Obtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinning

dc.contributor.advisorClavijo-Grimaldo, Dianney
dc.contributor.advisorLancheros, Ruth
dc.contributor.authorQuiroga Vergel, Ángela Viviana
dc.contributor.orcidÁngela Quiroga [0000000349127451]spa
dc.date.accessioned2023-08-08T20:05:04Z
dc.date.available2023-08-08T20:05:04Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractAntiinflamatorios no esteroideos como el ibuprofeno (IBU), suelen ser administrados por vía oral para tratar enfermedades articulares. Sin embargo, presentan efectos secundarios a largo plazo como riesgo de infarto, accidente cerebrovascular, insuficiencia renal, sangrado gastrointestinal, entre otros. En etapas avanzadas se presentan daños en el cartílago, por lo que las últimas investigaciones se han orientado a dispositivos (scaffold) que puedan reparar este tejido. Esta tesis pretende contribuir a estos nuevos métodos, con scaffolds que tengan el poder de coadyuvar en el tratamiento de estas enfermedades, disminuir el dolor y reducir los efectos segundarios. Para esto se elaboran dos scaffold de PCL cargados con 10% de IBU y se evalúa la influencia de la técnica de fabricación del scaffold, electrospinning (SE) y solution blow spinning (SBS). Se caracterizaron por microscopía SEM, FTIR, tensión, ángulo de contacto, isoterma-BET y DSC. También fue analizada la cinética de liberación de IBU, donde se obtuvo una liberación rápida del fármaco, debido al pequeño tamaño de la molécula a liberar y la porosidad interna de las fibras. Los resultados de la caracterización mostraron que, con la incorporación de IBU se obtienen fibras de menor diámetro y scaffold con mayor resistencia a la tensión y fragilidad. Por otro lado, el proceso de esterilización genera cambios morfológicos en las fibras, aumentando la cristalinidad y suprimiendo la hidrofobicidad de PCL, lo que favorecería la biocompatibilidad del scaffold. SBS se destacó por presentar una liberación más controlada y SE por producir fibras más homogéneas y con mejores propiedades mecánicas. (Texto tomado de la fuente)spa
dc.description.abstractNon-steroidal anti-inflammatory drugs such as ibuprofen (IBU) are usually administered orally to treat joint diseases. However, they have long-term side effects such as the risk of heart attack, stroke, kidney failure, gastrointestinal bleeding, among others. In advanced stages, cartilage damage occurs, so the latest research has focused on devices (scaffolds) that can repair this tissue. This thesis aims to contribute to these new methods, with scaffolds that be able to assist in the treatment of these diseases, reduce pain and side effects. Hence, two PCL scaffolds loaded with 10% IBU are made and the influence of the scaffold manufacturing technique, electrospinning (SE) and solution blow spinning (SBS), is evaluated. They were characterized by SEM microscopy, FTIR, strain, contact angle, isotherm-BET, and DSC. The release kinetics of IBU was also analyzed, where a rapid release of the drug was obtained, due to the small size of the molecule to be released and the internal porosity of the fibers. The results of the characterization reveal that with the incorporation of IBU fibers of smaller diameter and scaffold with higher resistance to tension and brittleness are obtained. On the other hand, the sterilization process generates morphological changes in the fibers, increasing the crystallinity and suppressing the hydrophobicity of PCL, creasing the biocompatibility of the scaffold. SBS stands out for a more controlled release and SE for producing more homogeneous fibers with better mechanical properties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMateriales Poliméricosspa
dc.format.extentxix, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84497
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] J. Londoño et al., «Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años», Revista Colombiana de Reumatología, vol. 25, n.o 4, pp. 245-256, oct. 2018, doi: 10.1016/j.rcreu.2018.08.003.spa
dc.relation.references[2] «WHO | Chronic rheumatic conditions», WHO. http://www.who.int/chp/topics/rheumatic/en/ (accedido 10 de mayo de 2020).spa
dc.relation.references[3] D. G. Jones, «Articular Cartilage Degeneration: Etiologic Association With Obesity», Ochsner J, vol. 9, n.o 3, pp. 137-139, 2009.spa
dc.relation.references[4] «Osteoarthritis - Treatment and support», nhs.uk, 23 de octubre de 2017. https://www.nhs.uk/conditions/osteoarthritis/treatment/ (accedido 25 de noviembre de 2020).spa
dc.relation.references[5] A. J. Kompel, F. W. Roemer, A. M. Murakami, L. E. Diaz, M. D. Crema, y A. Guermazi, «Intra-articular Corticosteroid Injections in the Hip and Knee: Perhaps Not as Safe as We Thought?», Radiology, vol. 293, n.o 3, pp. 656-663, oct. 2019, doi: 10.1148/radiol.2019190341.spa
dc.relation.references[6] «Arthritis of the Knee - OrthoInfo - AAOS». https://www.orthoinfo.org/en/diseases--conditions/arthritis-of-the-knee/ (accedido 25 de noviembre de 2020).spa
dc.relation.references[7] S. Mahsa Khatami, K. Parivar, A. Naderi Sohi, M. Soleimani, y H. Hanaee-Ahvaz, «Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds», Tissue and Cell, p. 101363, abr. 2020, doi: 10.1016/j.tice.2020.101363.spa
dc.relation.references[8] S. Chen, R. Li, X. Li, y J. Xie, «Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine», Advanced Drug Delivery Reviews, vol. 132, pp. 188-213, jul. 2018, doi: 10.1016/j.addr.2018.05.001.spa
dc.relation.references[9] K. Andreas et al., «Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: Investigation for cartilage tissue engineering», Acta Biomaterialia, vol. 7, n.o 4, pp. 1485-1495, abr. 2011, doi: 10.1016/j.actbio.2010.12.014.spa
dc.relation.references[10] «Articulación de la rodilla», Kenhub. https://www.kenhub.com/es/library/anatomia-es/articulacion-de-la-rodilla (accedido 27 de noviembre de 2022).spa
dc.relation.references[11] U. Welsch y J. Sobotta, Histología. Ed. Médica Panamericana, 2008.spa
dc.relation.references[12] Stanford Medicine Children’s Health, «Dolor y problemas de rodilla», Stanford Medicine Children’s Health. https://www.stanfordchildrens.org/es/topic/default?id=knee-pain-and-problems-85-P04020 (accedido 27 de noviembre de 2022).spa
dc.relation.references[13] M. Ross y W. Pawlina, Histología: Texto y atlas. Correlación con biología molecular y celular., 8a Edición. USA: Wolters Kluwer, 2020.spa
dc.relation.references[14] Elsevier, «Tipos de cartílago: características, localización y pericondrio», Elsevier Connect. https://www.elsevier.com/es-es/connect/medicina/edu-histologia-tipos-de-cartilago-caracteristicas-localizacion (accedido 26 de enero de 2023).spa
dc.relation.references[15] D. F. Rodríguez-Camacho, J. F. Correa-Mesa, D. F. Rodríguez-Camacho, y J. F. Correa-Mesa, «Biomecánica del cartílago articular y sus respuestas ante la aplicación de las fuerzas», Medicas UIS, vol. 31, n.o 3, pp. 47-56, dic. 2018, doi: 10.18273/revmed.v31n3-2018005.spa
dc.relation.references[16] J. Arnal, «Lesion del Cartílago de Rodilla: Tratamientos Sin Prótesis - Juan Arnal: Traumatologo en Madrid», 3 de noviembre de 2018. https://traumatologomadrid.es/lesion-cartilago-rodilla-tratamientos/ (accedido 26 de enero de 2023).spa
dc.relation.references[17] «Knee Cartilage Regrowth Options | Damaged Cartilage | GelrinC Implant». https://gelrinc.com/ (accedido 27 de noviembre de 2020).spa
dc.relation.references[18] Regentis Biomaterials, «A Prospective, Open-Label, Multicenter Pivotal Study to Evaluate the Safety and Efficacy of GelrinC® for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle: A Comparison to Historical Control Microfracture», clinicaltrials.gov, Clinical trial registration NCT03262909, mar. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT03262909spa
dc.relation.references[19] Vericel Corporation, «A Prospective, Randomized, Open-label, Parallel-group, Multi-center Study to Demonstrate the Superiority of MACI® Versus Arthroscopic Microfracture for the Treatment of Symptomatic Articular Cartilage Defects of the Femoral Condyle Including the Trochlea.», clinicaltrials.gov, Clinical trial registration results/NCT00719576, oct. 2019. Accedido: 24 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/results/NCT00719576spa
dc.relation.references[20] «The MACI procedure, step-by-step». https://www.maci.com/healthcare-professionals/about-the-procedure/the-maci-procedure.html (accedido 27 de noviembre de 2020).spa
dc.relation.references[21] «MaioRegen». https://www.medandcare.pl/en/products/orthopedics/maioregen-membrane-for-osteochondral-regeneration (accedido 27 de noviembre de 2020).spa
dc.relation.references[22] D. C. Crawford, T. M. DeBerardino, y R. J. I. Williams, «NeoCart, an Autologous Cartilage Tissue Implant, Compared with Microfracture for Treatment of Distal Femoral Cartilage Lesions: An FDA Phase-II Prospective, Randomized Clinical Trial After Two Years», JBJS, vol. 94, n.o 11, pp. 979-989, jun. 2012, doi: 10.2106/JBJS.K.00533.spa
dc.relation.references[23] Histogenics Corporation, «A Randomized Comparison of NeoCart to Microfracture for the Repair of Articular Cartilage Injuries in the Knee», clinicaltrials.gov, Clinical trial registration NCT01066702, mar. 2019. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01066702spa
dc.relation.references[24] «NOVOCART 3D». https://www.aesculapbiologics.com/en/patients/novocart-3d.html (accedido 27 de noviembre de 2020).spa
dc.relation.references[25] Tetec AG, «A Prospective Randomized Controlled Multicenter Phase-III Clinical Study to Evaluate the Safety and Effectiveness of NOVOCART® 3D Plus Compared to the Standard Procedure Microfracture in the Treatment of Articular Cartilage Defects of the Knee», clinicaltrials.gov, Clinical trial registration NCT01656902, ago. 2020. Accedido: 26 de noviembre de 2020. [En línea]. Disponible en: https://clinicaltrials.gov/ct2/show/NCT01656902spa
dc.relation.references[26] «Microfracture Technique». https://www.thesteadmanclinic.com/patient-education/knee/microfracture-technique (accedido 7 de diciembre de 2020).spa
dc.relation.references[27] «The Lens - Free & Open Patent and Scholarly Search», The Lens - Free & Open Patent and Scholarly Search. https://www.lens.org/lens (accedido 22 de junio de 2020).spa
dc.relation.references[28] K. To, B. Zhang, K. Romain, C. Mak, y W. Khan, «Synovium-Derived Mesenchymal Stem Cell Transplantation in Cartilage Regeneration: A PRISMA Review of in vivo Studies», Front. Bioeng. Biotechnol., vol. 7, 2019, doi: 10.3389/fbioe.2019.00314.spa
dc.relation.references[29] R. Zhang, J. Ma, J. Han, W. Zhang, y J. Ma, «Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis», Am J Transl Res, vol. 11, n.o 10, pp. 6275-6289, oct. 2019.spa
dc.relation.references[30] K. Jain y P. Ravikumar, «Recent advances in treatments of cartilage regeneration for knee osteoarthritis», Journal of Drug Delivery Science and Technology, vol. 60, p. 102014, dic. 2020, doi: 10.1016/j.jddst.2020.102014.spa
dc.relation.references[31] A. R. Martín, J. M. Patel, H. M. Zlotnick, J. L. Carey, y R. L. Mauck, «Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations», npj Regen Med, vol. 4, n.o 1, Art. n.o 1, may 2019, doi: 10.1038/s41536-019-0074-7.spa
dc.relation.references[32] K.-S. Park et al., «Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis», Acta Biomaterialia, vol. 73, pp. 204-216, jun. 2018, doi: 10.1016/j.actbio.2018.04.022.spa
dc.relation.references[33] W. Chen et al., «Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration», Carbohydrate Polymers, vol. 229, p. 115544, feb. 2020, doi: 10.1016/j.carbpol.2019.115544.spa
dc.relation.references[34] T. J. Sill y H. A. von Recum, «Electrospun materials for affinity-based engineering and drug delivery», J. Phys.: Conf. Ser., vol. 646, n.o 1, p. 012060, sep. 2015, doi: 10.1088/1742-6596/646/1/012060.spa
dc.relation.references[35] B. Ding, X. Wang, y J. Yu, Electrospinning: nanofabrication and applications, 1st edition. Waltham, MA: Elsevier, 2018.spa
dc.relation.references[36] S. Thomas, Y. Grohens, y N. Ninan, Eds., Nanotechnology applications for tissue engineering. Oxford, England ; Waltham, Massachusetts: William Andrew, 2015.spa
dc.relation.references[37] K. Deshmukh, S. Sankaran, M. Basheer Ahamed, y S. K. Khadheer Pasha, «Biomedical Applications of Electrospun Polymer Composite Nanofibres», en Polymer Nanocomposites in Biomedical Engineering, K. K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, y M. A. S. A. Al-Maadeed, Eds. Cham: Springer International Publishing, 2019, pp. 111-165. doi: 10.1007/978-3-030-04741-2_5.spa
dc.relation.references[38] H. A. Strobel, E. I. Qendro, E. Alsberg, y M. W. Rolle, «Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering», Front. Pharmacol., vol. 9, 2018, doi: 10.3389/fphar.2018.01329.spa
dc.relation.references[39] G. C. Dadol et al., «Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications», Materials Today Communications, vol. 25, p. 101656, dic. 2020, doi: 10.1016/j.mtcomm.2020.101656.spa
dc.relation.references[40] R. Atif et al., «Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results», Polymers, vol. 12, n.o 5, Art. n.o 5, may 2020, doi: 10.3390/polym12051140.spa
dc.relation.references[41] K. Czarnecka, M. Wojasiński, T. Ciach, y P. Sajkiewicz, «Solution Blow Spinning of Polycaprolactone—Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment», Materials, vol. 14, n.o 6, p. 1463, mar. 2021, doi: 10.3390/ma14061463.spa
dc.relation.references[42] M. A. Lorente, A. Corral, y J. González‐Benito, «PCL /collagen blends prepared by solution blow spinning as potential materials for skin regeneration», J Appl Polym Sci, vol. 138, n.o 21, p. 50493, jun. 2021, doi: 10.1002/app.50493.spa
dc.relation.references[43] E. Tomecka, M. Wojasinski, E. Jastrzebska, M. Chudy, T. Ciach, y Z. Brzozka, «Poly( l -lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture», Materials Science and Engineering: C, vol. 75, pp. 305-316, jun. 2017, doi: 10.1016/j.msec.2017.02.055.spa
dc.relation.references[44] R. Li et al., «Polycaprolactone/poly(L-lactic acid) composite micro/nanofibrous membrane prepared through solution blow spinning for oil adsorption», Materials Chemistry and Physics, vol. 241, p. 122338, feb. 2020, doi: 10.1016/j.matchemphys.2019.122338.spa
dc.relation.references[45] E. N. Yilmaz y D. I. Zeugolis, «Electrospun Polymers in Cartilage Engineering—State of Play», Front. Bioeng. Biotechnol., vol. 8, 2020, doi: 10.3389/fbioe.2020.00077.spa
dc.relation.references[46] E. Venugopal, K. S. Sahanand, A. Bhattacharyya, y S. Rajendran, «Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering», Nanomedicine: Nanotechnology, Biology and Medicine, vol. 21, p. 102044, oct. 2019, doi: 10.1016/j.nano.2019.102044.spa
dc.relation.references[47] J. C. Silva et al., «Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering», Materials Science and Engineering: C, vol. 107, p. 110291, feb. 2020, doi: 10.1016/j.msec.2019.110291.spa
dc.relation.references[48] M. Rafiei, E. Jooybar, M. J. Abdekhodaie, y M. Alvi, «Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery», Materials Science and Engineering: C, vol. 113, p. 110913, ago. 2020, doi: 10.1016/j.msec.2020.110913.spa
dc.relation.references[49] T. Jiang et al., «Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF–kappa B signaling pathway», Biomaterials, vol. 178, pp. 281-292, sep. 2018, doi: 10.1016/j.biomaterials.2018.06.023.spa
dc.relation.references[50] Â. Semitela et al., «Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications», J Biomater Appl, vol. 35, n.o 4-5, pp. 471-484, oct. 2020, doi: 10.1177/0885328220940194.spa
dc.relation.references[51] O. Urbanek, P. Sajkiewicz, y F. Pierini, «The effect of polarity in the electrospinning process on PCL/chitosan nanofibres’ structure, properties and efficiency of surface modification», Polymer, vol. 124, pp. 168-175, ago. 2017, doi: 10.1016/j.polymer.2017.07.064.spa
dc.relation.references[52] Y. Li et al., «Cell-free 3D wet-electrospun PCL/silk fibroin/Sr2+ scaffold promotes successful total meniscus regeneration in a rabbit model», Acta Biomaterialia, vol. 113, pp. 196-209, sep. 2020, doi: 10.1016/j.actbio.2020.06.017.spa
dc.relation.references[53] I. R. Calori, G. Braga, P. da C. C. de Jesus, H. Bi, y A. C. Tedesco, «Polymer scaffolds as drug delivery systems», European Polymer Journal, vol. 129, p. 109621, abr. 2020, doi: 10.1016/j.eurpolymj.2020.109621.spa
dc.relation.references[54] R. M. Jeuken et al., «Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects», Polymers, vol. 8, n.o 6, Art. n.o 6, jun. 2016, doi: 10.3390/polym8060219.spa
dc.relation.references[55] D. Puppi, F. Chiellini, A. M. Piras, y E. Chiellini, «Polymeric materials for bone and cartilage repair», Progress in Polymer Science, vol. 35, n.o 4, pp. 403-440, abr. 2010, doi: 10.1016/j.progpolymsci.2010.01.006.spa
dc.relation.references[56] J. M. Patel, K. S. Saleh, J. A. Burdick, y R. L. Mauck, «Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity», Acta Biomaterialia, vol. 93, pp. 222-238, jul. 2019, doi: 10.1016/j.actbio.2019.01.061.spa
dc.relation.references[57] H. Li, C. Hu, H. Yu, y C. Chen, «Chitosan composite scaffolds for articular cartilage defect repair: a review», RSC Adv., vol. 8, n.o 7, pp. 3736-3749, ene. 2018, doi: 10.1039/C7RA11593H.spa
dc.relation.references[58] F. Comblain, G. Rocasalbas, S. Gauthier, y Y. Henrotin, «Chitosan: A promising polymer for cartilage repair and viscosupplementation», BME, vol. 28, n.o s1, pp. S209-S215, mar. 2017, doi: 10.3233/BME-171643.spa
dc.relation.references[59] B. P. Sutherland, «Electrospinning Crosslinked Gelatin, Collagen, and Elastin Nanofibers for Tissue Engineering Applications», Master of Science, Drexel University, 2014. doi: 10.17918/etd-4498.spa
dc.relation.references[60] L. Chen, J. Liu, M. Guan, T. Zhou, X. Duan, y Z. Xiang, «Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering», IJN, vol. Volume 15, pp. 6097-6111, ago. 2020, doi: 10.2147/IJN.S249829.spa
dc.relation.references[61] D. S. Hungerford y L. C. Jones, «Glucosamine and chondroitin sulfate are effective inthe management of osteoarthritis», The Journal of Arthroplasty, vol. 18, n.o 3, Supplement 1, pp. 5-9, abr. 2003, doi: 10.1054/arth.2003.50067.spa
dc.relation.references[62] S. De Vrieze, P. Westbroek, T. Van Camp, y L. Van Langenhove, «Electrospinning of chitosan nanofibrous structures: feasibility study», J Mater Sci, vol. 42, n.o 19, pp. 8029-8034, oct. 2007, doi: 10.1007/s10853-006-1485-6.spa
dc.relation.references[63] X. Geng, O. Kwon, y J. Jang, «Electrospinning of chitosan dissolved in concentrated acetic acid solution», Biomaterials, vol. 26, n.o 27, pp. 5427-5432, sep. 2005, doi: 10.1016/j.biomaterials.2005.01.066.spa
dc.relation.references[64] H. Homayoni, S. A. H. Ravandi, y M. Valizadeh, «Electrospinning of chitosan nanofibers: Processing optimization», Carbohydrate Polymers, vol. 77, n.o 3, pp. 656-661, jul. 2009, doi: 10.1016/j.carbpol.2009.02.008.spa
dc.relation.references[65] P. Sangsanoh, O. Suwantong, A. Neamnark, P. Cheepsunthorn, P. Pavasant, y P. Supaphol, «In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells», European Polymer Journal, vol. 46, n.o 3, pp. 428-440, mar. 2010, doi: 10.1016/j.eurpolymj.2009.10.029.spa
dc.relation.references[66] S. Haider y S.-Y. Park, «Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution», Journal of Membrane Science, vol. 328, n.o 1, pp. 90-96, feb. 2009, doi: 10.1016/j.memsci.2008.11.046.spa
dc.relation.references[67] S. Surucu y H. Turkoglu Sasmazel, «Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds», International Journal of Biological Macromolecules, vol. 92, pp. 321-328, nov. 2016, doi: 10.1016/j.ijbiomac.2016.07.013.spa
dc.relation.references[68] P. Vaidya, T. Grove, K. J. Edgar, y A. S. Goldstein, «Surface grafting of chitosan shell, polycaprolactone core fiber meshes to confer bioactivity», Journal of Bioactive and Compatible Polymers, vol. 30, n.o 3, pp. 258-274, may 2015, doi: 10.1177/0883911515571147.spa
dc.relation.references[69] K. Kalwar, W.-X. Sun, D.-L. Li, X.-J. Zhang, y D. Shan, «Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity», Reactive and Functional Polymers, vol. 107, pp. 87-92, oct. 2016, doi: 10.1016/j.reactfunctpolym.2016.08.010.spa
dc.relation.references[70] P. Yousefi, G. Dini, B. Movahedi, S. Vaezifar, y M. Mehdikhani, «Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug», Polym. Bull., feb. 2021, doi: 10.1007/s00289-021-03566-4.spa
dc.relation.references[71] J. Li, A. He, J. Zheng, y C. C. Han, «Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions», Biomacromolecules, vol. 7, n.o 7, pp. 2243-2247, jul. 2006, doi: 10.1021/bm0603342.spa
dc.relation.references[72] A. Laha, C. S. Sharma, y S. Majumdar, «Electrospun gelatin nanofibers as drug carrier: effect of crosslinking on sustained release», Materials Today: Proceedings, vol. 3, n.o 10, pp. 3484-3491, 2016, doi: 10.1016/j.matpr.2016.10.031.spa
dc.relation.references[73] «Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers», Food Hydrocolloids, vol. 39, pp. 19-26, ago. 2014, doi: 10.1016/j.foodhyd.2013.12.022.spa
dc.relation.references[74] Z.-M. Huang, Y. Z. Zhang, S. Ramakrishna, y C. T. Lim, «Electrospinning and mechanical characterization of gelatin nanofibers», Polymer, vol. 45, n.o 15, pp. 5361-5368, jul. 2004, doi: 10.1016/j.polymer.2004.04.005.spa
dc.relation.references[75] J. Ratanavaraporn, R. Rangkupan, H. Jeeratawatchai, S. Kanokpanont, y S. Damrongsakkul, «Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats», International Journal of Biological Macromolecules, vol. 47, n.o 4, pp. 431-438, nov. 2010, doi: 10.1016/j.ijbiomac.2010.06.008.spa
dc.relation.references[76] M. Lin et al., «Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane», International Journal of Molecular Sciences, vol. 23, n.o 3, Art. n.o 3, ene. 2022, doi: 10.3390/ijms23031895.spa
dc.relation.references[77] «Elaboration and Characterization of Coaxial Electrospun Poly(ε‐Caprolactone)/Gelatin Nanofibers for Biomedical Applications», doi: 10.1002/adv.21475.spa
dc.relation.references[78] D. Sridharan et al., «In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold», Materials Science and Engineering: C, vol. 118, p. 111354, ene. 2021, doi: 10.1016/j.msec.2020.111354.spa
dc.relation.references[79] A. Joshi, Z. Xu, Y. Ikegami, S. Yamane, M. Tsurashima, y H. Ijima, «Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling», International Journal of Biological Macromolecules, vol. 151, pp. 186-192, may 2020, doi: 10.1016/j.ijbiomac.2020.02.163.spa
dc.relation.references[80] «About ibuprofen for adults», nhs.uk, 14 de diciembre de 2021. https://www.nhs.uk/medicines/ibuprofen-for-adults/about-ibuprofen-for-adults/ (accedido 28 de enero de 2023).spa
dc.relation.references[81] «Ibuprofen Oral: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD». https://www.webmd.com/drugs/2/drug-5166-9368/ibuprofen-oral/ibuprofen-oral/details (accedido 28 de enero de 2023).spa
dc.relation.references[82] Y. Mao et al., «Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier», Materials Science and Engineering: C, vol. 118, p. 111451, ene. 2021, doi: 10.1016/j.msec.2020.111451.spa
dc.relation.references[83] F. Batool et al., «Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study», Materials, vol. 11, n.o 4, Art. n.o 4, abr. 2018, doi: 10.3390/ma11040580.spa
dc.relation.references[84] H. Jiang, D. Fang, B. Hsiao, B. Chu, y W. Chen, «Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes», Journal of Biomaterials Science, Polymer Edition, vol. 15, n.o 3, pp. 279-296, ene. 2004, doi: 10.1163/156856204322977184.spa
dc.relation.references[85] K. T. Shalumon et al., «Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation», Acta Biomaterialia, vol. 72, pp. 121-136, may 2018, doi: 10.1016/j.actbio.2018.03.044.spa
dc.relation.references[86] A. A. M. Shimojo, I. C. P. Rodrigues, A. G. M. Perez, E. M. B. Souto, L. P. Gabriel, y T. Webster, «Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization», en Racing for the Surface: Antimicrobial and Interface Tissue Engineering, B. Li, T. F. Moriarty, T. Webster, y M. Xing, Eds. Cham: Springer International Publishing, 2020, pp. 647-676. doi: 10.1007/978-3-030-34471-9_23.spa
dc.relation.references[87] M. P. Paarakh, P. A. Jose, C. Setty, y G. V. Peter, «RELEASE KINETICS – CONCEPTS AND APPLICATIONS».spa
dc.relation.references[88] M. L. Bruschi, Ed., «5 - Mathematical models of drug release», en Strategies to Modify the Drug Release from Pharmaceutical Systems, Woodhead Publishing, 2015, pp. 63-86. doi: https://doi.org/10.1016/B978-0-08-100092-2.00005-9.spa
dc.relation.references[89] Z. Dai, J. Ronholm, Y. Tian, B. Sethi, y X. Cao, «Sterilization techniques for biodegradable scaffolds in tissue engineering applications», J Tissue Eng, vol. 7, p. 2041731416648810, ene. 2016, doi: 10.1177/2041731416648810.spa
dc.relation.references[90] L. Preem et al., «Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems», International Journal of Pharmaceutics, vol. 567, p. 118450, ago. 2019, doi: 10.1016/j.ijpharm.2019.118450.spa
dc.relation.references[91] S. Tort, F. T. Demiröz, S. Yıldız, y F. Acartürk, «Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization», J Pharm Innov, vol. 15, n.o 3, pp. 325-332, sep. 2020, doi: 10.1007/s12247-019-09383-7.spa
dc.relation.references[92] Y. S. Tapia-Guerrero et al., «Effect of UV and Gamma Irradiation Sterilization Processes in the Properties of Different Polymeric Nanoparticles for Biomedical Applications», Materials, vol. 13, n.o 5, Art. n.o 5, ene. 2020, doi: 10.3390/ma13051090.spa
dc.relation.references[93] R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, y S. Bhaduri, «Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery», Pharmaceutics, vol. 11, n.o 1, Art. n.o 1, ene. 2019, doi: 10.3390/pharmaceutics11010005.spa
dc.relation.references[94] A. Yin, R. Luo, J. Li, X. Mo, Y. Wang, y X. Zhang, «Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties», Colloids and Surfaces B: Biointerfaces, vol. 152, pp. 432-439, abr. 2017, doi: 10.1016/j.colsurfb.2017.01.045.spa
dc.relation.references[95] B. Zaarour, L. Zhu, y X. Jin, «Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters», Mater. Res. Express, vol. 7, n.o 1, p. 015008, dic. 2019, doi: 10.1088/2053-1591/ab582d.spa
dc.relation.references[96] J. Zhang, H. Kitayama, y Y. Gotoh, «High strength ultrafine cellulose fibers generated by solution blow spinning», European Polymer Journal, vol. 125, p. 109513, feb. 2020, doi: 10.1016/j.eurpolymj.2020.109513.spa
dc.relation.references[97] Quiroga-Vergel Angela, Clavijo-Grimaldo Dianney, y Casadiego-Torrado Ciro, «Characterization and Evaluation of Solvent Retention in Polycaprolactone Nano/Microfibers Obtained by Electrospinning and Solution Blow Spinning», Chemical Engineering Transactions, vol. 93, pp. 115-120, jul. 2022, doi: 10.3303/CET2293020.spa
dc.relation.references[98] R. Wright y M. Blitshteyn, «Method and apparatus for measuring contact angles of liquid droplets on substrate surfaces», US5268733A, 7 de diciembre de 1993 Accedido: 2 de enero de 2023. [En línea]. Disponible en: https://patents.google.com/patent/US5268733A/en?oq=5268733spa
dc.relation.references[99] Thermo Fisher Scientific, «Spectrophotometric Analysis of Ibuprofen According to USP and EP Monographs», 2020.spa
dc.relation.references[100] «PBS (Phosphate Buffered Saline) (1X, pH 7.4) Preparation and Recipe | AAT Bioquest». https://www.aatbio.com/resources/buffer-preparations-and-recipes/pbs-phosphate-buffered-saline (accedido 3 de enero de 2023).spa
dc.relation.references[101] «Phosphate-buffered saline (PBS)», Cold Spring Harb Protoc, vol. 2006, n.o 1, p. pdb.rec8247, ene. 2006, doi: 10.1101/pdb.rec8247.spa
dc.relation.references[102] «Phosphate buffered saline powder, pH 7.4, for preparing 1 L solutions | Sigma-Aldrich». https://www.sigmaaldrich.com/catalog/product/sigma/p3813?lang=es&region=CO (accedido 7 de diciembre de 2020).spa
dc.relation.references[103] I. Cantón et al., «Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration», Biotechnol Bioeng, vol. 105, n.o 2, pp. 396-408, feb. 2010, doi: 10.1002/bit.22530.spa
dc.relation.references[104] M. Audumbar, J. Santosh, y T. Ashpak, «Development and Validation of UV Spectrophotometric Estimation of Ibuprofen in Bulk and Tablet Dosage Form Using Area under Curve Method», vol. 2015, n.o 2, 2015.spa
dc.relation.references[105] A. Heimowska, M. Morawska, y A. Bocho-Janiszewska, «Biodegradation of poly(ε-caprolactone) in natural water environments», Polish Journal of Chemical Technology, vol. 19, n.o 1, pp. 120-126, mar. 2017, doi: 10.1515/pjct-2017-0017.spa
dc.relation.references[106] N. B. Erdal, G. A. Lando, A. Yadav, R. K. Srivastava, y M. Hakkarainen, «Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating», Polymers, vol. 12, n.o 8, Art. n.o 8, ago. 2020, doi: 10.3390/polym12081849.spa
dc.relation.references[107] A. Guarnieri et al., «Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens», Sci Rep, vol. 12, n.o 1, Art. n.o 1, may 2022, doi: 10.1038/s41598-022-12150-3.spa
dc.relation.references[108] K. Sun y Z. H. Li, «Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning», Express Polym. Lett., vol. 5, n.o 4, pp. 342-361, 2011, doi: 10.3144/expresspolymlett.2011.34.spa
dc.relation.references[109] «Q3C — Tables and List Guidance for Industry».spa
dc.relation.references[110] S. R. Gomes et al., «In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study», Materials Science and Engineering: C, vol. 46, pp. 348-358, ene. 2015, doi: 10.1016/j.msec.2014.10.051.spa
dc.relation.references[111] E. Saatcioglu et al., «Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration», European Polymer Journal, vol. 148, p. 110357, abr. 2021, doi: 10.1016/j.eurpolymj.2021.110357.spa
dc.relation.references[112] L. Cao, F. Zhang, Q. Wang, y X. Wu, «Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering», Materials Science and Engineering: C, vol. 79, pp. 697-701, oct. 2017, doi: 10.1016/j.msec.2017.05.056.spa
dc.relation.references[113] John Wiley & Sons, «SpectraBase Compound ID=DReJiCKiDTF SpectraBase Spectrum ID=FdPg9tn4xup», https://spectrabase.com/spectrum/FdPg9tn4xup, 23 de enero de 2022. https://spectrabase.com/spectrum/FdPg9tn4xup (accedido 23 de enero de 2022).spa
dc.relation.references[114] «Gelatine - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/FXP6FivXBOY (accedido 10 de enero de 2023).spa
dc.relation.references[115] M. Gong et al., «Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum», Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 201-209, oct. 2018, doi: 10.1016/j.colsurfb.2018.06.012.spa
dc.relation.references[116] J. W. Drexler y H. M. Powell, «Regulation of electrospun scaffold stiffness via coaxial core diameter», Acta Biomaterialia, vol. 7, n.o 3, pp. 1133-1139, mar. 2011, doi: 10.1016/j.actbio.2010.10.025.spa
dc.relation.references[117] Sigma Aldrich, «Product Information Gelatin», 2020. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/333/625/g9382pis.pdf (accedido 12 de enero de 2023).spa
dc.relation.references[118] S. Gautam, A. K. Dinda, y N. C. Mishra, «Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method», Materials Science and Engineering: C, vol. 33, n.o 3, pp. 1228-1235, abr. 2013, doi: 10.1016/j.msec.2012.12.015.spa
dc.relation.references[119] M. Adeli-Sardou, M. M. Yaghoobi, M. Torkzadeh-Mahani, y M. Dodel, «Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration», International Journal of Biological Macromolecules, vol. 124, pp. 478-491, mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.237.spa
dc.relation.references[120] H. Alissa Alam, A. D. Dalgic, A. Tezcaner, C. Ozen, y D. Keskin, «A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering», International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 69, n.o 6, pp. 339-350, abr. 2020, doi: 10.1080/00914037.2019.1581198.spa
dc.relation.references[121] R. Vasireddi et al., «Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle», Sci Rep, vol. 9, n.o 1, Art. n.o 1, oct. 2019, doi: 10.1038/s41598-019-50477-6.spa
dc.relation.references[122] D. Clavijo-Grimaldo, C. A. Casadiego-Torrado, J. Villalobos-Elías, A. Ocampo-Páramo, y M. Torres-Parada, «Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used», Membranes, vol. 12, n.o 6, Art. n.o 6, jun. 2022, doi: 10.3390/membranes12060563.spa
dc.relation.references[123] W. Tutak, G. Gelven, C. Markle, y X.-L. Palmer, «Rapid polymer fiber airbrushing: Impact of a device design on the fiber fabrication and matrix quality», J. Appl. Polym. Sci., vol. 132, n.o 47, p. n/a-n/a, dic. 2015, doi: 10.1002/app.42813.spa
dc.relation.references[124] Clavijo-Grimaldo Dianney, Ponce-Zapata Nubia, y Casadiego-Torrado Ciro, «Control of Bacterial Proliferation and Formation of Biofilm in Membranes for Food Packaging Manufactured by Electrospinning», Chemical Engineering Transactions, vol. 75, pp. 241-246, jun. 2019, doi: 10.3303/CET1975041.spa
dc.relation.references[125] A. A. Rakina et al., «Ibuprofen controlled release from E-beam treated polycaprolactone electrospun scaffolds», J. Phys.: Conf. Ser., vol. 1115, p. 032051, nov. 2018, doi: 10.1088/1742-6596/1115/3/032051.spa
dc.relation.references[126] J. Horakova et al., «Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone», ACS Omega, vol. 5, n.o 15, pp. 8885-8892, abr. 2020, doi: 10.1021/acsomega.0c00503.spa
dc.relation.references[127] COBLENTZ SOCIETY, «Trichloromethane», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67663&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022).spa
dc.relation.references[128] COBLENTZ SOCIETY, «Isopropyl Alcohol», 2018. https://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Type=IR-SPEC&Index=2 (accedido 23 de enero de 2022).spa
dc.relation.references[129] «Ibuprofen - Optional[FTIR] - Spectrum - SpectraBase». https://spectrabase.com/spectrum/AYjMTFKYSNo (accedido 13 de enero de 2023).spa
dc.relation.references[130] M. Bartnikowski, T. R. Dargaville, S. Ivanovski, y D. W. Hutmacher, «Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment», Progress in Polymer Science, vol. 96, pp. 1-20, sep. 2019, doi: 10.1016/j.progpolymsci.2019.05.004.spa
dc.relation.references[131] «Polymers | Free Full-Text | Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating». https://www.mdpi.com/2073-4360/12/8/1849 (accedido 13 de enero de 2023).spa
dc.relation.references[132] L. A. Can-Herrera, A. I. Oliva, M. a. A. Dzul-Cervantes, O. F. Pacheco-Salazar, y J. M. Cervantes-Uc, «Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage», Polymers, vol. 13, n.o 4, Art. n.o 4, ene. 2021, doi: 10.3390/polym13040662.spa
dc.relation.references[133] Y. Shi, Z. Wei, H. Zhao, T. Liu, A. Dong, y J. Zhang, «Electrospinning of Ibuprofen-Loaded Composite Nanofibers for Improving the Performances of Transdermal Patches», j nanosci nanotechnol, vol. 13, n.o 6, pp. 3855-3863, jun. 2013, doi: 10.1166/jnn.2013.7157.spa
dc.relation.references[134] D. Yixiang, T. Yong, S. Liao, C. K. Chan, y S. Ramakrishna, «Degradation of Electrospun Nanofiber Scaffold by Short Wave Length Ultraviolet Radiation Treatment and Its Potential Applications in Tissue Engineering», https://home.liebertpub.com/tea, 4 de agosto de 2008. https://www.liebertpub.com/doi/10.1089/ten.tea.2007.0395 (accedido 14 de enero de 2023).spa
dc.relation.references[135] Y. Bai et al., «Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites», Polymer Testing, vol. 93, p. 106872, ene. 2021, doi: 10.1016/j.polymertesting.2020.106872.spa
dc.relation.references[136] P. A. Christensen, T. A. Egerton, S. M. Martins-Franchetti, C. Jin, y J. R. White, «Photodegradation of polycaprolactone/poly(vinyl chloride) blend», Polymer Degradation and Stability, vol. 93, n.o 1, pp. 305-309, ene. 2008, doi: 10.1016/j.polymdegradstab.2007.08.008.spa
dc.relation.references[137] M. M. Machado-Paula et al., «A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization», Materials Science and Engineering: C, vol. 111, p. 110706, jun. 2020, doi: 10.1016/j.msec.2020.110706.spa
dc.relation.references[138] T. Riaz, N. Gull, A. Islam, M. R. Dilshad, L. I. Atanase, y C. Delaite, «Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen», Chem. Pap., ene. 2023, doi: 10.1007/s11696-022-02655-6.spa
dc.relation.references[139] T. Riaz, N. Khenoussi, D. M. Rata, L. I. Atanase, D. C. Adolphe, y C. Delaite, «Blend Electrospinning of Poly(Ɛ-Caprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings», Autex Research Journal, vol. {"content-type":"ahead-of-print","content":0}, n.o 0, sep. 2021, doi: 10.2478/aut-2021-0017.spa
dc.relation.references[140] J. R. Dias, A. Sousa, A. Augusto, P. J. Bártolo, y P. L. Granja, «Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study», Polymers, vol. 14, n.o 16, Art. n.o 16, ene. 2022, doi: 10.3390/polym14163397.spa
dc.relation.references[141] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, y S. Ramakrishna, «A review on polymer nanofibers by electrospinning and their applications in nanocomposites», Composites Science and Technology, vol. 63, n.o 15, pp. 2223-2253, nov. 2003, doi: 10.1016/S0266-3538(03)00178-7.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCOMPUESTOS POLIMERICOSspa
dc.subject.lembPolymeric compositeseng
dc.subject.proposalElectrospinningspa
dc.subject.proposalSolution Blow Spinningspa
dc.subject.proposalIbuprofenospa
dc.subject.proposalPolicaprolactonaspa
dc.subject.proposalEsterilización UVspa
dc.subject.proposalIbuprofeneng
dc.subject.proposalPolycaprolactoneeng
dc.subject.proposalUV Sterilizationeng
dc.titleObtención y caracterización de dos scaffolds poliméricos, cargados con compuesto con potencial bioactivo, utilizando la técnica de electrospinningspa
dc.title.translatedFabrication and characterization of two polymeric scaffolds, loaded with potentially bioactive compound, using the electrospinning techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestria - Ángela Quiroga - 1032466395.pdf
Tamaño:
5.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: