Efecto del bias y de la presión de trabajo sobre las propiedades mecánicas y tribológicas de recubrimientos de nitruro de alta entropía (TiAlTaZrNb)Nx

dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.advisorPiamba Tulcán, Oscar Edwin
dc.contributor.authorGonzález Lozano, Juan Pablo
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energía
dc.date.accessioned2025-09-03T12:58:32Z
dc.date.available2025-09-03T12:58:32Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractEn este trabajo final de maestría se estudia experimentalmente el efecto del voltaje bias del sustrato y de la presión de trabajo sobre las propiedades mecánicas y tribológicas de recubrimientos de nitruro de alta entropía (TiAlZrTaNb)Nx. Utilizando la técnica de pulverización catódica por magnetrón de impulsos de alta potencia (HiPIMS) se depositaron películas delgadas de nitruro de TiAlZrTaNb sobre sustratos de aleación (Ti6Al4V) y superaleación de Ni (Hayness 282), variando el voltaje de polarización del sustrato entre 0 V a -75 V y la presión de trabajo entre 0,3 Pa a 0,7 Pa. Se investigó el efecto de la polarización del sustrato y la presión de trabajo sobre la estructura, morfología y dureza de las películas. La microestructura, morfología y composición química de los recubrimientos se analizaron mediante difracción de rayos X, microscopía electrónica de barrido y espectroscopía de rayos X por dispersión de energía. Las propiedades mecánicas se evaluaron mediante nanoindentación, y las propiedades tribológicas se estudiaron con las técnicas de pin-on-disk y scrach tech. Se pudo observar que existe un efecto del voltaje Bias y de la presión de trabajo sobre las propiedades mecánicas y tribológicas de los recubrimientos depositados. La disminución de la presión en la cámara y los niveles de voltaje Bias mayores (- 75 V) permiten obtener películas densas, sin defectos, con microestructuras FCC, que presentaron durezas que alcanzaron los 57 GPa, bajos coeficientes de fricción (0,11), bajas tasas de desgaste y buena adherencia al substrato (Texto tomado de la fuente).spa
dc.description.abstractThis master's dissertation experimentally investigates the effects of substrate bias voltage and working pressure on the mechanical and tribological properties of high-entropy nitride (TiAlZrTaNb)Nx coatings. Thin films were deposited on Ti6Al4V and Hayness 282 substrates alloy using high-power pulsed magnetron sputtering (HiPIMS), with substrate bias voltages ranging from 0 V to -75 V and working pressures between 0.3 Pa and 0.7 Pa. The study evaluates how these parameters influence the coatings' structure, morphology, and hardness. Microstructural and compositional analyses were performed via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Mechanical properties were assessed using nanoindentation, while tribological behavior was characterized through pin-on-disk and scratch testing. Key findings demonstrate that reduced chamber pressure and higher bias voltages (e.g., -75 V) promote the formation of dense, defect-free coatings with face-centered cubic (FCC) microstructures. These optimized coatings exhibited exceptional hardness (up to 57 GPa), low coefficients of friction (0.11), minimal wear rates, and strong substrate adhesion.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en ingeniería mecánica
dc.description.methodsEn esta sección se explicará con más detalle la metodología utilizada para la deposición y caracterización de los recubrimientos de (TiAlTaZrNb)N, los cuales fueron generados mediante la técnica de HiPIMS. El proceso experimental consistió en una etapa de síntesis de recubrimientos, que incluye desde el proceso de preparación de los sustratos hasta la obtención de recubrimientos acorde a las condiciones de las variables de depósito definidas, tres condiciones de voltaje bias y tres condiciones de presión en la cámara. Posteriormente se realizaron los proceso de caracterización de composición, morfológica y estructural de las muestras sintetizadas, para lo cual se recurrió a los análisis de microscopia electrónica de barrido, análisis de composición elemental mediante espectroscopía de energía dispersiva, y análisis estructural mediante difracción de rayos X. Finalmente se realizó la caracterización de las propiedades objetivo, se realizó la medición de nanodureza y medición de modulo elástico mediante nanoindentación. También se analizó la adherencia de los recubrimientos mediante la prueba de rayado, y finalmente se determinaron las propiedades tribológicas, coeficiente de fricción y tasas de desgaste, a partir del ensayo pin-on-disck.
dc.description.researchareaIngeniería de superficies
dc.format.extent92 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88566
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.relation.referencesB.S. Murty, J.W. Yeh, S. Ranganathan, P.P. Bhattacharjee. 1 – A brief history of alloys and the birth of high-entropy alloys. High-Entropy Alloys (2nd ed.), Elsevier Inc (2019), pp. 1-12, 10.1016/B978-0-12-816067-1.00001-1
dc.relation.referencesJ.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6 (2004), pp. 299-303, 10.1002/adem.200300567
dc.relation.referencesB. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Microstructural developments in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 375–377 (2004), pp. 213-218, 10.1016/j.msea.2003.10.257
dc.relation.referencesY. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, B. Li. Design of non-equiatomic medium- entropy alloys. Sci. Rep., 8 (2018), p. 1236, 10.1038/s41598-018-19449-0
dc.relation.referencesH. Yen, A. Yeh, J. Yeh. High-entropy alloys: An overview on the fundamentals, development, and future perspective. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC. (2024). https://doi.org/10.1016/B978-0-323-90800-9.00117-7
dc.relation.referencesJ.-W. Yeh, L.J. Santodonato. Metalurgia física. MC Gao, J.-W. Yeh, PK Liaw, Y. Zhang (Eds.), Aleaciones de alta entropía, Springer, Cham (2016), 10.1007/978-3-319-27013-5_3
dc.relation.referencesJ.-W. Yeh. Avances recientes en aleaciones de alta entropía. Ann. Chim. Sci. Mater. (Eur. J. Control), 31 (2006), págs. 633-648
dc.relation.referencesY. Lu, Y. Peng, X. Chang, Z. Shi. Structural evolutions and tribological properties of laser cladded FeCoNiCrMo high-entropy alloy coating by laser remelting and tempering process: TEM and DFT calculations. (2024). https://doi.org/10.1016/j.triboint.2024.110000
dc.relation.referencesK. Alam, G. Jeong, W. Jang, H. Cho Enhanced mechanical properties and in vitro biocompatibility of TiMOVWCr high-entropy alloy synthesized by magnetron sputtering. (2023). https://doi.org/10.1016/j.apsusc.2023.158222
dc.relation.referencesP. Cui, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, R. Feng, P.K. Liaw. ”Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films”. J. Alloy. Compd., 834 (2020), Article 155063, 10.1016/j.jallcom.2020.155063.
dc.relation.referencesC. Oses, C. Toher, S. Curtarolo. High-entropy ceramics. Nat. Rev. Mater., 5 (2020), pp. 295-309, 10.1038/s41578-019-0170-8
dc.relation.referencesY. Ma, Y. Yang, L. Yuan, W. Tian, H. Zhao. Reinforcing and toughening mechanism of the in-situ metastable nanostructured alumina-titanium oxide composite coating. (2025), Pages 120-131. https://doi.org/10.1016/j.jmst.2024.04.060
dc.relation.referencesP.H. Mayrhofer, A. Kirnbauer, Ph. Ertelthaler, C.M. Koller. High-entropy ceramic thin films; a case study on transition metal diborides. Scr. Mater., 149 (2018), pp. 93-97, 10.1016/j.scriptamat.2018.02.008
dc.relation.referencesK. Johansson, L. Riekehr, S. Fritze, E. Lewin, “Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition”. Inorganic Research Programme, Department of Chemistry – Ångström laboratory, Uppsala University, Sweden. Suecia, 2018.
dc.relation.referencesS.K Bachani, C.J Wang, B.S Lou, L.C Chang, J.W Lee, “Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics”., Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei. Taiwan, 2021. https://doi.org/10.1016/j.jallcom.2021.159605.
dc.relation.referencesD. Dones Kumar, N. Kumar, S. Kalaiselvam, S. Guión, R. Jayavel. Wear resistant super-hard multilayer transition metal-nitride coatings. (2017). https://doi.org/10.1016/j.surfin.2017.03.001
dc.relation.referencesR. Shu, E.M Paschalidou, S.G. Rao, J. Lu, G. Greczynski, E. Lewin, L. Nyholm, A. Febvrier, P. Eklund, “Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings”. Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden. Suecia, 2020. https://doi.org/10.1016/j.surfcoat.2020.125651
dc.relation.referencesA. Vyas, A. Aliyu. Structural and mechanical properties of Si-doped CrN coatings deposited by magnetron sputtering technique. (2023). https://doi.org/10.1016/j.heliyon.2023.e13461
dc.relation.referencesR. Shu, E.M Paschalidou, S. G. Rao, B. Bakhit, R. Boyd, M.V Moro, D. Primetzhofer, G. Greczynski, L. Nyholm, A. Febvrier, P. Eklund, “Effect of nitrogen content on microstructure and corrosion resistance of sputter-deposited multicomponent (TiNbZrTa)Nx films”. Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Suecia, (2020) https://doi.org/10.1016/j.surfcoat.2020.126485
dc.relation.referencesY. Liu, X. Ai, J. Huang, T. Wang, G. Chen, Z. He. The microstructure and mechanical properties of He charged Al films fabricated by HiPIMS/DCMS co-sputtering. (2024). https://doi.org/10.1016/j.vacuum.2023.112744
dc.relation.referencesE. Lewin. Multi-component and high-entropy nitride coatings—a promising field in need of a novel approach. J. Appl. Phys., 127 (2020), p. 160901, 10.1063/1.5144154
dc.relation.referencesV. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, I. Petrov. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol., 122 (1999), pp. 290-293, 10.1016/S0257-8972(99)00292-3
dc.relation.referencesK. Sarakinos, J. Alami, S. Konstantinidis. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. (2010). https://doi.org/10.1016/j.surfcoat.2009.11.013
dc.relation.referencesM. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, U. Helmersson. On the film density using high power impulse magnetronsputtering. Surf. Coat. Technol., 205 (2010), pp. 591-596
dc.relation.referencesI.-L. Velicu, V. Tiron, C. Porosnicu, I. Burducea, N. Lupu, G. Stoian, G. Popa, D. Munteanu. Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach. Appl. Surf. Sci., 424 (2017), pp. 397-406.
dc.relation.referencesP. Wu, H. Chao, S. Lin, Y. Yang, C. Hou, J. Lee, B. Lou. “Mechanical properties and biocompatibility evaluation of TiZrNbTaFe high entropy alloy films deposited using a hybrid HiPIMS and RF sputtering system”. Surface and Coatings Technology. Volume 494, Part 3, 30 October 2024, 131539.
dc.relation.referencesA. Obeydavi, A. Shafyei, J. Lee, “Effect of sputtering power and substrate bias on microstructure, mechanical properties and corrosion behavior of CoCrFeMnNi high entropy alloy thin films deposited by magnetron sputtering method”. Intermetallics Volume 172, September 2024, 108369.
dc.relation.referencesC. Lai, M. Tsai, S. Lin, J. Yeh. “Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings”. Surface and Coatings Technology. Volume 201, Issues 16–17, 21 May 2007, Pages 6993-6998.
dc.relation.referencesW. Shen, M. Tsai, Y. Chang, J. Yeh. ”Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings”. Thin Solid Films. Volume 520, Issue 19, 31 July 2012, Pages 6183-6188.
dc.relation.referencesC. Cheng, H. Li, C. Zhang, C. Guo, J. Li, H. Zhang, S. Lin, Q. Wang. “Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating”. Surface and Coatings Technology. Volume 467, 25 August 2023, 129692.
dc.relation.referencesW. Yang, J. Shen, Z. Wang, G. Ma, P. Ke, A. Wang. “Mechanical and electrochemical properties of (MoNbTaTiZr)1-xNx high-entropy nitride coatings”. Journal of Materials Science & Technology. Volume 208, 10 February 2025, Pages 78-91.
dc.relation.referencesS. Lin, S. Chang, Y. Huang, F. Shieu, J Yeh. “Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NC y multi-component coatings co-sputtered with bias”. Surface and Coatings Technology. Volume 206, Issue 24, 15 August 2012, Pages 5096-5102.
dc.relation.referencesA.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause- Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol. “Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions”.
dc.relation.referencesL.M. Pike. “Development of a fabricable gamma-prime (γ’) strengthened superalloy”. Superalloys (2008), pp. 191-200, 10.7449/2008/Superalloys_2008_191_200.
dc.relation.referencesK.L. Kruger. “HAYNESS 282 alloy. Materials for ultra-supercritical and advanced ultra- supercritical power plants”. Elsevier Inc. (2017), pp. 511-545, 10.1016/B978-0-08-100552- 1.00015-4.
dc.relation.referencesQuímica, Aleación de titanio, Ti6Al4V. https://www.quimica.es/enciclopedia/Ti6Al4V.html (2024).
dc.relation.referencesQuímica, Composición química y propiedades mecánicas Ti6Al4V. https://www.quimica.es/enciclopedia/Ti6Al4V.html (2024).
dc.relation.referencesS.D. Rodríguez. “RESISTENCIA A LA CORROSIÓN DE RECUBRIMIENTOS DE TiAlVCuN DEPOSITADOS POR LA TÉCNICA DE CO-SPUTTERING”. Universidad Nacional de Colombia. 2023.
dc.relation.referencesH. O. Pierson, “Interstitial Nitrides: Properties and General Characteristics BT - Handbook of Refractory Carbides and Nitrides,” Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications, 1996.
dc.relation.referencesY. Zhou, W. Guo, and T. Li, “A review on transition metal nitrides as electrode materials for supercapacitors,” Ceram Int, vol. 45, no. 17, pp. 21062–21076, Dec. 2019, doi: 10.1016/J.CERAMINT.2019.07.151.
dc.relation.referencesS. Kumar, “Comprehensive review on high entropy alloy-based coating”. Department.
dc.relation.referencesJ.M. Albella, O. Sánchez, R. Gago, I. Jiménez. “Capas delgadas y modificación superficial de materiales”. CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Madrid, 2018.
dc.relation.referencesE. P. George, D. Raabe, y R. O. Ritchie, “High-entropy alloys”, pp. 1–54.
dc.relation.referencesV. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”. Department of Physics, Linköping University, SE-581 83 Linköping, Sweden, 1999.
dc.relation.referencesA.R. Shugurov, A.Yu Derbin, E.D. Kuzminov. “Effect of the pulse frequency on the structure, mechanical and tribological properties of Ti-Al-Ta-N coatings deposited by HiPIMS”. Vacuum. Volume 230, December 2024, 113636.
dc.relation.referencesY. Yuan, L. Yang, Z. Liu, Q. Chen, “High power impulse magnetron sputtering and its applications”. Lab of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing, 102600, China. 2018.
dc.relation.referencesJ.C Sánchez-López, M. Rodríguez-Albelo, M. Sánchez-Pérez, V. Godinho, C. López- Santos, Y. Torres, “Ti6Al4V coatings on titanium samples by sputtering techniques: Microstructural and mechanical characterization”., Instituto de Ciencia de Materiales de Sevilla (ICMS), CSIC-US, Avda. Américo Vespucio 49, E-41092 Sevilla. España, 2023.
dc.relation.referencesV. Van Huy, N. B. Rodionov, V. A. Karpov, T. B. Ngo, N. D. Khoa, & V. T. L. Vi. “Influence of Bias Voltage on the Microstructure, Mechanical and Corrosion Properties of Ti/CrN/TiN Multilayered Films Deposited by Cathodic Arc Evaporation”. Tribology in Industry, 46(4), 709. 2024.
dc.relation.referencesB. Biswas, Y. Purandare, I. Khan, & P. E. Hovsepian. “Effect of substrate bias voltage on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings”. Surface and Coatings Technology, 344, 383-393. 2018.
dc.relation.referencesC. R. Das, M. Rangwala & A. Ghosh. “Influence of substrate bias voltage on microstructure and mechanical characteristics of TiAlSiN coating deposited by High Power Impulse Magnetron Sputtering (HiPIMS)”. Surface and Coatings Technology, 458, 129351. 2023.
dc.relation.referencesB. Biswas, Y. Purandare, A. SugumaranI, Khan & P. E. Hovsepian “Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings. Surface and coatings technology”. 336, 84-91. 2018.
dc.relation.referencesD. Lundin, & K. Sarakinos. "An introduction to thin film processing using high-power impulse magnetron sputtering." Journal of Materials Research 27.5 780-792, 2012.
dc.relation.referencesM. R. Alhafian. “Hard (AlTi) N coatings produced by high-power impulse magnetron sputtering (HiPIMS) with high-temperature resistance-influence of Cr and Si additive elements”. 2023.
dc.relation.referencesK. Kruger, “15 - HAYNESS 282 alloy”. Hayness International, Inc., Kokomo. USA, 2017.
dc.relation.referencesG.J Satish, V.N. Gaitonde, V. N. Kulkarni, “Traditional and non-traditional machining of nickel-based superalloys: A brief review”. School of Mechanical Engineering, KLE Technological University, Hubballi, Karnataka. India, 2021.
dc.relation.referencesH.M Tung, T.L Chen, K.C Lan, P.W Liu, Y.C Li, “The incipient oxidation behaviors of Hayness 282 at high temperaturas”. Department of Material Research, National Atomic Research Institute, Taoyuan. Taiwan, 2024.
dc.relation.referencesG. Lucacci, “Steels and alloys for turbine blades in ultra-supercritical power plants”. C Blade S.p.a. a SIFCO Industries Company, Maniago, Pordenone. Italia, 2017.
dc.relation.referencesK.M Hong, Y.C Shin, “A novel approach to the deposition of Co-Mo-Cr-Si coating on Hayness 282 by laser fusion and laser remelting”. Center for Laser-based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette. USA, 2023.
dc.relation.referencesHayness international, Aleación HAYNESS 282. https://Haynessintl.com/en/datasheet/Hayness-282-alloy/ (2022). [60] Hayness international, Ficha técnica Aleación HAYNESS 282. chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://Haynessintl.com/wp- content/uploads/2024/05/282-brochure.pdf (accessed July 18, 2022).
dc.relation.referencesA. Kumar, G. Singh, “Surface modification of Ti6Al4V alloy via advanced coatings: Mechanical, tribological, corrosion, wetting, and biocompatibility studies”. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai. India, 2024.
dc.relation.referencesIONATiCS. Sofware HiPSTER Control 2.0. y fuentes HiPIMS. https://ionautics.com/ (2022).
dc.relation.referencesI. J. González “Producción, caracterización y resistencia a la corrosión de recubrimientos de TiAlZrTaNbN con potencial aplicación en la industria Biomédica e Industrial”. Universidad Nacional de Colombia, 2024.
dc.relation.referencesK. M. Krishnan. “Principles of Materials Characterization and Metrology”. Pp. 1–848, Oxford (2021), DOI: 10.1093/oso/9780198830252.001.0001.
dc.relation.referencesC. Suryanarayana, M. G. Norton. “X-Ray Diffraction”. Oxford (2021), Springer (1998), DOI: 10.1007/978-1-4899-0148-4.
dc.relation.referencesS.-L. Chang. “Thin-film characterization by grazing incidence X-ray diffraction and multiple beam interference”. Journal of Physics and Chemistry of Solids. Volume 62, Issues 9–10, 10 September 2001, Pages 1765-1775.
dc.relation.referencesE. Ortiz Ortega, H. Hosseinian, I. B. Aguilar Meza, M. J. Rosales Lopez, A. Rodriguez Vera, and S. Hosseini, Material Characterization Techniques and Applications, Vol. 19, Springer (2022), DOI: 10.1007/978-981-16-9569-8.
dc.relation.referencesM. Gómez B, Caracterización de las propiedades tribológicas de los recubrimientos duros, Universitat de Barcelona, Barcelona, España, 2006. http://diposit.ub.edu/dspace/handle/2445/41791 (accessed September 14, 2015).
dc.relation.referencesScrath Testing, in: ASM Handb. Vol. 18 Frict. Lubr. Wear Technol., 10th edition, ASM International, Materials Park, Ohio, 1992: pp. 430–437.
dc.relation.referencesASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2017. www.astm.org.
dc.relation.referencesM. J. Godbole, A. J. Pedraza, L. F. Allard, and G. Geesey, “Characterization of sputter- deposited 316L stainless steel films,” J. Mater. Sci., vol. 27, no. 20, pp. 5585–5590, 1992, doi: 10.1007/BF00541627.
dc.relation.referencesSputtering-yields. Rendimientos De Pulverización Catódica, https://www.angstromsciences.com/sputtering-yields. 2024.
dc.relation.referencesC. Lai, K. Cheng, S. Lin, J. Yeh. “Mechanical and tribological properties of multi- element (AlCrTaTiZr)N coatings”. Surface and Coatings Technology. 202, 15, 25. 3732- 3738. 2008.
dc.relation.referencesJ. Dominguez. “Caracterización Microestructutal y Mecánica de Nuevas Aleaciones de Alta Entropia (HEAs)”. Universidad Politécnica de Madrid. 2019.
dc.relation.referencesB. Lou, R. Lin, C. Li, J. Lee, “Fabrication of (TiZrNbSiMo)1-xNx high entropy alloy coatings using a high power impulse magnetron sputtering technique: Effects of nitrogen addition”. Surface and Coatings Technology. 483, 15. 2024. 130772.
dc.relation.referencesJ. Li, S. Wang, Y. Zhao, X. Shi, H. Qu, X. Teng, . Zhang, L. Xu, S. Zhang, J Zhu. “Structure and properties of super-hard (MoSiTiVZr)N high-entropy nitride coatings regulated by substrate bias”. Surface and Coatings Technology. 497. 2025. 131788.
dc.relation.referencesD. M. Chimá, G. Bejarano, F. Bolivar, S. Weiß, A. Obrosov. “High entropy nitride coatings of (TiAlTaZrNb)Nx: Influence of nitrogen content on the microstructural, mechanical and tribological properties”. Materials Chemistry and Physics. 339. 2025. 130619.
dc.relation.referencesC. Lai, S. Lin, J. Yeh, S. Chang. “Preparation and characterization of AlCrTaTiZr multi- element nitride coatings2”. Surface and Coatings Technology. 201, 6, 4. 2006. 3275-3280.
dc.relation.referencesJ. Pelleg, L. Zevin, Z. Lungo, S. Thin. Solid Films 197. 1991, pp. 117.
dc.relation.referencesJ. J. Olaya, D. M. Marulanda, S. Rodil. “Preferential orientation in metal nitride deposited by the UBM system”. Ingeniería e Investigación Vol. 30 No. 1, abril de 2010 (125- 129).
dc.relation.referencesC. Lai, S. Lin, J. Yeh, A. Davison, “Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings”. Journal of physics d: applied physics, 2006.
dc.relation.referencesJ. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, “Reactive-sputter-deposited TiN films on glass substrates”. Thin Solid Films. 197, 1–2. 1991. 117-128.
dc.relation.referencesU.C Oh, Je, J. Ho, “Effects of strain energy on the preferred orientation of TiN thin films”. Journal of Applied Physics. 2010.
dc.relation.referencesD.M. Devia, E. Restrepo-Parra, P.J. Arango, A.P. Tschiptschin, J.M. Velez. “TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage". Appl. Surf. Sci., 257 (2011), pp. 6181-6185.
dc.relation.referencesM. Birkholz. “Thin Film Analysis by X-ray Scattering”. Wiley-VCH Verlag GmbH, Weinhein. (2006).
dc.relation.referencesQ. Ma, L. Li, Y. Xu, J. Gu, L. Wang, Y. Xu. “Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS”. Applied Surface Science. 392, 15. 2017. Pages 826-833.
dc.relation.referencesG. Håkansson, J.-E. Sundgren, D. McIntyre, J. E. Greene, W.-D. Münz, “Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d.c. magnetron sputter deposition”. Thin Solid Films. 153, 1–3. 1987. 55-65.
dc.relation.referencesY. Xu, G. Li, G. Li, F. Gao, Y. Xia. “Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering”. Appl. Surf. Sci, 564 (2021), pp. 1-10, 10.1016/j.apsusc.2021.150417.
dc.relation.referencesG. Abadias, Y. Tse, P. Guérin, V. Pelosin. “Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering”. J. Appl. Phys., 99 (2006), Article 113519, 10.1063/1.2197287.
dc.relation.referencesJ.J. Olaya, S.E. Rodil, S. Muhl, E. Sánchez. “Comparative study of chromium nitride coatings deposited by unbalanced and balanced magnetron sputtering”. Thin Solid Films, 474.119-126. 2005.
dc.relation.referencesG. Abadias. “Stress and preferred orientation in nitride-based PVD coatings”. Surface and Coatings Technology. 202, 11. 2008. 2223-2235.
dc.relation.referencesB.D. Gullity, S.R. Stock. “Element of X-ray Diffraction”. Prentice Hall, NJ (2001), p. 367.
dc.relation.referencesH.N. Shah, R. Jayaganthan, D. Kaur. “Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films”. Surf. Eng., 26 (2010), pp. 629-63.
dc.relation.referencesF.A. Orjuela, F.F. Vallejo, H. Hahn, J.J. Olaya, J.E. Alfonso, L. Velasco. “Nitrogen flux effect on the mechanical properties of AlCrTiN Nanostructured coatings obtained by R. F. magnetron sputtering”. Ceramics International. 49, 11, Part A. 2023. 17867-17875.
dc.relation.referencesTurali Narayana, Sheikh Shahid Saleem. “Comparative investigation and characterization of the nano-mechanical and tribological behavior of RF magnetron sputtered TiN, CrN, and TiB2 coating on Ti6Al4V alloy”. Tribology International. 193. 2024. 109348.
dc.relation.referencesH. Benzouid, S. Boudebane, H. Ferkous, F. Lekoui, N. Bin Nayan, A. Delimi, M. Awjan Alreshidi, M. Arshad, K. Kumar Yadav, B. Ernst, N. Elboughdiri, Y. Benguerba. “Examining the microstructure, morphological features, and wetting characteristics of Ti/TiN/TiAlN thin films produced through RF/DC magnetron co-sputtering”. 37. 2023. 107405.
dc.relation.referencesJ.A. Thornton. “High-rate thick film growth”. Annual review of materials science, 7 (1) 239-260. 1977.
dc.relation.referencesP.B. Barna, M. Adamik. “Fundamental structure forming phenomena of polycrystalline films and the structure zone models”. Thin Solid Films, 317 (1998), pp. 27-33.
dc.relation.referencesC. Ranjan Das, M. Rangwala, A. Ghosh, “Characteristics of high-power impulse magnetron sputtering (HiPIMS) deposited nanocomposite-TiAlSiN coating under variable pulse frequencies”. Vacuum. 219, Part A. 2024. 112747.
dc.relation.referencesJ. Mu, H. Wang, B. Qin, Y. Zhang, L. Chen, C. Zeng, “Improved wear and corrosion resistance of biological compatible TiZrNb films on biomedical Ti6Al4V substrates by optimizing sputtering power”. Surface and Coatings Technology. 428, 25. 2021. 127866.
dc.relation.referencesO. Abegunde, M. Lahouij, N. Jaghar, H. Larhlimi, M. Makha, J. Alami, “Synergistic effect of deposition temperature and substrate bias on structural, mechanical, stability and adhesion of TiN thin film prepared by reactive HiPIMS”. Ceramics International. 50, 7, Part A. 2024. 10593-10601.
dc.relation.referencesA. Mansouri Tehrani, J. Brgoch “Hard and superhard materials: A computational perspective”. Journal of Solid State Chemistry. 271. 2019. 47-58.
dc.relation.referencesX. Hui Yan, J. Shan Li, W. R. Zhang, Y. Zhang. “A brief review of high-entropy films”. Materials Chemistry and Physics. 210. 2018. 12-19.
dc.relation.referencesM. Diserens, J. Patscheider, F. Lévy. “Improving the properties of titanium nitride by incorporation of silicon”. Surf. Coat. Technol. 108–109. 241-246. 1988.
dc.relation.referencesA. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear. 246. 2000. 1– 11.
dc.relation.referencesJ. Guo, Y. Su, C. Zhang, W. Cai, S. Lin. “Influence of nitrogen flow rate on the structure and properties of (AlTiVCrMoSi)Nx high-entropy alloy nitride coatings via arc ion plating”. Surface and Coatings Technology. 496, 15. 2025. 131732.
dc.relation.referencesH. Yu, W. Liang, Q. Miao, M. Yin, Y. Xu, J. Gao, H. Jin, S. Sun “High-temperature oxidation resistance and wear properties of functionally graded CrHfNbTaTiN high-entropy nitride coating on Ti alloy”. Applied Surface Science. 680. 2025. 161474.
dc.relation.referencesW.H. Kao, Y.L. Su, J.H. Horng, Y.T. Cheng. “Mechanical behavior, tribological properties, and thermal stability of (AlCrNbSiTiVZr)N high entropy alloy nitride coatings and their application to Inconel 718 milling”. Materials Chemistry and Physics. 314. 2024. 128816.
dc.relation.referencesASTM C1624Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing ASTM International 2015.
dc.relation.referencesF. Cai, M. Chen, M. Li, S. Zhang. “Influence of negative bias voltage on microstructure and property of Al-Ti-N films deposited by multi-arc ion plating”. Ceramics International. 43, 4. 2017. 3774-3783.
dc.relation.referencesH.Y. Liu, Y.L. Gong, D.L. Ma, P.P. Jing, L.N. You, L.J. Wei, Y.X. Leng. “The adhesion strength and stability of TiN films deposited on magnesium substrate with different substrate roughness”. Ceramics International. 50, 12. 2024. 21658-21666.
dc.relation.referencesS.J. Bull*, E.G. Berasetegui. “An overview of the potential of quantitative coating adhesion measurement by scratch testing”. Tribology International 39. 2006. 99–114.
dc.relation.referencesY. Yang, Che. Chang, Y. Hsiao, J. Lee, B. Lou. “Influence of high power impulse magnetron sputtering pulse parameters on the properties of aluminum nitride coatings”. Surface and Coatings Technology. 259, Part B. 2014. 219-231.
dc.relation.referencesJ. Lin, X. Zhang, F. Ge, F. Huang. “Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance”. Surface and Coatings Technology. 377. 2019. 124922.
dc.relation.referencesJ. Lin, R. Wei. “A comparative study of thick TiSiCN nanocomposite coatings deposited by dcMS and HiPIMS with and without PEMS assistance”. Surf. Coat. Technol., 338. 2018. 84-95.
dc.relation.referencesC. Hernández-Navarro, L.P. Rivera, M. Flores-Martínez, E. Camps, S. Muhl, E. García “Tribological study of a mono and multilayer coating of TaZrN/TaZr produced by magnetron sputtering on AISI-316L stainless Steel”. Tribology International. 131. 2019. 288-298.
dc.relation.referencesK. Cheng, C. Weng, C. Lai, S. Lin. “Study on adhesion and wear resistance of multi- element (AlCrTaTiZr)N coatings”. Thin Solid Films. 517, 17, 1. 2009. 4989-4993.
dc.relation.referencesX. Lu, C. Zhang, C. Wang, X. Cao, R. Ma, X. Sui, J. Hao, W. Liu. “Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant”. Applied Surface Science. 557. 2021. 149813.
dc.relation.referencesH. Qiu, S. Peng, Y. Zou, X. Cui, Y. Zhao, X. Wang, D. Sun. “Effect of nitrogen content on mechanical properties and microstructure of (TiZrNbCrSi)Nx high-entropy nitride coating”. Journal of Alloys and Compounds.1022. 2025. 17982.
dc.relation.referencesY. Hsiao, J. Lee, Y. Yang, B. Lou. “Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering”. Thin Solid Films. 549. 2013. 281-291.
dc.relation.referencesA.Y. Adesina, Z.M. Gasem, A.M. Kumar. “Electrochemical evaluation of the corrosion protectiveness and porosity of vacuum annealed CrAlN and TiAlN cathodic arc physical vapor deposited coatings”. Mater Corros, 70. 2019. 1601-1616,
dc.relation.referencesA.Y. Adesina, Z. Iqbal, F.A. Al-Badour, Z.M. Gasem. “Mechanical and tribological characterization of AlCrN coated spark plasma sintered W–25%Re–Hfc composite material for FSW tool application”. J Mater Res Technol, 8. 2019. 436-446.
dc.relation.referencesVladimir Kouznetsov, Karol Macák, Jochen M. Schneider, Ulf Helmersson, Ivan Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology, Volume 122, Issues 2–3, 1999, Pages 290- 293,ISSN 0257-8972.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.lembPROPIEDADES MECANICASspa
dc.subject.lembMechanical Propertieseng
dc.subject.lembMECANICA DE LAS PLANTASspa
dc.subject.lembPlant mechanicseng
dc.subject.lembPROCESOS DE MANUFACTURAspa
dc.subject.lembManufacturing processeseng
dc.subject.lembPULVERIZACION CATODICA (METALIZACION)spa
dc.subject.lembCathode sputtering (plating process)eng
dc.subject.proposalAleaciones de alta entropíaspa
dc.subject.proposalHiPIMSspa
dc.subject.proposalNitrurosspa
dc.subject.proposalTribologíaspa
dc.subject.proposalDurezaspa
dc.subject.proposalHigh entropy alloyseng
dc.subject.proposalHiPIMSeng
dc.subject.proposalNitrideseng
dc.subject.proposalTribologyeng
dc.subject.proposalHardness
dc.titleEfecto del bias y de la presión de trabajo sobre las propiedades mecánicas y tribológicas de recubrimientos de nitruro de alta entropía (TiAlTaZrNb)Nxspa
dc.title.translatedEffect of substrate bias and working pressure on the mechanical and tribological properties of high-entropy nitride coatings (TiAlTaZrNb)Nxeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1109387380.2025.pdf
Tamaño:
2.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: