Caracterización de la condición de los rieles de tren usando la función de respuesta de frecuencia y redes profundas

dc.contributor.advisorRestrepo Martinez, Alejandro
dc.contributor.authorNavas Orduz, Jose Miguel
dc.contributor.researchgroupGrupo de Promoción E Investigación en Mecánica Aplicada Gpimaspa
dc.date.accessioned2024-05-21T14:13:35Z
dc.date.available2024-05-21T14:13:35Z
dc.date.issued2024-05-19
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractDebido a la crítica importancia del riel en el mantenimiento del sistema ferroviario, se hace imprescindible desarrollar un proceso que permita evaluar el estado del riel, cuantificar la severidad de sus posibles defectos y cambios en configuraciones estructurales. Este análisis es esencial para tomar medidas apropiadas, asegurando la confiabilidad y mantenibilidad del sistema en su totalidad. En este contexto, este proceso de investigación se enfoca en la implementación de una metodología que caracteriza los rieles de tren a través de su comportamiento dinámico mediante el análisis modal. El cual, aborda el análisis frecuencial a través de tres enfoques: teórico, numérico y experimental. El proceso experimental de análisis modal se realiza mediante la técnica de ensayo de martillo. Para ello, se realiza un estudio de determinación del comportamiento frecuencial del riel con respecto a cambios en la distancia entre fijaciones y a la variación de condiciones como generación de defectos. Dicho proceso implica la captura de señales mediante un acelerómetro uniaxial para la respuesta del riel y un martillo instrumentado para el impacto. Se recopilaron 45 señales para cada distancia y condición, y posteriormente se realizaron transformaciones a través de la Función de Respuesta de Frecuencia (FRF), la Transformada de Fourier (FFT) y la Transformada Continua de Wavelet (CWT). Para la interpretación y clasificación de los datos, se emplearon métodos estadísticos, como el método Z, y técnicas de aprendizaje de máquina mediante redes convolucionales profundas (CNN). Estas fueron evaluadas utilizando criterios y métricas como la exactitud, la matriz de confusión y la curva ROC. Todo esto proporcionando una metodología funcional que permite la caracterización del comportamiento frecuencial del riel de tren, considerando modificaciones tanto en el tipo de ensamble como en las variaciones de propiedades físicas. (Tomado de la fuente)spa
dc.description.abstractDue to the critical importance of railway tracks in the maintenance of the railway system, it is imperative to develop a process that allows for the assessment of the track's condition, quantification of the severity of potential defects, and changes in structural configurations. This analysis is essential for taking appropriate measures, ensuring the overall reliability and maintainability of the system. In this context, this research process focuses on implementing a methodology that characterizes train tracks through their dynamic behavior using modal analysis. This methodology addresses frequency analysis through three approaches: theoretical, numerical, and experimental. The validation of this behavior is conducted through an experimental process using the hammer test technique. The study is carried out regarding the modification in the distance between fixations and the variation of conditions to determine the corresponding changes in frequency behavior. This process involves capturing signals using a uniaxial accelerometer for track response and an instrumented hammer for impact. 45 signals were collected for each distance and condition, subsequently transformed through Frequency Response Function (FRF), Fourier Transform (FFT), and Continuous Wavelet Transform (CWT). For data interpretation and classification, statistical methods such as the Z method and machine learning techniques employing deep convolutional neural networks (CNN) were utilized. These methods were evaluated using criteria and metrics such as accuracy, confusion matrix, and ROC curve. All of this contributes to a functional methodology enabling the characterization of the frequency behavior of train tracks, considering modifications in both assembly types and variations in physical properties.eng
dc.description.curricularareaIngeniería Mecánica.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaInvestigación en Ingeniería Mecánicaspa
dc.format.extent127 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86128
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Oregui, Z. Li , R. Dollevoet. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements. Delft, Netherlands. (2014).spa
dc.relation.referencesG. Idárraga, J. Sánchez, J. Santa, A. Toro. Identificación de mecanismos de desgaste en rieles de vía comercial del metro de Medellín. Medellín. (2014).spa
dc.relation.referencesStuart L Grassie. Studs and squats: The evolving story. Cambridge, United Kingdom. (2016).spa
dc.relation.referencesM. Oregui, M. Molodova, A. Nuñez, R. Dollevoet, Z. Li. Experimental investigation into the condition of Insulated rail joints by impact excitation. Delft, Netherlands. (2015).spa
dc.relation.referencesLuis A. Bedian. Determinación experimental de los parámetros modales (frecuencias naturales) de una viga en condición empotrada – libre. Veracruz, México. (2010).spa
dc.relation.referencesA.P De Man. Dynatrack: A survey of dynamic railway track properties and their quality. Delft, Netherlands. (2002).spa
dc.relation.referencesByoung‑Gyu Song, Namcheol Kang. Application of deep neural networks for the parameter identifications of lumped and distributed parameter models under severe noises and various initial values. Daegu, Republic of Korea. (2023).spa
dc.relation.referencesEun-Taik Lee, Yu-Sik Hong and Hee-Chang Eun. Prediction of the physical properties of a structural member by the impact hammer test. Seoul, Korea. (2022).spa
dc.relation.referencesGuillermo Montiel-Varela, Alan Domínguez-Vazquez, Ezequiel Gallardo-Hernández, Luigi Bregant and Rafael García-Illescas. Experimental and numerical study for detection of rail defect. Ciudad de México, México. (2017).spa
dc.relation.referencesHongyu Tao and Pan Zhang. Characterization and mitigation of wheel-rail impact at a singular rail defect. Delft, Netherlands. (2022).spa
dc.relation.referencesOsama Brinji, W. Kong, G. Tew. Investigating the dynamic response of the ballast. Melbourne, Australia. (2016).spa
dc.relation.referencesAnil Kumar, Yuqing Zhou, C.P. Gandhi, Rajesh Kumar, Jiawei Xiang. Bearing defect size assessment using wavelet transform based Deep Convolutional Neural Network (DCNN). Alexandria, Egypt. (2020).spa
dc.relation.referencesYongzhi Qu, Gregory W. Vogl, Zechao Wang. A deep neural network model for learning runtime frequency response function using sensor measurements. Minnesota, USA. (2020).spa
dc.relation.referencesAthanasios Synodinos. Identification of railway track components and defects by analysis of wheel-rail interaction noise. Southampton, UK. (2016).spa
dc.relation.referencesA. Paral, D. Singha Roy, A. Samanta. A deep learning-based approach for condition assessment of semi-rigid joint of steel frame. Durgapur, India. (2020).spa
dc.relation.referencesJ. Sresakoolchai, S. Kaewunruen. Detection and severity evaluation of combined rail defects using deep learning. Birmingham, United Kingdom. (2021).spa
dc.relation.referencesR. Janeluiktis. Continuous wavelet transform-based method for the enhancing estimation of wind turbine blade natural frequencies and damping for machine learning porpoises. Denmark. (2020).spa
dc.relation.referencesX. Du, X. Jin, G. Zhao, Z. Wen, W. Li. Rail corrugation of high-speed railway induced by rail grinding. China. (2021).spa
dc.relation.referencesA. Presas, D. Valentin, E. Egusquiza, C. Valero, M. Egusquiza, M. Bossio. Accurate determination of the frequency response function of submerged and confined structures by using PZT-patches. Barcelona. (2017).spa
dc.relation.referencesS. Rani. An experimental investigation of cantilever beam using impulse modal analysis technique. India. (2018).spa
dc.relation.referencesM. Loidolt, S. Marsching. Evaluating short-wave effects in railway track using the rail surface signal. Graz, Austria. (2022).spa
dc.relation.referencesW. Jeong, D. Jeong. Acoustic roughness measurement of railhead surface using an optimal sensor batch algorithm. Daejeon, South Korea. (2020).spa
dc.relation.referencesZ. Yuan, S. Zhu, C. Chang, X. Yuan, Q. Zhang. An unsupervised method based on convolutional variational auto-encoder and anomaly detection algorithms for light rail squat localization. Chengdu, China. (2021).spa
dc.relation.referencesM. Shadab, M. Ibrahim, I. Sarwar, H. Siddiqui, F. Rustam, E. Lee, I. Ashraf. Railway track inspection using deep learning based on audio to spectrogram conversion: an on-the-fly approach. Gyeongsan, South Korea. (2022).spa
dc.relation.referencesY. Wang, P. Wang, Q. Wang, Z. Chen, Q. He. Using vehicle interior noise classification for monitoring urban rail transit infrastructure. Buffalo, USA. (2020).spa
dc.relation.referencesIntegrated maintenance planning approach to optimize budget allocation for subway operating systems. Giza, Egypt. (2022).spa
dc.relation.referencesA.P De Man. Pin-pin resonance as a reference in determining ballasted railway track vibration behavior. Delft, Netherlands. (2000).spa
dc.relation.referencesR. Lewis, P. Christoforou, W.J. Wang, A. Beagles, M. Burstow, S.R. Lewis. Investigation of the influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project). Sheffield, United Kingdom. (2019).spa
dc.relation.referencesE. Tutumluer, T.D. Stark, D. Mishra. Investigation and mitigation of differential movement at railway transitions for us high speed passenger rail and joint passenger/freight corridors. Pennsylvania, USA. (2012).spa
dc.relation.referencesZ. Li, A. Nuñez, M. Molodova, R. Dollevoet. Improvements in axle box acceleration measurements for the detection of light squats in railway infrastructure. Delft, Netherlands. (2015).spa
dc.relation.referencesZhiling Guo, Qi Chen 1,2, Guangming Wu , Yongwei Xu, Ryosuke Shibasaki and Xiaowei Shao. Village building identification based on ensemble convolutional neural networks. Wuhan, China. (2017).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::385 - Transporte ferroviariospa
dc.subject.ddc620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carreteraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembRieles (Ferrocarriles)
dc.subject.lembFerrocarriles - Mantenimiento y reparación
dc.subject.lembVías férreas - Mantenimiento y reparación
dc.subject.lembTransporte ferroviario
dc.subject.lembAnálisis de Fourier
dc.subject.lembDinámica de estructuras
dc.subject.lembDesgaste mecánico
dc.subject.proposalFunción de respuesta de frecuencia (FRF)spa
dc.subject.proposalMétodo de elementos finitos (MEF)spa
dc.subject.proposalFrecuencia de fijacionesspa
dc.subject.proposalTransformada de Fourierspa
dc.subject.proposalTest de martillospa
dc.subject.proposalRed Neuronal Profundaspa
dc.subject.proposalTransformada de Waveletspa
dc.subject.proposalEnsayo de martillo de impactospa
dc.subject.proposalFrecuencia pin-pinspa
dc.subject.proposalFrequency response function (FRF)eng
dc.subject.proposalFinite element methodeng
dc.subject.proposalPin-Pin frequencyeng
dc.subject.proposalFourier Transformeng
dc.subject.proposalHammer testeng
dc.subject.proposalDeep Neural Networkseng
dc.subject.proposalWavelet Transformeng
dc.subject.proposalImpact Hammer Testeng
dc.titleCaracterización de la condición de los rieles de tren usando la función de respuesta de frecuencia y redes profundasspa
dc.title.translatedCharacterizing the condition of railroad track by using Frequency Response Function and Deep Neural Networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098740444.2024.pdf
Tamaño:
7.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: