helix of the Insulin Receptor. Journal of Molecular Biology, 2004. 341(2): p. 529-550.spa
dc.relation.referencesDe Meyts, P. and J. Whittaker, Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery, 2002. 1(10): p. 769-783.spa
dc.relation.referencesDenley, A., et al., Differential Activation of Insulin Receptor Isoforms by Insulin-Like Growth Factors Is Determined by the C Domain. Endocrinology, 2005.spa
dc.relation.referencesBelfiore, A., et al., Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev, 2009. 30(6): p. 586-623.spa
dc.relation.referencesYamaguchi, Y., et al., Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 1993. 132(3): p. 1132-8.spa
dc.relation.referencesBenyoucef, S., et al., Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J, 2007. 403(3): p. 603-13.spa
dc.relation.referencesFrasca, F., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol, 1999. 19(5): p. 3278-88.spa
dc.relation.referencesBlanquart, C., J. Achi, and T. Issad, Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem Pharmacol, 2008. 76(7): p. 873-83.spa
dc.relation.referencesPandini, G., Insulin/Insulin-like Growth Factor I Hybrid Receptors Have Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. Journal of Biological Chemistry, 2002. 277(42): p. 39684-39695.spa
dc.relation.referencesDenley, A., Structural Determinants for High-Affinity Binding of Insulin-Like Growth Factor II to Insulin Receptor (IR)-A, the Exon 11 Minus Isoform of the IR. Molecular Endocrinology, 2004. 18(10): p. 2502-2512.spa
dc.relation.referencesDi Guglielmo, G., et al., Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. The EMBO Journal, 1994. 13(18): p. 4269.spa
dc.relation.referencesRizzo, M., et al., The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. Journal of Biological Chemistry, 2000. 275(31): p. 23911.spa
dc.relation.referencesCeresa, B., et al., Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Molecular and Cellular Biology, 1998. 18(7): p. 3862.spa
dc.relation.referencesHamer, I., et al., An arginine to cysteine 252 mutation in insulin receptors from a patient with severe insulin resistance inhibits receptor internalisation but preserves signalling events. Diabetologia, 2002. 45(5): p. 657-667.spa
dc.relation.referencesChow, J., G. Condorelli, and R. Smith, Insulin-like growth factor-I receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. Journal of Biological Chemistry, 1998. 273(8): p. 4672.spa
dc.relation.referencesJensen, M. and P. De Meyts, Molecular mechanisms of differential intracellular signaling from the insulin receptor. Vitamins & Hormones, 2009. 80: p. 51-75.spa
dc.relation.referencesEl-Shewy, H. and L. Luttrell, Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitamins & Hormones, 2009. 80: p. 667-697.spa
dc.relation.referencesBraulke, T., Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res, 1999. 31(2-3): p. 242-6.spa
dc.relation.referencesLobel, P., et al., Cloning of the bovine 215-kDa cation-independent mannose 6-phosphate receptor. Proc Natl Acad Sci U S A, 1987. 84(8): p. 2233-7.spa
dc.relation.referencesBrown, J., et al., Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J, 2002. 21(5): p. 1054-62.spa
dc.relation.referencesDahms, N.M. and M.K. Hancock, P-type lectins. Biochim Biophys Acta, 2002. 1572(2-3): p. 317-40.spa
dc.relation.referencesHawkes, C. and S. Kar, The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Research Reviews, 2004. 44(2-3): p. 117-140.spa
dc.relation.referencesNishimoto, I., et al., Insulin-like growth factor II increases cytoplasmic free calcium in competent Balb/c 3T3 cells treated with epidermal growth factor. Biochem Biophys Res Commun, 1987. 142(1): p. 275-86.spa
dc.relation.referencesMartínez, U., et al., Oleoylethanolamide, a natural ligand for PPAR-alpha, inhibits insulin receptor signalling in HTC rat hepatoma cells. Biochimica et biophysica acta, 2009. 1791(8): p. 740.spa
dc.relation.referencesGhahary, A., et al., Cellular response to latent TGF-beta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Exp Cell Res, 1999. 251(1): p. 111-20.spa
dc.relation.referencesHarris, L.K., et al., IGF2 Actions on Trophoblast in Human Placenta Are Regulated by the Insulin-Like Growth Factor 2 Receptor, Which Can Function as Both a Signaling and Clearance Receptor. Biol Reprod, 2010.spa
dc.relation.referencesEl-Shewy, H.M., et al., Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006. 281(42): p. 31399-31407.spa
dc.relation.referencesOkamoto, T., et al., A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell, 1990. 62(4): p. 709-717.spa
dc.relation.referencesKörner, C., et al., Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. The Journal of biological chemistry, 1995. 270(1): p. 287.spa
dc.relation.referencesEl-Shewy, H.M., et al., The Insulin-like Growth Factor Type 1 and Insulin-like Growth Factor Type 2/Mannose-6-phosphate Receptors Independently Regulate ERK1/2 Activity in HEK293 Cells. Journal of Biological Chemistry, 2007. 282(36): p. 26150-26157.spa
dc.relation.referencesSoos, M.A., C.E. Field, and K. Siddle, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J, 1993. 290 ( Pt 2): p. 419-26.spa
dc.relation.referencesSlaaby, R., et al., Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem, 2006. 281(36): p. 25869-74.spa
dc.relation.referencesModan-Moses, D., et al., Expression and function of insulin/insulin-like growth factor I hybrid receptors during differentiation of 3T3-L1 preadipocytes. Biochemical Journal, 1998. 333(Pt 3): p. 825.spa
dc.relation.referencesSachdev, D., et al., Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res, 2006. 66(4): p. 2391-402.spa
dc.relation.referencesBischof, P., A. Meisser, and A. Campana, Biochemistry and Molecular Biology of Trophoblast Invasion. Ann NY Acad Sci, 2001. 943(1): p. 157-162.spa
dc.relation.referencesFerretti, C., et al., Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update, 2007. 13(2): p. 121-141.spa
dc.relation.referencesStaun-Ram, E., et al., Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reproductive Biology and Endocrinology, 2004. 2(1): p. 59.spa
dc.relation.referencesIsaka, K., et al., Expression and Activity of Matrix Metalloproteinase 2 and 9 in Human Trophoblasts. Placenta, 2003. 24(1): p. 53-64.spa
dc.relation.referencesBischof, P., K. Truong, and A. Campana, Regulation of Trophoblastic Gelatinases by Proto-oncogenes. Placenta, 2003. 24(2-3): p. 155-163.spa
dc.relation.referencesZygmunt, M., et al., HCG increases trophoblast migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate receptor. Mol. Hum. Reprod., 2005. 11(4): p. 261-267.spa
dc.relation.referencesIrwin, J.C., et al., Insulin like growth factor (IGF)-II inhibition of endometrial stromal cell tissue inhibitor of metalloproteinase‐3 and IGF‐binding protein‐1 suggests paracrine interactions at the decidua:trophoblast interface during human implantation. J Clin Endocrinol Metab, 2001. 86(5): p. 2060-4.spa
dc.relation.referencesFowden, A.L., The Insulin-like Growth Factors and feto-placental Growth. Placenta, 2003. 24(8-9): p. 803-812.spa
dc.relation.referencesForbes, K., et al., Insulin like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol, 2008. 294(6): p. C1313-22.spa
dc.relation.referencesCantero, M.E., Estudio Predictivo de algunos Marcadores Bioquímicos en Suero de Pacientes con Mola Hidatidiforme, in in Tesis de Maestría en Bioquímica. 2004, Universidad Nacional de Colombia: Bogotá.spa
dc.relation.referencesMcKinnon, T., et al., Stimulation of Human Extravillous Trophoblast Migration by IGF-II Is Mediated by IGF Type 2 Receptor Involving Inhibitory G Protein(s) and Phosphorylation of MAPK. J Clin Endocrinol Metab, 2001. 86(8): p. 3665-3674.spa
dc.relation.referencesChiesa, C., et al., Ghrelin, leptin, IGF‐1, IGFBP‐3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? . Clin Chem, 2008. 54(3): p. 550-8.spa
dc.relation.referencesFreyre, S., Vallejo AF, Sánchez-gómez M., OR10, 60 IGF-IIR: A novel autocrine loop between IGF-II and hCG. Growth Hormone & IGF Research, 2010. 20: p. S27.spa
dc.relation.referencesCohen, P., The regulation of protein function by multisite phosphorylation-a 25 year update. Trends in Biochemical Sciences, 2000. 25(12): p. 596-601.spa
dc.relation.referencesHunter, T., Signaling-2000 and beyond. Cell, 2000. 100(1): p. 113-128.spa
dc.relation.referencesOng, S.-E. and M. Mann, Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology, 2005. 1(5): p. 252-262.spa
dc.relation.referencesFicarro, S., et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology, 2002. 20(3): p. 301-305.spa
dc.relation.referencesOlsen, J., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-648.spa
dc.relation.referencesBeausoleil, S., et al., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(33): p. 12130.spa
dc.relation.referencesOng, S., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 2002. 1(5): p. 376.spa
dc.relation.referencesOda, Y., et al., Accurate quantitation of protein expression and site-specific phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(12): p. 6591.spa
dc.relation.referencesSechi, S. and Y. Oda, Quantitative proteomics using mass spectrometry. Current Opinion in Chemical Biology, 2003. 7(1): p. 70-77.spa
dc.relation.referencesGeiger, T., et al., Super-SILAC mix for quantitative proteomics of human tumor tissue. Nature Methods, 2010. 7(5): p. 383-385.spa
dc.relation.referencesGygil, S., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 1999. 17(10): p. 994-999.spa
dc.relation.referencesRoss, P., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics, 2004. 3(12): p. 1154.spa
dc.relation.referencesSchulze, W. and M. Mann, A novel proteomic screen for peptide-protein interactions. Journal of Biological Chemistry, 2004. 279(11): p. 10756.spa
dc.relation.referencesMujezinovic, N., et al., Cleaning of raw peptide MS/MS spectra: Improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise. Proteomics, 2006. 6(19): p. 5117-5131.spa
dc.relation.referencesBell, A., et al., A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nature Methods, 2009. 6(6): p. 423-430.spa
dc.relation.referencesLane, W., et al., Bioinformatic Evaluation of Datasets Derived from the ABRF sPRG Proteomics Standard. Association of Biomolecular Resource Facilities, ABRF. 7.spa
dc.relation.referencesSearle, B.C., Scaffold: A bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics, 2010. 10(6): p. 1265-1269.spa
dc.relation.referencesGraham, C.H., et al., Establishment and Characterization of First Trimester Human Trophoblast Cells with Extended Lifespan. Experimental Cell Research, 1993. 206(2): p. 204-211.spa
dc.relation.referencesKhoo, N.K., et al., SV40 Tag transformation of the normal invasive trophoblast results in a premalignant phenotype. I. Mechanisms responsible for hyperinvasiveness and resistance to anti-invasive action of TGFbeta. Int J Cancer, 1998. 77(3): p. 429-39.spa
dc.relation.referencesIrving, J.A. and P.K. Lala, Functional Role of Cell Surface Integrins on Human Trophoblast Cell Migration: Regulation by TGF-[beta], IGF-II, and IGFBP-1. Experimental Cell Research, 1995. 217(2): p. 419-427.spa
dc.relation.referencesMosmann, T., Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth, 1983. 65: p. 55-63.spa
dc.relation.referencesThingholm, T.E., O.N. Jensen, and M.R. Larsen, Analytical strategies for phosphoproteomics. Proteomics, 2009. 9(6): p. 1451–1468.spa
dc.relation.referencesCandiano, G., et al., Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004. 25(9): p. 1327-33.spa
dc.relation.referencesShevchenko, A., et al., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc, 2006. 1(6): p. 2856-60.spa
dc.relation.referencesBhatia, V., et al., Software Tool for Researching Annotations of Proteins: Open-Source Protein Annotation Software with Data Visualization. Analytical chemistry, 2009. 81(20): p. 8387-8395.spa
dc.relation.referencesMedina-Aunon, J., et al., PIKE: discovering biological information from proteomics data. Proteomics.spa
dc.relation.referencesDennis Jr, G., et al., DAVID: database for annotation, visualization, and integrated discovery. Genome Biol, 2003. 4(5): p. P3.spa
dc.relation.referencesHuang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2008. 4(1): p. 44-57.spa
dc.relation.referencesSoos, M., C. Field, and K. Siddle, Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 1993. 290(Pt 2): p. 419.spa
dc.relation.referencesNelson, P., et al., Smooth muscle cell migration and proliferation are mediated by distinct phases of activation of the intracellular messenger mitogen-activated protein kinase. Journal of Vascular Surgery, 1998. 27(1): p. 117-125.spa
dc.relation.referencesKhanna, C., et al., The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nature Medicine, 2004. 10(2): p. 182-186.spa
dc.relation.referencesYu, Y., et al., Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nature Medicine, 2004. 10(2): p. 175-181.spa
dc.relation.referencesHunter, K., Ezrin, a key component in tumor metastasis. Trends in Molecular Medicine, 2004. 10(5): p. 201-204.spa
dc.relation.referencesWick, W., et al., Ezrin-Dependent Promotion of Glioma Cell Clonogenicity, Motility, and Invasion Mediated by BCL-2 and Transforming Growth Factor-{beta} 2. Journal of Neuroscience, 2001. 21(10): p. 3360.spa
dc.relation.referencesHauck, C., D. Hsia, and D. Schlaepfer, The focal adhesion kinase--a regulator of cell migration and invasion. IUBMB Life, 2002. 53(2): p. 115-119.spa
dc.relation.referencesPatil, N., R. Pandey, and M. Rao, Proteases and Protease Inhibitors: Implications in Antitumorigenesis and Drug Development. INTERNATIONAL JOURNAL OF HUMAN GENETICS, 2007. 7(1): p. 67-82.spa
dc.relation.referencesMcDonnell, S. and B. Fingleton, Role of matrix metalloproteinases in invasion and metastasis: biology, diagnosis and inhibitors. Cytotechnology, 1993. 12(1-3): p. 367-84.spa
dc.relation.referencesMasson, V., Roles of serine proteases and matrix metalloproteinases in tumor invasion and angiogenesis. Bull Mem Acad R Med Belg, 2006. 161(5): p. 320-6.spa
dc.relation.referencesJ.M. Ray and W.G. Stetler-Stevenson, The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. European Respiratory Journal, 1994. 7: p. 2062–2072.spa
dc.relation.referencesFerretti, C., et al., Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 2007. 13(2): p. 121.spa
dc.relation.referencesBelfiore A, F.F., Pandini G, Sciacca L, Vigneri R, Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews, 2009. 30(6): p. 586-623.spa
dc.relation.referencesDaub, H., et al., Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. 1996.spa
dc.relation.referencesLuttrell, L., Y. Daaka, and R. Lefkowitz, Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 1999. 11(2): p. 177-183.spa
dc.relation.referencesMarinissen, M. and J. Gutkind, G-protein-coupled receptors and signaling networks: emerging paradigms. Trends in Pharmacological Sciences, 2001. 22(7): p. 368-376.spa
dc.relation.referencesDalle, S., et al., Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. Journal of Biological Chemistry, 2001. 276(19): p. 15688.spa
dc.relation.referencesDahms, N. and M. Hancock, P-type lectins. Biochimica et Biophysica Acta (BBA)-General Subjects, 2002. 1572(2-3): p. 317-340.spa
dc.relation.referencesFrasca, F., et al., Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Molecular and Cellular Biology, 1999. 19(5): p. 3278.spa
dc.relation.referencesBrown, J., E. Jones, and B. Forbes, Interactions of IGF-II with the IGF2R/Cation-Independent Mannose-6-Phosphate Receptor:: Mechanism and Biological Outcomes. Vitamins & Hormones, 2009. 80: p. 699-719.spa
dc.relation.referencesLeksa, V., et al., TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. Journal of Cell Science, 2005. 118(Pt 19): p. 4577.spa
dc.relation.referencesSchiller, H., et al., Mannose 6-Phosphate/Insulin-like Growth Factor 2 Receptor Limits Cell Invasion by Controlling $# x003b1; V $# x003b2; 3 Integrin Expression and Proteolytic Processing of Urokinase-type Plasminogen Activator Receptor. Molecular Biology of the Cell, 2009. 20(3): p. 745.spa
dc.relation.referencesF, M.-S., et al., Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect. Cell Signal, 2009. 21(12): p. 1925-34.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposaltrophoblasteng
dc.subject.proposalreceptores híbridos.spa
dc.subject.proposalhybrid receptorseng
dc.subject.proposalFosfoproteómicaspa
dc.subject.proposalphosphoproteomicseng
dc.subject.proposaltrofoblastospa
dc.titleImportancia de los receptores híbridos receptor de insulina/receptor del factor de crecimiento similar a la insulina tipo I (InsR/IGF-1R) en las redes de señalización del sistema IGFspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80738297.2010.pdf
Tamaño:
24.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: