Modelamiento de canal de radio en Bogotá D.C. para comunicaciones 5G en frecuencias de ondas milimétricas
dc.contributor.advisor | Araque Quijano, Javier Leonardo | spa |
dc.contributor.author | Arévalo Peña, Javier Enrique | spa |
dc.contributor.researchgroup | Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun) | spa |
dc.coverage.city | Bogotá | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000838 | |
dc.date.accessioned | 2025-06-11T20:21:23Z | |
dc.date.available | 2025-06-11T20:21:23Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Esta tesis de doctorado presenta los resultados de investigación experimental tendientes al modelamiento del canal en una transmisión de ondas milimétricas en la ciudad de Bogotá. Como dispositivo principal para la ejecución de las mediciones se emplean transceivers de la marca Sivers Semiconductors que operan en las banda de 24 a 29.5 GHz y en la banda de 57 a 71 GHz y para los cuales se diseño e implemento un banco de pruebas con diferentes elementos de hardware y software. Adicionalmente se presentan resultados de mediciones efectuadas con equipos comerciales en la banda de los 28 GHz llevadas a cabo durante una estancia de investigación en el Laboratorio 5G ubicado en la Universidad de Chile en Santiago de Chile. Los resultados permiten apreciar el desempeño de propagación en frecuencias de ondas milimétricas en bandas de interés de 26 GHz y 60 GHz en escenarios exteriores e interiores de la Universidad Nacional de Colombia en Bogotá y en la frecuencia de 28 GHz en escenarios interiores y exteriores al Laboratorio 5G de la Universidad de Chile. (Texto tomado de la fuente). | spa |
dc.description.abstract | This doctoral thesis presents the results of experimental research aimed at modeling the channel in a millimeter wave transmission in the city of Bogota. Sivers Semiconductors transceivers are used as the main device for the measurements, operating in the 24 to 29.5 GHz band and in the 24 to 29.5 GHz band. The main device used for the measurements were Sivers Semiconductors transceivers operating in the 24 GHz to 29.5 GHz band and in the 57 GHz to 71 GHz band, for which a test bench was designed and implemented with different hardware and software elements. Additionally, results of measurements performed with commercial equipment in the 28 GHz band during a research stay at the 5G Laboratory located at the University of Chile in Santiago de Chile are presented. The results show the propagation performance at millimeter wave frequencies in 26 GHz and 60 GHz bands of interest in outdoor and indoor scenarios at the National University of Colombia in Bogota and in indoor and outdoor scenarios at the National University of Colombia in Bogota and the 28 GHz band in indoor and outdoor scenarios at the 5G Laboratory of the University of Chile. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Antenas, propagación y tecnologías inalámbricas | spa |
dc.description.sponsorship | Financiado por la Convocatoria para el Apoyo a Proyectos de Investigación, CreaciónArtística e Innovación de la Sede Bogotá de la Universidad Nacional de Colombia - 2020 | spa |
dc.format.extent | ix, 79 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88221 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | A. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016. | spa |
dc.relation.references | E. Dahlman, S. Parkvall, and J. Skold, 5G NR The Next Generation WirelessAccess Technology. Elsevier, 2018. | spa |
dc.relation.references | W. Xiang, K. Zheng, and X. Shen, 5G Mobile Communications. Springer, 2017. | spa |
dc.relation.references | M. Vaezi, Z. Ding, and V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, 2019. | spa |
dc.relation.references | 5G Americas, ‘‘5G Technology Evolution Recommendations,’’ 2020. | spa |
dc.relation.references | 5G Americas, ‘‘The 5G Evolution 3GPP Release 16-17,’’ 2017. | spa |
dc.relation.references | F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, ‘‘Five disruptive technology directions for 5g,’’ IEEE Communications Magazine, vol. 52, no. 2, pp. 74--80, 2014. | spa |
dc.relation.references | Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on mobile edge computing: The communication perspective,’’ IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322--2358, 2017. | spa |
dc.relation.references | L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, ‘‘An overview of massive mimo: Benefits and challenges,’’ IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742--758, 2014. | spa |
dc.relation.references | T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, ‘‘Millimeter wave mobile communications for 5g cellular: It will work!,’’ IEEE Access, vol. 1, pp. 335--349, 2013. | spa |
dc.relation.references | P. Popovski, J. J. Nielsen, C. Stefanovic, E. d. Carvalho, E. Strom, K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, and R. B. Sorensen, ‘‘Wireless access for ultra-reliable low-latency communication: Principles and building blocks,’’ IEEE Network, vol. 32, no. 2, pp. 16--23, 2018. | spa |
dc.relation.references | M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, and C.-H. Youn, ‘‘Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems,’’ IEEE Communications Magazine, vol. 55, no. 1, pp. 54--61, 2017. | spa |
dc.relation.references | J. Chakareski and M. Khan, ‘‘Live 360° video streaming to heterogeneous clients in 5g networks,’’ IEEE Transactions on Multimedia, vol. 26, pp. 8860--8873, 2024. | spa |
dc.relation.references | A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, ‘‘Internet of things: A survey on enabling technologies, protocols, and applications,’’ IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347--2376, 2015. | spa |
dc.relation.references | J. Zhang, Z. Wu, B. Ai, and J. M. Molina-Garcia-Pardo, ‘‘Measurement-based characterization of millimeter-wave channels for 5g fixed wireless access,’’ IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2572--2582, 2019. | spa |
dc.relation.references | A. K. Yerrapragada, T. Eisman, and B. Kelley, ‘‘Physical layer security for beyond 5g: Ultra secure low latency communications,’’ IEEE Open Journal of the Communications Society, vol. 2, pp. 2232--2242, 2021. | spa |
dc.relation.references | S. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, ‘‘A survey of energy-efficient techniques for 5g networks and challenges ahead,’’ IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 697--709, 2016. | spa |
dc.relation.references | H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, ‘‘6g wireless systems: Vision, requirements, challenges, insights, and opportunities,’’ Proceedings of the IEEE, vol. 109, no. 7, pp. 1166--1199, 2021. | spa |
dc.relation.references | W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6g wireless systems: Applications, trends, technologies, and open research problems,’’ IEEE Network, vol. 34, pp. 134--142, May/June 2020. | spa |
dc.relation.references | M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, ‘‘Toward 6g networks: Use cases and technologies,’’ IEEE Communications Magazine, vol. 58, pp. 55--61, March 2020. | spa |
dc.relation.references | NTT DOCOMO, INC., ‘‘5g evolution and 6g white paper.’’ White Paper, January 2023. Available online: https://www.docomo.ne. jp/english/corporate/technology/whitepaper_6g/. | spa |
dc.relation.references | I. F. Akyildiz, C. Han, and S. Nie, ‘‘6g and beyond: The future of wireless communications systems,’’ IEEE Access, vol. 8, pp. 133995--134030, 2020. | spa |
dc.relation.references | S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, ‘‘What should 6g be?,’’ Nature Electronics, vol. 3, pp. 20--29, January 2020. | spa |
dc.relation.references | 5G Americas, ‘‘Bandas de ondas milimétricas para 5g en américa latina y el caribe.’’ Informe técnico, Marzo 2025. Disponible en: https://www.5gamericas.org. | spa |
dc.relation.references | Agencia Nacional del Espectro (ANE), ‘‘Documento de consulta pública sobre las bandas de frecuencias identificadas en colombia para el futuro desarrollo de las telecomunicaciones móviles internacionales (imt).’’ Consulta pública, Septiembre 2024. Disponible en: https://www.ane.gov.co. | spa |
dc.relation.references | W. Lee, Wireless and Cellular Telecommunications. McGraw-Hill, 2010. | spa |
dc.relation.references | S. Saunders and A. Aragón Zavala, Antennas and Propagation for Wireless Communication Systems. John Wiley Sons, 2007. | spa |
dc.relation.references | T. Rappaport, R. Heath Jr., R. Daniels, and J. Murdock, Millimeter Wave Wireless Communications. Prentice Hall, 2015. | spa |
dc.relation.references | M. K. Samimi, T. S. Rappaport, and G. R. MacCartney, ‘‘Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications,’’ IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 357--360, 2015. | spa |
dc.relation.references | J. Huang, Y. Liu, C. X. Wang, J. Sun, and H. Xiao, ‘‘5g millimeter-wave channel sounders, measurements, and models: Recent developments and future challenges,’’ IEEE Communications Magazine, vol. 57, no. 1, pp. 138--145, 2019. | spa |
dc.relation.references | Z. Lin, X. Du, H. H. Chen, and D. Wu, ‘‘Millimeter-wave propagation modeling and measurements for 5g mobile networks,’’ IEEE Wireless Communications, vol. 26, no. 1, pp. 72--77, 2019. | spa |
dc.relation.references | J. Järveläinen, K. Haneda, and Y. Karttunen, ‘‘Indoor propagation channel simulations at 60 ghz using point cloud data,’’ IEEE Journal on Selected Areas in Communications, vol. 64, no. 10, pp. 4467--4467, 2016. | spa |
dc.relation.references | X. Wu, A. T. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, ‘‘60-ghz millimeter-wave channel measurements and modeling for indoor office environments,’’ IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1912--1924, 2017. | spa |
dc.relation.references | J. Huang, C. X. Wang, J. Sun, W. Zhang, and Y. Yang, ‘‘Channel measurements and characterization for 5g wireless communication systems,’’ IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1591--1605, 2017. | spa |
dc.relation.references | T. Rappaport, Y. Xing, G. MacCartney, Jr., A. F. Molish, E. Mellios, and J. Zhang, ‘‘Overview of millimeter wave communications for fifth-generation (5g) wireless networks—with a focus on propagation models,’’ IEEE Transacctions on Antennas and Propagation, vol. 65, no. 12, pp. 6213--6230, 2017. | spa |
dc.relation.references | 3rd Generation Partnership Project - 3GPP, ‘‘Study on channel model for frequencies from 0.5 to 100 ghz,’’ Mar 2024. 3GPP TR 38.901 version 18.0.0 Release 18. | spa |
dc.relation.references | METIS, ‘‘Metis channel models,’’ May 2015. METIS 202O Unión Europea. | spa |
dc.relation.references | NYU WIRELESS, ‘‘Nyusim: The open source 5g channel model,’’ May 2018. | spa |
dc.relation.references | H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, and T. S. Rappaport, ‘‘28 ghz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in new york city,’’ in 2013 IEEE International Conference on Communications (ICC), pp. 5163--5167, 2013. | spa |
dc.relation.references | T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, ‘‘Millimeter wave mobile communications for 5g cellular: It will work!,’’ IEEE Access, vol. 1, pp. 335--349, 2013. | spa |
dc.relation.references | T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, ‘‘Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,’’ IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029--3056, 2015. | spa |
dc.relation.references | M. Hindia, A. Al-Samman, T. Rahman, and T. Yazdani, ‘‘Outdoor large-scale path loss characterization in an urban environment at 26, 28, 36, and 38 ghz,’’ Physical Communication, vol. 27, pp. 150--160, 2018. | spa |
dc.relation.references | B. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, and K. M. S. Huq, ‘‘On indoor millimeter wave massive mimo channels: Measurement and simulation,’’ IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1678--1690, 2017. | spa |
dc.relation.references | P. B. Papazian, C. Gentile, K. A. Remley, J. Senic, and N. Golmie, ‘‘A radio channel sounder for mobile millimeter-wave communications: System implementation and measurement assessment,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, pp. 2924--2932, 2016. | spa |
dc.relation.references | D. Chizhik, J. Du, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela, ‘‘Path loss and directional gain measurements at 28 ghz for non-line-of-sight coverage of indoors with corridors,’’ IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4820--4830, 2020. | spa |
dc.relation.references | J. Du, D. Chizhik, R. A. Valenzuela, R. Feick, G. Castro, M. Rodriguez, T. Chen, M. Kohli, and G. Zussman, ‘‘Directional measurements in urban street canyons from macro rooftop sites at 28 ghz for 90 outdoor coverage,’’ IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3459--3469, 2021. | spa |
dc.relation.references | D. Chizhik, J. Du, R. A. Valenzuela, D. Samardzija, S. Kucera, D. Kozlov, R. Fuchs, J. Otterbach, J. Koppenborg, P. Baracca, M. Doll, I. Rodriguez, R. Feick, and M. Rodriguez, ‘‘Directional measurements and propagation models at 28 ghz for reliable factory coverage,’’ IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9596--9606, 2022. | spa |
dc.relation.references | L. Rubio, R. P. Torres, V. M. Rodrigo Peñarrocha, J. R. Pérez, H. Fernández, J.-M. Molina-Garcia-Pardo, and J. Reig, ‘‘Contribution to the channel path loss and time-dispersion characterization in an office environment at 26 ghz,’’ Electronics, vol. 8, no. 11, 2019. | spa |
dc.relation.references | L. Rubio Arjona, V. M. Rodrigo Peñarrocha, M. Cabedo Fabres, B. Bernardo Clemente, J. Reig Pascual, H. A. Fernández González, J. R. Pérez López, R. P. Torres Jiménez, L. Valle López, and Fernández Fernández, ‘‘Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment,’’ 2 2023. | spa |
dc.relation.references | T. S. Rappaport, Y. Xing, and G. R. MacCartney, ‘‘Millimeter wave propagation: Spectrum management implications,’’ IEEE Access, vol. 7, pp. 87024--87034, 2018. | spa |
dc.relation.references | J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, ‘‘Cell-free massive mimo: A new next-generation paradigm,’’ IEEE Access, vol. 7, pp. 99878--99888, 2019. | spa |
dc.relation.references | Y. Gao, P. Fan, and P. Xu, ‘‘5g millimeter wave propagation in indoor and outdoor environments: A comprehensive experimental study,’’ MDPI Sensors, vol. 19, no. 13, p. 2969, 2019. | spa |
dc.relation.references | G. R. MacCartney and T. S. Rappaport, ‘‘Characterization of millimeter-wave propagation at 28 ghz in urban microcell environments,’’ IEEE Journal on Selected Areas in Communications, vol. 36, no. 11, pp. 2197--2213, 2018. | spa |
dc.relation.references | S. Rangan, M. K. Samimi, and T. S. Rappaport, ‘‘Millimeter-wave channel measurements and implications for 5g systems,’’ IEEE Communications Magazine, vol. 57, no. 9, pp. 26--32, 2020. | spa |
dc.relation.references | S. Semiconductors, ‘‘Evk 02001 - evaluation kit for 5g mmwave applications.’’ https://www.sivers-semiconductors.com/product/evk-02001/, 2023. | spa |
dc.relation.references | S. Semiconductors, ‘‘Evk 06002 - evaluation kit for 60 ghz applications.’’ https://www.sivers-semiconductors.com/product/ evk-06002/, 2023. Accessed: 2024-10-10. | spa |
dc.relation.references | E. Research, ‘‘Usrp b210 product overview.’’ https://www.ettus.com/all-products/ub210-kit/, 2021. | spa |
dc.relation.references | E. Research, ‘‘Usrp b200mini product overview.’’ https://www.ettus.com/all-products/usrp-b200mini-i/, 2021. | spa |
dc.relation.references | U-Blox, ‘‘C94-m8p-2 application board for high precision gnss.’’ https://www.u-blox.com/en/product/c94-m8p-application-board, 2023. | spa |
dc.relation.references | GY-511, ‘‘Gy-511 sensor module: 3-axis accelerometer, gyroscope, and magnetometer.’’ https://www.electronics-lab.com/project/gy-511/, 2023. | spa |
dc.relation.references | STMicroelectronics, ‘‘Lms303dlhc: 3d accelerometer and 3d magnetometer module.’’ https://www.st.com/en/mems-and-sensors/lms303dlhc.html, 2023. | spa |
dc.relation.references | R. P. Foundation, ‘‘Raspberry pi 3 model b product specifications.’’ https://www.raspberrypi.org/products/ raspberry-pi-3-model-b/, 2016. | spa |
dc.relation.references | R. P. Foundation, ‘‘Raspberry pi pico product specifications.’’ https://www.raspberrypi.org/products/raspberry-pi-pico/, 2021. | spa |
dc.relation.references | E. Research, ‘‘Power level controls: Overview.’’ https://files.ettus.com/manual/page_power.html. | spa |
dc.relation.references | Mini-Circuits, ‘‘Rf and microwave components: Phase shifters, dc blockers, and attenuators.’’ https://www.minicircuits.com. | spa |
dc.relation.references | Ericsson, ‘‘Antenna integrated radio unit description air 5121,’’ 2018. Technical Report. | spa |
dc.relation.references | Ericsson, ‘‘Emf test report: Ericsson air 5121,’’ 2018. Technical Report. | spa |
dc.relation.references | WNC, ‘‘X50 mmwave device ericsson id proposal,’’ 2019. Technical Report. | spa |
dc.relation.references | J. E. Arévalo, J. S. Chávez, and J. L. Araque, ‘‘Experimental setup for path loss measurements at mmwave frequencies,’’ in 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INCUSNC- URSI), (Firenze, Italy), pp. 2097--2098, 2024. | spa |
dc.relation.references | J. E. Arévalo-Peña, A. E. N. Lobos, C. A. Azurdia-Meza, J. L. Araque-Quijano, and J. I. Sandoval-Arenas, ‘‘Experimental coverage measurements on a commercial 5g network in the 28 ghz mm-wave band,’’ in 2023 IEEE MTT-S Latin America Microwave Conference (LAMC), (San José, Costa Rica), pp. 65--67, 2023. | spa |
dc.relation.references | J. E. Arévalo, A. E. Núñez, C. A. Azurdia, J. L. Araque, and J. I. Sandoval, ‘‘Experimental indoor coverage of a commercial mm-wave 5g network,’’ in 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Portland, OR, USA), pp. 13--14, 2023. | spa |
dc.relation.references | J. E. Arévalo Peña and J. L. Araque Quijano, ‘‘Experimental indoor measurements in a conference classroom at 26 ghz frequency band,’’ in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), (Cartagena de Indias, Colombia), pp. 1--2, 2024. | spa |
dc.relation.references | J. L. Duque, J. E. Arévalo, M. Patiño, J. C. Vargas, M. R. Pérez, F. J. Román, and J. L. Araque, ‘‘Multi-physics analysis of human exposition to electromagnetic fields by 5g systems,’’ in 2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Denver, CO, USA), pp. 27--28, 2022. | spa |
dc.relation.references | C. J. Furnieles, J. A. Castro, D. S. López, J. E. Arévalo, and J. L. Araque, ‘‘Path loss measurements in the 60 ghz frequency band in a greenhouse,’’ in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), (Cartagena de Indias, Colombia), pp. 1--2, 2024. | spa |
dc.relation.references | C. J. Furnieles, J. A. Castro, D. S. López, J. E. Arévalo, and J. L. Araque, ‘‘Characterization of millimeter wave propagation in agricultural environments,’’ in 2025 19th European Conference on Antennas and Propagation (EuCAP), (Stockholm, Sweden), pp. 1--5, 2025. | spa |
dc.relation.references | D. S. López, J. A. Castro, C. J. Furnieles, J. E. Arévalo, and J. L. Araque, ‘‘Characterization of millimeter wave propagation in greenhouses using a mobile measurement system,’’ in 2025 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Ottawa, Canada), pp. 1--4, 2025. | spa |
dc.relation.references | J. E. Arévalo-Peña, J. S. Chávez-Martinez, and J. L. Araque-Quijano, ‘‘Millimeter-wave channel measurements for 5g networks using a low cost experimental setup,’’ Progress In Electromagnetics Research C, vol. 150, pp. 169--177, 2024. | spa |
dc.relation.references | J. S. Chávez-Martínez, ‘‘Estudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5g en bogotá,’’ tesis de maestría, Universidad Nacional de Colombia, 2023. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Redes 5G | spa |
dc.subject.proposal | Modelamiento de canal | spa |
dc.subject.proposal | Ondas milimétricas | spa |
dc.subject.proposal | Propagación en exteriores | spa |
dc.subject.proposal | Propagación en interiores | spa |
dc.subject.proposal | Modelo 3GPP | spa |
dc.subject.proposal | Modelo METIS | spa |
dc.subject.proposal | Modelo NYU | spa |
dc.subject.proposal | 5G networks | eng |
dc.subject.proposal | Channel modeling | eng |
dc.subject.proposal | Millimeter wave | eng |
dc.subject.proposal | Outdoor propagation | eng |
dc.subject.proposal | Indoor propagation | eng |
dc.subject.proposal | 3GPP model | eng |
dc.subject.proposal | METIS model | eng |
dc.subject.proposal | NYU Model | eng |
dc.subject.wikidata | 5G | spa |
dc.subject.wikidata | 5G | eng |
dc.subject.wikidata | radio channel | eng |
dc.subject.wikidata | radiotecnia | spa |
dc.subject.wikidata | radio-frequency engineering | eng |
dc.subject.wikidata | radiocomunicación | spa |
dc.subject.wikidata | radio | eng |
dc.title | Modelamiento de canal de radio en Bogotá D.C. para comunicaciones 5G en frecuencias de ondas milimétricas | spa |
dc.title.translated | Modeling of radio channel in Bogota D.C. for 5G communications in millimeter wave frequencies | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estudio Teórico-Experimental de la Propagación de Ondas Milimétricas para Comunicaciones 5G | spa |
oaire.fundername | Universidad Nacional de Colombia Sede Bogotá | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79715645.2025.pdf
- Tamaño:
- 28.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: