Semiautomatización del cambio en la cobertura de la tierra con software y datos de libre acceso

dc.contributor.advisorBernal Riobo, Jaime Humbertospa
dc.contributor.advisorRubiano Sanabria, Yolandaspa
dc.contributor.authorRubiano Sosa, Sergio Andresspa
dc.date.accessioned2025-10-30T01:33:18Z
dc.date.available2025-10-30T01:33:18Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl cambio en la cobertura de la tierra es un proceso dinámico espacial y temporal, por lo tanto, es necesario generar métodos semiautomáticos en software libre que faciliten el tiempo de procesamiento y disminuyan los costos. La integración de aplicaciones, plataformas y software de libre acceso para el procesamiento de imágenes satelitales sin costo se ha identificado como una alternativa efectiva para el progreso en el desarrollo de soluciones para efectuar la clasificación y el monitoreo del cambio de coberturas de la tierra. Este estudio generó una metodología semiautomática en la plataforma Google Earth Engine (GEE) y QGIS para monitorear el cambio de las coberturas de la tierra utilizando imágenes de la misión Sentinel-2 (S-2). El trabajo se desarrolló en el área correspondiente a la subzona hidrográfica Rio Yucao que se encuentra en Puerto López y Puerto Gaitán, Meta, Colombia. Se estudiaron 13 tipos de coberturas. Se utilizó un método de clasificación basado en pixeles y aprendizaje de máquina (ML) el cual fue el clasificador de Bosques Aleatorios (RF) en GEE. En la cual se obtuvo una exactitud general con un 84% aunque al realizar una evaluación visual a detalle se encontraron ciertas imprecisiones en la clasificación de clases como caucho, cultivos forestales y bosques de galería. Adicionalmente, para la detección del cambio se realizó un análisis de tabulación cruzada píxel por píxel. Esta metodología permite mejorar la clasificación de coberturas en los trópicos, ya que la plataforma tiene un amplio repositorio de imágenes de la misión Sentinel-2. Estas imágenes tienen alta resolución espectral (12 bandas) y frecuente resolución temporal (5 días), por lo cual, es posible mejorar la calidad de la clasificación y aumentar la posibilidad de identificar escenas con menor nubosidad de manera más eficiente. Entonces, la metodología desarrollada en este estudio permite filtrar imágenes de mayor calidad, reduciendo tiempo y costos de hardware y software al usar servidores en la nube y plataformas que no requieren licencia. (Texto tomado de la fuente).spa
dc.description.abstractLand cover change is a spatially and temporally dynamic process, therefore, it is necessary to generate semi-automatic methods in free software that facilitate processing time and reduce costs. The integration of freely available applications, platforms and software for processing satellite images at no cost has been identified as an effective alternative for progress in the development of solutions to perform land cover change classification and monitoring. This study generated a semi-automated methodology in Google Earth Engine (GEE) and QGIS platform to monitor land cover change using Sentinel-2 (S-2) mission imagery. The work was developed in the area corresponding to the Rio Yucao hydrographic subzone located in Puerto Lopez and Puerto Gaitan, Meta, Colombia. Thirteen cover types were studied. A classification method based on pixels and machine learning (ML) was used, which was the Random Forest (RF) classifier in GEE. In which a general accuracy of 84% was obtained, although a detailed visual evaluation found certain inaccuracies in the classification of classes such as rubber, forest crops and gallery forests. Additionally, for change detection, a pixel-by-pixel cross-tabulation analysis was performed. This methodology allows for improved land cover classification in the tropics, since the platform has a large repository of images from the Sentinel-2 mission. These images have high spectral resolution (12 bands) and frequent temporal resolution (5 days), so it is possible to improve the quality of the classification and increase the possibility of identifying scenes with less cloud cover more efficiently. Thus, the methodology developed in this study allows filtering higher quality images, reducing time and hardware and software costs by using cloud servers and license-free platforms.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.notesLink del código en Google Earth Engine: https://code.earthengine.google.com/055a241b82b51d60b7dca8a6ecf387d1spa
dc.description.notesGoogle Earth Engine's script link: https://code.earthengine.google.com/055a241b82b51d60b7dca8a6ecf387d1eng
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.description.sponsorshipCorporación Colombiana de Investigación Agropecuaria – AGROSAVIA, sede La Libertad, por su colaboración técnica y la provisión de datos esenciales para el desarrollo del proyecto.spa
dc.format.extentxvi, 100 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89078
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geomáticaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAber, S. E. W., & Aber, J. W. (2017). Chapter 5 - Terrain Mapping Meets Digital Data. In S. E. W. Aber & J. W. Aber (Eds.), Map Librarianship (pp. 87–94).
dc.relation.referencesArvor, D., Durieux, L., Andrés, S., & Laporte, M. A. (2013). Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 125–137. https://doi.org/10.1016/j.isprsjprs.2013.05.003
dc.relation.referencesBovolo, F., Bruzzone, L., & Solano-Correa, Y. T. (2017). Multitemporal Analysis of Remotely Sensed Image Data. In Comprehensive Remote Sensing. https://doi.org/10.1016/b978-0-12-409548-9.10338-0
dc.relation.referencesBrodley, C. E., & Friedl, M. A. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409. https://doi.org/10.1016/S0034-4257(97)00049-7
dc.relation.referencesBuzai, G. (2012). Geográfica Evolución Teórico-Metodológica Hacia Geography and Geographic Information Theoretical and Methodological. In Revista geográfica de América Central (Vol. 2).
dc.relation.referencesChampion, N., Boldo, D., Pierrot-Deseilligny, M., & Stamon, G. (2010). 2D building change detection from high resolution satelliteimagery: A two-step hierarchical method based on 3D invariant primitives. Pattern Recognition Letters, 31(10), 1138–1147. https://doi.org/10.1016/j.patrec.2009.10.012
dc.relation.referencesCheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28. https://doi.org/10.1016/j.isprsjprs.2016.03.014
dc.relation.referencesChuvieco, E. (2010). Fundamentos de teledetección. International Journal of Remote Sensing.
dc.relation.referencesDeFries, R. (2013). Remote Sensing and Image Processing. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition) (Second Edition, pp. 389–399). https://doi.org/https://doi.org/10.1016/B978-0-12-384719-5.00383-X
dc.relation.referencesDeFries, R. S., & Townshend, J. R. (1994). NDVI-derived Land Cover Classifications At a Global Scale. International Journal of Remote Sensing, 15(17), 3567–3586. https://doi.org/10.1080/01431169408954345
dc.relation.referencesDronova, I. (2015). Object-based image analysis in wetland research: A review. Remote Sensing, 7(5), 6380–6413. https://doi.org/10.3390/rs70506380
dc.relation.referencesDuan, M., Song, X., Liu, X., Cui, D., & Zhang, X. (2022). Mapping the soil types combining multi-temporal remote sensing data with texture features. Computers and Electronics in Agriculture, 200, 107230. https://doi.org/https://doi.org/10.1016/j.compag.2022.107230
dc.relation.referencesEastman, J. R. (2001). Guide to GIS and Image Processing. Clark University, USA.
dc.relation.referencesGamanya, R., De Maeyer, P., & De Dapper, M. (2007). An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Systems with Applications, 32(2), 616–624. https://doi.org/10.1016/j.eswa.2006.01.055
dc.relation.referencesGarcia-Gutierrez, J., Gonalves-Seco, L., & Riquelme-Santos, J. C. (2011). Automatic environmental quality assessment for mixed-land zones using lidar and intelligent techniques. Expert Systems with Applications, 38(6), 6805–6813. https://doi.org/10.1016/j.eswa.2010.12.065
dc.relation.referencesGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/https://doi.org/10.1016/j.rse.2017.06.031
dc.relation.referencesGrekousis, G. (2019). Artificial neural networks and deep learning in urban geography: A systematic review and meta-analysis. Computers, Environment and Urban Systems, 74(September 2018), 244–256. https://doi.org/10.1016/j.compenvurbsys.2018.10.008
dc.relation.referencesGroover, M. (2010). Fundementals of Modern Manufacturing Materials,Processes and Systems. John Wiley & Sons, 493.
dc.relation.referencesHenderson, F. M., & Lewis, A. J. (2008). Radar detection of wetland ecosystems: A review. International Journal of Remote Sensing, 29(20), 5809–5835. https://doi.org/10.1080/01431160801958405
dc.relation.referencesJensen, J. R. (2016). Introductory Digital Image Processing: A Remote Sensing Perspective (4th ed., Vol. 4, Issue 1). Pearson.
dc.relation.referencesJiménez, M., González, M., Escalona, M., Valdez, J. R., & Aguirre, C. (2011). Comparación De Métodos Espaciales Para Detectar Cambios En El Uso Del Suelo Urbano. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 17(3), 389–406. https://doi.org/dx.doi.org/10.5154/r.rchscfa.2010.04.020
dc.relation.referencesKhorram, S., Koch, F., van der Wiele, C. & Nelson S. (2012). Remote Sensing. Springer Science & Business Media. CRC Press. ISBN: 9781420008975
dc.relation.referencesKnox, S. W. (2018). Machine learning: a concise introduction. In WILEY (Vol. 1).
dc.relation.referencesKumar, U. (2006). Comparative Evaluation of the Algorithms for Land Cover Mapping using Hyperspectral Data. International Institute for Geoinformation Science and Earth Observation.
dc.relation.referencesLi, Y., Dang, B., Zhang, Y., & Du, Z. (2022). Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 306–327. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2022.03.013
dc.relation.referencesLiang, S., & Wang, J. (Eds.). (2020). Chapter 1 - A systematic view of remote sensing. In Advanced Remote Sensing (Second Edition) (Second Edition, pp. 1–57). https://doi.org/https://doi.org/10.1016/B978-0-12-815826-5.00001-5
dc.relation.referencesLiu, B., Huang, B., & Zhang, W. (2017). Spatio-temporal analysis and optimization of land use/cover change: Shenzhen as a Case Study. CRC Press. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
dc.relation.referencesLu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing. https://doi.org/10.1080/0143116031000139863
dc.relation.referencesMahdavi, S., Salehi, B., Amani, M., Granger, J., Brisco, B., & Huang, W. (2019). A dynamic classification scheme for mapping spectrally similar classes: Application to wetland classification. International Journal of Applied Earth Observation and Geoinformation, 83(January), 101914. https://doi.org/10.1016/j.jag.2019.101914
dc.relation.referencesMas, J. F., Lemoine-Rodríguez, R., González-López, R., López-Sánchez, J., Piña-Garduño, A., & Herrera-Flores, E. (2017). Land use/land cover change detection combining automatic processing and visual interpretation. European Journal of Remote Sensing, 50(1), 626-635.
dc.relation.referencesMoher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology. https://doi.org/10.1016/j.jclinepi.2009.06.005
dc.relation.referencesMoreno, E. G. (1999). Automatización de procesos industriales. Robótica y Automática. 43.
dc.relation.referencesMüller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. In O’Reilly Media, Inc.
dc.relation.referencesNalli, N. R., & Kalluri, S. (2023). Chapter 1 - Introduction: Field measurements and remote sensing. In N. R. Nalli (Ed.), Field Measurements for Passive Environmental Remote Sensing (pp. 1–20). https://doi.org/https://doi.org/10.1016/B978-0-12-823953-7.00002-2
dc.relation.referencesNeapolitan, R. E., & Jiang, X. (2018). Artificial Intelligence with an Introduction to Machine Learning. In Chapman and Hall/CRC.
dc.relation.referencesNoi, P. T., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010018
dc.relation.referencesRead, J. M., Chambers, C., & Torrado, M. (2020). Remote Sensing. In A. Kobayashi (Ed.), International Encyclopedia of Human Geography (Second Edition) (Second Edition, pp. 411–422). https://doi.org/https://doi.org/10.1016/B978-0-08-102295-5.10589-X
dc.relation.referencesRebala, G., Ravi, A., & Churiwala, S. (2019). An Introduction to Machine Learning. In An Introduction to Machine Learning. https://doi.org/10.1007/978-3-030-15729-6
dc.relation.referencesRifkin, J. (1996). The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era. New York: G. P. Putnam’s Sons.
dc.relation.referencesRodríguez, A., Rubiano, Y., Gutiérrez, A. J. ., Bernal, J., Rodríguez, N., Arguello, O., & Pulido, S. (2013). Cobertura vegetal y usos del suelo de la altillanura plana de los municipios de Puerto López y Puerto Gaitán, Meta: escala 1:25.000. Villavicencio (Colombia): CORPOICA.
dc.relation.referencesSantana, L. M., & Salas, J. (2007). Análisis de cambios en la ocupación del suelo ocurridos en sabanas de Colombia entre 1987 y 2001, usando imágenes LANDSAT. GeoFocus, 7, 281–313.
dc.relation.referencesSegarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641.
dc.relation.referencesSelvam, S., Manisha, A., Vidhya, J., & Venkatramanan, S. (2019). Chapter 1 - Fundamentals of GIS. In S. Venkatramanan, M. V. Prasanna, & S. Y. Chung (Eds.), GIS and Geostatistical Techniques for Groundwater Science (pp. 3–15). https://doi.org/https://doi.org/10.1016/B978-0-12-815413-7.00001-8
dc.relation.referencesSelvaraj, R., & Nagarajan, S. (2022). Chapter 6 - Change detection techniques for a remote sensing application: An overview. In Y.-D. Zhang & A. K. Sangaiah (Eds.), Cognitive Systems and Signal Processing in Image Processing (pp. 129–143). https://doi.org/https://doi.org/10.1016/B978-0-12-824410-4.00015-5
dc.relation.referencesSrivastava, P. K., Prasad, R., Chaudhary Kumar, S., Yadav, S. A., Sharma, J., Suman, S., … Gupta, D. K. (2022). Chapter 20 - Challenges in Radar remote sensing. In P. K. Srivastava, D. K. Gupta, T. Islam, D. Han, & R. Prasad (Eds.), Radar Remote Sensing (pp. 377–387). https://doi.org/https://doi.org/10.1016/B978-0-12-823457-0.00020-3
dc.relation.referencesSullivan, W. (2017). Machine learning For Beginners Guide Algorithms: Supervised & Unsupervised learning, Decision Tree & Random Forest Introduction. CreateSpace Independent Publishing Platform.
dc.relation.referencesTamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). ISPRS Journal of Photogrammetry and Remote Sensing Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(April), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
dc.relation.referencesTeodoro, A. C., & Duarte, L. (2022). Chapter 11 - The synergy of remote sensing and geographical information systems in the management of natural disasters. In A. Denizli, M. S. Alencar, T. A. Nguyen, & D. E. Motaung (Eds.), Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention (pp. 217–230). https://doi.org/https://doi.org/10.1016/B978-0-323-91166-5.00023-9
dc.relation.referencesWang, M., Wander, M., Mueller, S., Martin, N., & Dunn, J. B. (2022). Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities. Environmental Science & Policy, 129, 68–78. https://doi.org/https://doi.org/10.1016/j.envsci.2021.12.021
dc.relation.referencesZhou, W. (2021). GIS for Earth Sciences. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (Second Edition, pp. 281–293). https://doi.org/https://doi.org/10.1016/B978-0-08-102908-4.00018-7
dc.relation.referencesZhu, Z., Woodcock, C. E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment, 122, 75–91. https://doi.org/10.1016/j.rse.2011.10.030
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalSemiautomatizaciónspa
dc.subject.proposalArboles aleatoriosspa
dc.subject.proposalGoogle Earth enginespa
dc.subject.proposalSentinel-2spa
dc.subject.proposalClasificación de la cobertura de la Tierraspa
dc.subject.proposalDatos de libre accesospa
dc.subject.proposalSemi-automationeng
dc.subject.proposalSentinel-2eng
dc.subject.proposalGoogle Earth engineeng
dc.subject.proposalRandom foresteng
dc.subject.proposalLand cover classificationeng
dc.subject.proposalOpen dataeng
dc.subject.unescoTeledetecciónspa
dc.subject.unescoRemote sensingeng
dc.subject.unescoSoftware de código abiertospa
dc.subject.unescoOpen source softwareeng
dc.subject.unescoDatos abiertosspa
dc.subject.unescoOpen dataeng
dc.titleSemiautomatización del cambio en la cobertura de la tierra con software y datos de libre accesospa
dc.title.translatedSemiautomated analysis of land cover change using open-access tools and datasetseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033791840_2025.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: