Semiautomatización del cambio en la cobertura de la tierra con software y datos de libre acceso
| dc.contributor.advisor | Bernal Riobo, Jaime Humberto | spa |
| dc.contributor.advisor | Rubiano Sanabria, Yolanda | spa |
| dc.contributor.author | Rubiano Sosa, Sergio Andres | spa |
| dc.date.accessioned | 2025-10-30T01:33:18Z | |
| dc.date.available | 2025-10-30T01:33:18Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones, diagramas, mapas | spa |
| dc.description.abstract | El cambio en la cobertura de la tierra es un proceso dinámico espacial y temporal, por lo tanto, es necesario generar métodos semiautomáticos en software libre que faciliten el tiempo de procesamiento y disminuyan los costos. La integración de aplicaciones, plataformas y software de libre acceso para el procesamiento de imágenes satelitales sin costo se ha identificado como una alternativa efectiva para el progreso en el desarrollo de soluciones para efectuar la clasificación y el monitoreo del cambio de coberturas de la tierra. Este estudio generó una metodología semiautomática en la plataforma Google Earth Engine (GEE) y QGIS para monitorear el cambio de las coberturas de la tierra utilizando imágenes de la misión Sentinel-2 (S-2). El trabajo se desarrolló en el área correspondiente a la subzona hidrográfica Rio Yucao que se encuentra en Puerto López y Puerto Gaitán, Meta, Colombia. Se estudiaron 13 tipos de coberturas. Se utilizó un método de clasificación basado en pixeles y aprendizaje de máquina (ML) el cual fue el clasificador de Bosques Aleatorios (RF) en GEE. En la cual se obtuvo una exactitud general con un 84% aunque al realizar una evaluación visual a detalle se encontraron ciertas imprecisiones en la clasificación de clases como caucho, cultivos forestales y bosques de galería. Adicionalmente, para la detección del cambio se realizó un análisis de tabulación cruzada píxel por píxel. Esta metodología permite mejorar la clasificación de coberturas en los trópicos, ya que la plataforma tiene un amplio repositorio de imágenes de la misión Sentinel-2. Estas imágenes tienen alta resolución espectral (12 bandas) y frecuente resolución temporal (5 días), por lo cual, es posible mejorar la calidad de la clasificación y aumentar la posibilidad de identificar escenas con menor nubosidad de manera más eficiente. Entonces, la metodología desarrollada en este estudio permite filtrar imágenes de mayor calidad, reduciendo tiempo y costos de hardware y software al usar servidores en la nube y plataformas que no requieren licencia. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Land cover change is a spatially and temporally dynamic process, therefore, it is necessary to generate semi-automatic methods in free software that facilitate processing time and reduce costs. The integration of freely available applications, platforms and software for processing satellite images at no cost has been identified as an effective alternative for progress in the development of solutions to perform land cover change classification and monitoring. This study generated a semi-automated methodology in Google Earth Engine (GEE) and QGIS platform to monitor land cover change using Sentinel-2 (S-2) mission imagery. The work was developed in the area corresponding to the Rio Yucao hydrographic subzone located in Puerto Lopez and Puerto Gaitan, Meta, Colombia. Thirteen cover types were studied. A classification method based on pixels and machine learning (ML) was used, which was the Random Forest (RF) classifier in GEE. In which a general accuracy of 84% was obtained, although a detailed visual evaluation found certain inaccuracies in the classification of classes such as rubber, forest crops and gallery forests. Additionally, for change detection, a pixel-by-pixel cross-tabulation analysis was performed. This methodology allows for improved land cover classification in the tropics, since the platform has a large repository of images from the Sentinel-2 mission. These images have high spectral resolution (12 bands) and frequent temporal resolution (5 days), so it is possible to improve the quality of the classification and increase the possibility of identifying scenes with less cloud cover more efficiently. Thus, the methodology developed in this study allows filtering higher quality images, reducing time and hardware and software costs by using cloud servers and license-free platforms. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Geomática | spa |
| dc.description.notes | Link del código en Google Earth Engine: https://code.earthengine.google.com/055a241b82b51d60b7dca8a6ecf387d1 | spa |
| dc.description.notes | Google Earth Engine's script link: https://code.earthengine.google.com/055a241b82b51d60b7dca8a6ecf387d1 | eng |
| dc.description.researcharea | Geoinformación para el uso sostenible de los recursos naturales | spa |
| dc.description.sponsorship | Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, sede La Libertad, por su colaboración técnica y la provisión de datos esenciales para el desarrollo del proyecto. | spa |
| dc.format.extent | xvi, 100 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89078 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Geomática | spa |
| dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Geomática | spa |
| dc.relation.references | Aber, S. E. W., & Aber, J. W. (2017). Chapter 5 - Terrain Mapping Meets Digital Data. In S. E. W. Aber & J. W. Aber (Eds.), Map Librarianship (pp. 87–94). | |
| dc.relation.references | Arvor, D., Durieux, L., Andrés, S., & Laporte, M. A. (2013). Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 125–137. https://doi.org/10.1016/j.isprsjprs.2013.05.003 | |
| dc.relation.references | Bovolo, F., Bruzzone, L., & Solano-Correa, Y. T. (2017). Multitemporal Analysis of Remotely Sensed Image Data. In Comprehensive Remote Sensing. https://doi.org/10.1016/b978-0-12-409548-9.10338-0 | |
| dc.relation.references | Brodley, C. E., & Friedl, M. A. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409. https://doi.org/10.1016/S0034-4257(97)00049-7 | |
| dc.relation.references | Buzai, G. (2012). Geográfica Evolución Teórico-Metodológica Hacia Geography and Geographic Information Theoretical and Methodological. In Revista geográfica de América Central (Vol. 2). | |
| dc.relation.references | Champion, N., Boldo, D., Pierrot-Deseilligny, M., & Stamon, G. (2010). 2D building change detection from high resolution satelliteimagery: A two-step hierarchical method based on 3D invariant primitives. Pattern Recognition Letters, 31(10), 1138–1147. https://doi.org/10.1016/j.patrec.2009.10.012 | |
| dc.relation.references | Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28. https://doi.org/10.1016/j.isprsjprs.2016.03.014 | |
| dc.relation.references | Chuvieco, E. (2010). Fundamentos de teledetección. International Journal of Remote Sensing. | |
| dc.relation.references | DeFries, R. (2013). Remote Sensing and Image Processing. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition) (Second Edition, pp. 389–399). https://doi.org/https://doi.org/10.1016/B978-0-12-384719-5.00383-X | |
| dc.relation.references | DeFries, R. S., & Townshend, J. R. (1994). NDVI-derived Land Cover Classifications At a Global Scale. International Journal of Remote Sensing, 15(17), 3567–3586. https://doi.org/10.1080/01431169408954345 | |
| dc.relation.references | Dronova, I. (2015). Object-based image analysis in wetland research: A review. Remote Sensing, 7(5), 6380–6413. https://doi.org/10.3390/rs70506380 | |
| dc.relation.references | Duan, M., Song, X., Liu, X., Cui, D., & Zhang, X. (2022). Mapping the soil types combining multi-temporal remote sensing data with texture features. Computers and Electronics in Agriculture, 200, 107230. https://doi.org/https://doi.org/10.1016/j.compag.2022.107230 | |
| dc.relation.references | Eastman, J. R. (2001). Guide to GIS and Image Processing. Clark University, USA. | |
| dc.relation.references | Gamanya, R., De Maeyer, P., & De Dapper, M. (2007). An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Systems with Applications, 32(2), 616–624. https://doi.org/10.1016/j.eswa.2006.01.055 | |
| dc.relation.references | Garcia-Gutierrez, J., Gonalves-Seco, L., & Riquelme-Santos, J. C. (2011). Automatic environmental quality assessment for mixed-land zones using lidar and intelligent techniques. Expert Systems with Applications, 38(6), 6805–6813. https://doi.org/10.1016/j.eswa.2010.12.065 | |
| dc.relation.references | Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/https://doi.org/10.1016/j.rse.2017.06.031 | |
| dc.relation.references | Grekousis, G. (2019). Artificial neural networks and deep learning in urban geography: A systematic review and meta-analysis. Computers, Environment and Urban Systems, 74(September 2018), 244–256. https://doi.org/10.1016/j.compenvurbsys.2018.10.008 | |
| dc.relation.references | Groover, M. (2010). Fundementals of Modern Manufacturing Materials,Processes and Systems. John Wiley & Sons, 493. | |
| dc.relation.references | Henderson, F. M., & Lewis, A. J. (2008). Radar detection of wetland ecosystems: A review. International Journal of Remote Sensing, 29(20), 5809–5835. https://doi.org/10.1080/01431160801958405 | |
| dc.relation.references | Jensen, J. R. (2016). Introductory Digital Image Processing: A Remote Sensing Perspective (4th ed., Vol. 4, Issue 1). Pearson. | |
| dc.relation.references | Jiménez, M., González, M., Escalona, M., Valdez, J. R., & Aguirre, C. (2011). Comparación De Métodos Espaciales Para Detectar Cambios En El Uso Del Suelo Urbano. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 17(3), 389–406. https://doi.org/dx.doi.org/10.5154/r.rchscfa.2010.04.020 | |
| dc.relation.references | Khorram, S., Koch, F., van der Wiele, C. & Nelson S. (2012). Remote Sensing. Springer Science & Business Media. CRC Press. ISBN: 9781420008975 | |
| dc.relation.references | Knox, S. W. (2018). Machine learning: a concise introduction. In WILEY (Vol. 1). | |
| dc.relation.references | Kumar, U. (2006). Comparative Evaluation of the Algorithms for Land Cover Mapping using Hyperspectral Data. International Institute for Geoinformation Science and Earth Observation. | |
| dc.relation.references | Li, Y., Dang, B., Zhang, Y., & Du, Z. (2022). Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 306–327. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2022.03.013 | |
| dc.relation.references | Liang, S., & Wang, J. (Eds.). (2020). Chapter 1 - A systematic view of remote sensing. In Advanced Remote Sensing (Second Edition) (Second Edition, pp. 1–57). https://doi.org/https://doi.org/10.1016/B978-0-12-815826-5.00001-5 | |
| dc.relation.references | Liu, B., Huang, B., & Zhang, W. (2017). Spatio-temporal analysis and optimization of land use/cover change: Shenzhen as a Case Study. CRC Press. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf | |
| dc.relation.references | Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing. https://doi.org/10.1080/0143116031000139863 | |
| dc.relation.references | Mahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., & Huang, W. (2019). A dynamic classification scheme for mapping spectrally similar classes: Application to wetland classification. International Journal of Applied Earth Observation and Geoinformation, 83(January), 101914. https://doi.org/10.1016/j.jag.2019.101914 | |
| dc.relation.references | Mas, J. F., Lemoine-Rodríguez, R., González-López, R., López-Sánchez, J., Piña-Garduño, A., & Herrera-Flores, E. (2017). Land use/land cover change detection combining automatic processing and visual interpretation. European Journal of Remote Sensing, 50(1), 626-635. | |
| dc.relation.references | Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology. https://doi.org/10.1016/j.jclinepi.2009.06.005 | |
| dc.relation.references | Moreno, E. G. (1999). Automatización de procesos industriales. Robótica y Automática. 43. | |
| dc.relation.references | Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. In O’Reilly Media, Inc. | |
| dc.relation.references | Nalli, N. R., & Kalluri, S. (2023). Chapter 1 - Introduction: Field measurements and remote sensing. In N. R. Nalli (Ed.), Field Measurements for Passive Environmental Remote Sensing (pp. 1–20). https://doi.org/https://doi.org/10.1016/B978-0-12-823953-7.00002-2 | |
| dc.relation.references | Neapolitan, R. E., & Jiang, X. (2018). Artificial Intelligence with an Introduction to Machine Learning. In Chapman and Hall/CRC. | |
| dc.relation.references | Noi, P. T., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010018 | |
| dc.relation.references | Read, J. M., Chambers, C., & Torrado, M. (2020). Remote Sensing. In A. Kobayashi (Ed.), International Encyclopedia of Human Geography (Second Edition) (Second Edition, pp. 411–422). https://doi.org/https://doi.org/10.1016/B978-0-08-102295-5.10589-X | |
| dc.relation.references | Rebala, G., Ravi, A., & Churiwala, S. (2019). An Introduction to Machine Learning. In An Introduction to Machine Learning. https://doi.org/10.1007/978-3-030-15729-6 | |
| dc.relation.references | Rifkin, J. (1996). The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era. New York: G. P. Putnam’s Sons. | |
| dc.relation.references | Rodríguez, A., Rubiano, Y., Gutiérrez, A. J. ., Bernal, J., Rodríguez, N., Arguello, O., & Pulido, S. (2013). Cobertura vegetal y usos del suelo de la altillanura plana de los municipios de Puerto López y Puerto Gaitán, Meta: escala 1:25.000. Villavicencio (Colombia): CORPOICA. | |
| dc.relation.references | Santana, L. M., & Salas, J. (2007). Análisis de cambios en la ocupación del suelo ocurridos en sabanas de Colombia entre 1987 y 2001, usando imágenes LANDSAT. GeoFocus, 7, 281–313. | |
| dc.relation.references | Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. | |
| dc.relation.references | Selvam, S., Manisha, A., Vidhya, J., & Venkatramanan, S. (2019). Chapter 1 - Fundamentals of GIS. In S. Venkatramanan, M. V. Prasanna, & S. Y. Chung (Eds.), GIS and Geostatistical Techniques for Groundwater Science (pp. 3–15). https://doi.org/https://doi.org/10.1016/B978-0-12-815413-7.00001-8 | |
| dc.relation.references | Selvaraj, R., & Nagarajan, S. (2022). Chapter 6 - Change detection techniques for a remote sensing application: An overview. In Y.-D. Zhang & A. K. Sangaiah (Eds.), Cognitive Systems and Signal Processing in Image Processing (pp. 129–143). https://doi.org/https://doi.org/10.1016/B978-0-12-824410-4.00015-5 | |
| dc.relation.references | Srivastava, P. K., Prasad, R., Chaudhary Kumar, S., Yadav, S. A., Sharma, J., Suman, S., … Gupta, D. K. (2022). Chapter 20 - Challenges in Radar remote sensing. In P. K. Srivastava, D. K. Gupta, T. Islam, D. Han, & R. Prasad (Eds.), Radar Remote Sensing (pp. 377–387). https://doi.org/https://doi.org/10.1016/B978-0-12-823457-0.00020-3 | |
| dc.relation.references | Sullivan, W. (2017). Machine learning For Beginners Guide Algorithms: Supervised & Unsupervised learning, Decision Tree & Random Forest Introduction. CreateSpace Independent Publishing Platform. | |
| dc.relation.references | Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). ISPRS Journal of Photogrammetry and Remote Sensing Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(April), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001 | |
| dc.relation.references | Teodoro, A. C., & Duarte, L. (2022). Chapter 11 - The synergy of remote sensing and geographical information systems in the management of natural disasters. In A. Denizli, M. S. Alencar, T. A. Nguyen, & D. E. Motaung (Eds.), Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention (pp. 217–230). https://doi.org/https://doi.org/10.1016/B978-0-323-91166-5.00023-9 | |
| dc.relation.references | Wang, M., Wander, M., Mueller, S., Martin, N., & Dunn, J. B. (2022). Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities. Environmental Science & Policy, 129, 68–78. https://doi.org/https://doi.org/10.1016/j.envsci.2021.12.021 | |
| dc.relation.references | Zhou, W. (2021). GIS for Earth Sciences. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (Second Edition, pp. 281–293). https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00018-7 | |
| dc.relation.references | Zhu, Z., Woodcock, C. E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment, 122, 75–91. https://doi.org/10.1016/j.rse.2011.10.030 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
| dc.subject.proposal | Semiautomatización | spa |
| dc.subject.proposal | Arboles aleatorios | spa |
| dc.subject.proposal | Google Earth engine | spa |
| dc.subject.proposal | Sentinel-2 | spa |
| dc.subject.proposal | Clasificación de la cobertura de la Tierra | spa |
| dc.subject.proposal | Datos de libre acceso | spa |
| dc.subject.proposal | Semi-automation | eng |
| dc.subject.proposal | Sentinel-2 | eng |
| dc.subject.proposal | Google Earth engine | eng |
| dc.subject.proposal | Random forest | eng |
| dc.subject.proposal | Land cover classification | eng |
| dc.subject.proposal | Open data | eng |
| dc.subject.unesco | Teledetección | spa |
| dc.subject.unesco | Remote sensing | eng |
| dc.subject.unesco | Software de código abierto | spa |
| dc.subject.unesco | Open source software | eng |
| dc.subject.unesco | Datos abiertos | spa |
| dc.subject.unesco | Open data | eng |
| dc.title | Semiautomatización del cambio en la cobertura de la tierra con software y datos de libre acceso | spa |
| dc.title.translated | Semiautomated analysis of land cover change using open-access tools and datasets | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1033791840_2025.pdf
- Tamaño:
- 2.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Geomática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

