Modelamiento de canal de radio en Bogotá D.C. para comunicaciones 5G en frecuencias de ondas milimétricas

dc.contributor.advisorAraque Quijano, Javier Leonardospa
dc.contributor.authorArévalo Peña, Javier Enriquespa
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)spa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2025-06-11T20:21:23Z
dc.date.available2025-06-11T20:21:23Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEsta tesis de doctorado presenta los resultados de investigación experimental tendientes al modelamiento del canal en una transmisión de ondas milimétricas en la ciudad de Bogotá. Como dispositivo principal para la ejecución de las mediciones se emplean transceivers de la marca Sivers Semiconductors que operan en las banda de 24 a 29.5 GHz y en la banda de 57 a 71 GHz y para los cuales se diseño e implemento un banco de pruebas con diferentes elementos de hardware y software. Adicionalmente se presentan resultados de mediciones efectuadas con equipos comerciales en la banda de los 28 GHz llevadas a cabo durante una estancia de investigación en el Laboratorio 5G ubicado en la Universidad de Chile en Santiago de Chile. Los resultados permiten apreciar el desempeño de propagación en frecuencias de ondas milimétricas en bandas de interés de 26 GHz y 60 GHz en escenarios exteriores e interiores de la Universidad Nacional de Colombia en Bogotá y en la frecuencia de 28 GHz en escenarios interiores y exteriores al Laboratorio 5G de la Universidad de Chile. (Texto tomado de la fuente).spa
dc.description.abstractThis doctoral thesis presents the results of experimental research aimed at modeling the channel in a millimeter wave transmission in the city of Bogota. Sivers Semiconductors transceivers are used as the main device for the measurements, operating in the 24 to 29.5 GHz band and in the 24 to 29.5 GHz band. The main device used for the measurements were Sivers Semiconductors transceivers operating in the 24 GHz to 29.5 GHz band and in the 57 GHz to 71 GHz band, for which a test bench was designed and implemented with different hardware and software elements. Additionally, results of measurements performed with commercial equipment in the 28 GHz band during a research stay at the 5G Laboratory located at the University of Chile in Santiago de Chile are presented. The results show the propagation performance at millimeter wave frequencies in 26 GHz and 60 GHz bands of interest in outdoor and indoor scenarios at the National University of Colombia in Bogota and in indoor and outdoor scenarios at the National University of Colombia in Bogota and the 28 GHz band in indoor and outdoor scenarios at the 5G Laboratory of the University of Chile.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAntenas, propagación y tecnologías inalámbricasspa
dc.description.sponsorshipFinanciado por la Convocatoria para el Apoyo a Proyectos de Investigación, CreaciónArtística e Innovación de la Sede Bogotá de la Universidad Nacional de Colombia - 2020spa
dc.format.extentix, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88221
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesA. Osseiran, J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology. Cambridge University Press, 2016.spa
dc.relation.referencesE. Dahlman, S. Parkvall, and J. Skold, 5G NR The Next Generation WirelessAccess Technology. Elsevier, 2018.spa
dc.relation.referencesW. Xiang, K. Zheng, and X. Shen, 5G Mobile Communications. Springer, 2017.spa
dc.relation.referencesM. Vaezi, Z. Ding, and V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, 2019.spa
dc.relation.references5G Americas, ‘‘5G Technology Evolution Recommendations,’’ 2020.spa
dc.relation.references5G Americas, ‘‘The 5G Evolution 3GPP Release 16-17,’’ 2017.spa
dc.relation.referencesF. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, ‘‘Five disruptive technology directions for 5g,’’ IEEE Communications Magazine, vol. 52, no. 2, pp. 74--80, 2014.spa
dc.relation.referencesY. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on mobile edge computing: The communication perspective,’’ IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322--2358, 2017.spa
dc.relation.referencesL. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, ‘‘An overview of massive mimo: Benefits and challenges,’’ IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742--758, 2014.spa
dc.relation.referencesT. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, ‘‘Millimeter wave mobile communications for 5g cellular: It will work!,’’ IEEE Access, vol. 1, pp. 335--349, 2013.spa
dc.relation.referencesP. Popovski, J. J. Nielsen, C. Stefanovic, E. d. Carvalho, E. Strom, K. F. Trillingsgaard, A.-S. Bana, D. M. Kim, R. Kotaba, J. Park, and R. B. Sorensen, ‘‘Wireless access for ultra-reliable low-latency communication: Principles and building blocks,’’ IEEE Network, vol. 32, no. 2, pp. 16--23, 2018.spa
dc.relation.referencesM. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, and C.-H. Youn, ‘‘Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems,’’ IEEE Communications Magazine, vol. 55, no. 1, pp. 54--61, 2017.spa
dc.relation.referencesJ. Chakareski and M. Khan, ‘‘Live 360° video streaming to heterogeneous clients in 5g networks,’’ IEEE Transactions on Multimedia, vol. 26, pp. 8860--8873, 2024.spa
dc.relation.referencesA. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, ‘‘Internet of things: A survey on enabling technologies, protocols, and applications,’’ IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347--2376, 2015.spa
dc.relation.referencesJ. Zhang, Z. Wu, B. Ai, and J. M. Molina-Garcia-Pardo, ‘‘Measurement-based characterization of millimeter-wave channels for 5g fixed wireless access,’’ IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2572--2582, 2019.spa
dc.relation.referencesA. K. Yerrapragada, T. Eisman, and B. Kelley, ‘‘Physical layer security for beyond 5g: Ultra secure low latency communications,’’ IEEE Open Journal of the Communications Society, vol. 2, pp. 2232--2242, 2021.spa
dc.relation.referencesS. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, ‘‘A survey of energy-efficient techniques for 5g networks and challenges ahead,’’ IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 697--709, 2016.spa
dc.relation.referencesH. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, ‘‘6g wireless systems: Vision, requirements, challenges, insights, and opportunities,’’ Proceedings of the IEEE, vol. 109, no. 7, pp. 1166--1199, 2021.spa
dc.relation.referencesW. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6g wireless systems: Applications, trends, technologies, and open research problems,’’ IEEE Network, vol. 34, pp. 134--142, May/June 2020.spa
dc.relation.referencesM. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, ‘‘Toward 6g networks: Use cases and technologies,’’ IEEE Communications Magazine, vol. 58, pp. 55--61, March 2020.spa
dc.relation.referencesNTT DOCOMO, INC., ‘‘5g evolution and 6g white paper.’’ White Paper, January 2023. Available online: https://www.docomo.ne. jp/english/corporate/technology/whitepaper_6g/.spa
dc.relation.referencesI. F. Akyildiz, C. Han, and S. Nie, ‘‘6g and beyond: The future of wireless communications systems,’’ IEEE Access, vol. 8, pp. 133995--134030, 2020.spa
dc.relation.referencesS. Dang, O. Amin, B. Shihada, and M.-S. Alouini, ‘‘What should 6g be?,’’ Nature Electronics, vol. 3, pp. 20--29, January 2020.spa
dc.relation.references5G Americas, ‘‘Bandas de ondas milimétricas para 5g en américa latina y el caribe.’’ Informe técnico, Marzo 2025. Disponible en: https://www.5gamericas.org.spa
dc.relation.referencesAgencia Nacional del Espectro (ANE), ‘‘Documento de consulta pública sobre las bandas de frecuencias identificadas en colombia para el futuro desarrollo de las telecomunicaciones móviles internacionales (imt).’’ Consulta pública, Septiembre 2024. Disponible en: https://www.ane.gov.co.spa
dc.relation.referencesW. Lee, Wireless and Cellular Telecommunications. McGraw-Hill, 2010.spa
dc.relation.referencesS. Saunders and A. Aragón Zavala, Antennas and Propagation for Wireless Communication Systems. John Wiley Sons, 2007.spa
dc.relation.referencesT. Rappaport, R. Heath Jr., R. Daniels, and J. Murdock, Millimeter Wave Wireless Communications. Prentice Hall, 2015.spa
dc.relation.referencesM. K. Samimi, T. S. Rappaport, and G. R. MacCartney, ‘‘Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications,’’ IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 357--360, 2015.spa
dc.relation.referencesJ. Huang, Y. Liu, C. X. Wang, J. Sun, and H. Xiao, ‘‘5g millimeter-wave channel sounders, measurements, and models: Recent developments and future challenges,’’ IEEE Communications Magazine, vol. 57, no. 1, pp. 138--145, 2019.spa
dc.relation.referencesZ. Lin, X. Du, H. H. Chen, and D. Wu, ‘‘Millimeter-wave propagation modeling and measurements for 5g mobile networks,’’ IEEE Wireless Communications, vol. 26, no. 1, pp. 72--77, 2019.spa
dc.relation.referencesJ. Järveläinen, K. Haneda, and Y. Karttunen, ‘‘Indoor propagation channel simulations at 60 ghz using point cloud data,’’ IEEE Journal on Selected Areas in Communications, vol. 64, no. 10, pp. 4467--4467, 2016.spa
dc.relation.referencesX. Wu, A. T. Wang, J. Sun, J. Huang, R. Feng, Y. Yang, and X. Ge, ‘‘60-ghz millimeter-wave channel measurements and modeling for indoor office environments,’’ IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1912--1924, 2017.spa
dc.relation.referencesJ. Huang, C. X. Wang, J. Sun, W. Zhang, and Y. Yang, ‘‘Channel measurements and characterization for 5g wireless communication systems,’’ IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1591--1605, 2017.spa
dc.relation.referencesT. Rappaport, Y. Xing, G. MacCartney, Jr., A. F. Molish, E. Mellios, and J. Zhang, ‘‘Overview of millimeter wave communications for fifth-generation (5g) wireless networks—with a focus on propagation models,’’ IEEE Transacctions on Antennas and Propagation, vol. 65, no. 12, pp. 6213--6230, 2017.spa
dc.relation.references3rd Generation Partnership Project - 3GPP, ‘‘Study on channel model for frequencies from 0.5 to 100 ghz,’’ Mar 2024. 3GPP TR 38.901 version 18.0.0 Release 18.spa
dc.relation.referencesMETIS, ‘‘Metis channel models,’’ May 2015. METIS 202O Unión Europea.spa
dc.relation.referencesNYU WIRELESS, ‘‘Nyusim: The open source 5g channel model,’’ May 2018.spa
dc.relation.referencesH. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, and T. S. Rappaport, ‘‘28 ghz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in new york city,’’ in 2013 IEEE International Conference on Communications (ICC), pp. 5163--5167, 2013.spa
dc.relation.referencesT. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, ‘‘Millimeter wave mobile communications for 5g cellular: It will work!,’’ IEEE Access, vol. 1, pp. 335--349, 2013.spa
dc.relation.referencesT. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, ‘‘Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,’’ IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029--3056, 2015.spa
dc.relation.referencesM. Hindia, A. Al-Samman, T. Rahman, and T. Yazdani, ‘‘Outdoor large-scale path loss characterization in an urban environment at 26, 28, 36, and 38 ghz,’’ Physical Communication, vol. 27, pp. 150--160, 2018.spa
dc.relation.referencesB. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, and K. M. S. Huq, ‘‘On indoor millimeter wave massive mimo channels: Measurement and simulation,’’ IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1678--1690, 2017.spa
dc.relation.referencesP. B. Papazian, C. Gentile, K. A. Remley, J. Senic, and N. Golmie, ‘‘A radio channel sounder for mobile millimeter-wave communications: System implementation and measurement assessment,’’ IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, pp. 2924--2932, 2016.spa
dc.relation.referencesD. Chizhik, J. Du, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela, ‘‘Path loss and directional gain measurements at 28 ghz for non-line-of-sight coverage of indoors with corridors,’’ IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4820--4830, 2020.spa
dc.relation.referencesJ. Du, D. Chizhik, R. A. Valenzuela, R. Feick, G. Castro, M. Rodriguez, T. Chen, M. Kohli, and G. Zussman, ‘‘Directional measurements in urban street canyons from macro rooftop sites at 28 ghz for 90 outdoor coverage,’’ IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3459--3469, 2021.spa
dc.relation.referencesD. Chizhik, J. Du, R. A. Valenzuela, D. Samardzija, S. Kucera, D. Kozlov, R. Fuchs, J. Otterbach, J. Koppenborg, P. Baracca, M. Doll, I. Rodriguez, R. Feick, and M. Rodriguez, ‘‘Directional measurements and propagation models at 28 ghz for reliable factory coverage,’’ IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9596--9606, 2022.spa
dc.relation.referencesL. Rubio, R. P. Torres, V. M. Rodrigo Peñarrocha, J. R. Pérez, H. Fernández, J.-M. Molina-Garcia-Pardo, and J. Reig, ‘‘Contribution to the channel path loss and time-dispersion characterization in an office environment at 26 ghz,’’ Electronics, vol. 8, no. 11, 2019.spa
dc.relation.referencesL. Rubio Arjona, V. M. Rodrigo Peñarrocha, M. Cabedo Fabres, B. Bernardo Clemente, J. Reig Pascual, H. A. Fernández González, J. R. Pérez López, R. P. Torres Jiménez, L. Valle López, and Fernández Fernández, ‘‘Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment,’’ 2 2023.spa
dc.relation.referencesT. S. Rappaport, Y. Xing, and G. R. MacCartney, ‘‘Millimeter wave propagation: Spectrum management implications,’’ IEEE Access, vol. 7, pp. 87024--87034, 2018.spa
dc.relation.referencesJ. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, ‘‘Cell-free massive mimo: A new next-generation paradigm,’’ IEEE Access, vol. 7, pp. 99878--99888, 2019.spa
dc.relation.referencesY. Gao, P. Fan, and P. Xu, ‘‘5g millimeter wave propagation in indoor and outdoor environments: A comprehensive experimental study,’’ MDPI Sensors, vol. 19, no. 13, p. 2969, 2019.spa
dc.relation.referencesG. R. MacCartney and T. S. Rappaport, ‘‘Characterization of millimeter-wave propagation at 28 ghz in urban microcell environments,’’ IEEE Journal on Selected Areas in Communications, vol. 36, no. 11, pp. 2197--2213, 2018.spa
dc.relation.referencesS. Rangan, M. K. Samimi, and T. S. Rappaport, ‘‘Millimeter-wave channel measurements and implications for 5g systems,’’ IEEE Communications Magazine, vol. 57, no. 9, pp. 26--32, 2020.spa
dc.relation.referencesS. Semiconductors, ‘‘Evk 02001 - evaluation kit for 5g mmwave applications.’’ https://www.sivers-semiconductors.com/product/evk-02001/, 2023.spa
dc.relation.referencesS. Semiconductors, ‘‘Evk 06002 - evaluation kit for 60 ghz applications.’’ https://www.sivers-semiconductors.com/product/ evk-06002/, 2023. Accessed: 2024-10-10.spa
dc.relation.referencesE. Research, ‘‘Usrp b210 product overview.’’ https://www.ettus.com/all-products/ub210-kit/, 2021.spa
dc.relation.referencesE. Research, ‘‘Usrp b200mini product overview.’’ https://www.ettus.com/all-products/usrp-b200mini-i/, 2021.spa
dc.relation.referencesU-Blox, ‘‘C94-m8p-2 application board for high precision gnss.’’ https://www.u-blox.com/en/product/c94-m8p-application-board, 2023.spa
dc.relation.referencesGY-511, ‘‘Gy-511 sensor module: 3-axis accelerometer, gyroscope, and magnetometer.’’ https://www.electronics-lab.com/project/gy-511/, 2023.spa
dc.relation.referencesSTMicroelectronics, ‘‘Lms303dlhc: 3d accelerometer and 3d magnetometer module.’’ https://www.st.com/en/mems-and-sensors/lms303dlhc.html, 2023.spa
dc.relation.referencesR. P. Foundation, ‘‘Raspberry pi 3 model b product specifications.’’ https://www.raspberrypi.org/products/ raspberry-pi-3-model-b/, 2016.spa
dc.relation.referencesR. P. Foundation, ‘‘Raspberry pi pico product specifications.’’ https://www.raspberrypi.org/products/raspberry-pi-pico/, 2021.spa
dc.relation.referencesE. Research, ‘‘Power level controls: Overview.’’ https://files.ettus.com/manual/page_power.html.spa
dc.relation.referencesMini-Circuits, ‘‘Rf and microwave components: Phase shifters, dc blockers, and attenuators.’’ https://www.minicircuits.com.spa
dc.relation.referencesEricsson, ‘‘Antenna integrated radio unit description air 5121,’’ 2018. Technical Report.spa
dc.relation.referencesEricsson, ‘‘Emf test report: Ericsson air 5121,’’ 2018. Technical Report.spa
dc.relation.referencesWNC, ‘‘X50 mmwave device ericsson id proposal,’’ 2019. Technical Report.spa
dc.relation.referencesJ. E. Arévalo, J. S. Chávez, and J. L. Araque, ‘‘Experimental setup for path loss measurements at mmwave frequencies,’’ in 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INCUSNC- URSI), (Firenze, Italy), pp. 2097--2098, 2024.spa
dc.relation.referencesJ. E. Arévalo-Peña, A. E. N. Lobos, C. A. Azurdia-Meza, J. L. Araque-Quijano, and J. I. Sandoval-Arenas, ‘‘Experimental coverage measurements on a commercial 5g network in the 28 ghz mm-wave band,’’ in 2023 IEEE MTT-S Latin America Microwave Conference (LAMC), (San José, Costa Rica), pp. 65--67, 2023.spa
dc.relation.referencesJ. E. Arévalo, A. E. Núñez, C. A. Azurdia, J. L. Araque, and J. I. Sandoval, ‘‘Experimental indoor coverage of a commercial mm-wave 5g network,’’ in 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Portland, OR, USA), pp. 13--14, 2023.spa
dc.relation.referencesJ. E. Arévalo Peña and J. L. Araque Quijano, ‘‘Experimental indoor measurements in a conference classroom at 26 ghz frequency band,’’ in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), (Cartagena de Indias, Colombia), pp. 1--2, 2024.spa
dc.relation.referencesJ. L. Duque, J. E. Arévalo, M. Patiño, J. C. Vargas, M. R. Pérez, F. J. Román, and J. L. Araque, ‘‘Multi-physics analysis of human exposition to electromagnetic fields by 5g systems,’’ in 2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Denver, CO, USA), pp. 27--28, 2022.spa
dc.relation.referencesC. J. Furnieles, J. A. Castro, D. S. López, J. E. Arévalo, and J. L. Araque, ‘‘Path loss measurements in the 60 ghz frequency band in a greenhouse,’’ in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), (Cartagena de Indias, Colombia), pp. 1--2, 2024.spa
dc.relation.referencesC. J. Furnieles, J. A. Castro, D. S. López, J. E. Arévalo, and J. L. Araque, ‘‘Characterization of millimeter wave propagation in agricultural environments,’’ in 2025 19th European Conference on Antennas and Propagation (EuCAP), (Stockholm, Sweden), pp. 1--5, 2025.spa
dc.relation.referencesD. S. López, J. A. Castro, C. J. Furnieles, J. E. Arévalo, and J. L. Araque, ‘‘Characterization of millimeter wave propagation in greenhouses using a mobile measurement system,’’ in 2025 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), (Ottawa, Canada), pp. 1--4, 2025.spa
dc.relation.referencesJ. E. Arévalo-Peña, J. S. Chávez-Martinez, and J. L. Araque-Quijano, ‘‘Millimeter-wave channel measurements for 5g networks using a low cost experimental setup,’’ Progress In Electromagnetics Research C, vol. 150, pp. 169--177, 2024.spa
dc.relation.referencesJ. S. Chávez-Martínez, ‘‘Estudio de la aplicabilidad de modelos estándar de propagación electromagnética en la banda de ondas milimétricas para sistemas 5g en bogotá,’’ tesis de maestría, Universidad Nacional de Colombia, 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalRedes 5Gspa
dc.subject.proposalModelamiento de canalspa
dc.subject.proposalOndas milimétricasspa
dc.subject.proposalPropagación en exterioresspa
dc.subject.proposalPropagación en interioresspa
dc.subject.proposalModelo 3GPPspa
dc.subject.proposalModelo METISspa
dc.subject.proposalModelo NYUspa
dc.subject.proposal5G networkseng
dc.subject.proposalChannel modelingeng
dc.subject.proposalMillimeter waveeng
dc.subject.proposalOutdoor propagationeng
dc.subject.proposalIndoor propagationeng
dc.subject.proposal3GPP modeleng
dc.subject.proposalMETIS modeleng
dc.subject.proposalNYU Modeleng
dc.subject.wikidata5Gspa
dc.subject.wikidata5Geng
dc.subject.wikidataradio channeleng
dc.subject.wikidataradiotecniaspa
dc.subject.wikidataradio-frequency engineeringeng
dc.subject.wikidataradiocomunicaciónspa
dc.subject.wikidataradioeng
dc.titleModelamiento de canal de radio en Bogotá D.C. para comunicaciones 5G en frecuencias de ondas milimétricasspa
dc.title.translatedModeling of radio channel in Bogota D.C. for 5G communications in millimeter wave frequencieseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio Teórico-Experimental de la Propagación de Ondas Milimétricas para Comunicaciones 5Gspa
oaire.fundernameUniversidad Nacional de Colombia Sede Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79715645.2025.pdf
Tamaño:
28.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: