Early detection of asymptomatic anthracnose disease in mango by hyperspectral imaging and machine learning

dc.contributor.advisorPrieto Ortiz, Flavio Augustospa
dc.contributor.advisorAleixos Borrás, Nuriaspa
dc.contributor.advisorBlasco Ivars, Josespa
dc.contributor.authorVelásquez Hernández, Carlos Albertospa
dc.contributor.cvlacVelasquez, Carlos [0001505007]spa
dc.contributor.googlescholarVelasquez, Carlos [Carlos Alberto Velasquez Hernandez]spa
dc.contributor.orcidVelasquez, Carlos [0000000295527395]spa
dc.contributor.researchgateVelasquez, Carlos [Carlos-Velasquez-Hernandez]spa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.contributor.scopusVelasquez, Carlos [58651134500]
dc.date.accessioned2025-09-02T19:52:03Z
dc.date.available2025-09-02T19:52:03Z
dc.date.issued2025-06-24
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractOne of the most relevant diseases in mango is anthracnose, mainly caused by Colletotrichum sp. The relevance of anthracnose is due to its high incidence in mango crops, causing about 60% of mango losses worldwide, although, in regions with periods of high rainfall and humidity, the incidence has reached 100% of mango fruit production. The current control of anthracnose in mango is done visually, which means that detection is done at a late (visible) stage and is subject to the expertise, training and visual acuity of a human expert. With the rise of machine learning techniques, hyperspectral vision systems have found the complement for developing robust object detection and classification applications. This has triggered a technological revolution in fruit inspection and quality control, driving the research and development of new solutions that address latent challenges in agro-industry such as early detection of fruit diseases. Therefore, this research has aimed to develop a methodology for detecting anthracnose in mango (fruits and leaves) at an early stage using Vis-NIR hyperspectral imaging and machine learning techniques. Furthermore, this research has assessed the potential of spectral data to characterise anthracnose symptoms in mango to establish a set of relevant wavelengths representing the main spectral changes induced by the disease. This research has also defined a methodology that involved selecting representative samples of mango fruits and leaves of 3 varieties, the controlled inoculation of Colletotrichum sp. and the acquisition of hyperspectral images under laboratory conditions. Additionally, a framework was defined to implement different spectral pre-processing filters and machine learning models for classifying and detecting anthracnose-diseased samples. Also, several feature selection techniques to select a representative set of wavelengths (10) representing the different stages of disease symptom development were implemented. As a result, classification models based on neural networks and quadratic discriminant analysis were obtained with metrics above 95% and were shown to be efficient in detecting anthracnose-diseased samples 48-72 hours before visible symptoms became distinguishable. Furthermore, it was found that there are several spectral regions in the Vis-NIR range related to anthracnose symptoms, allowing their characterisation from early (non-visible) to late stages. The findings reported in this research have evidenced the enormous potential of hyperspectral imaging and machine learning models for early detection of anthracnose disease in mango with full or reduced spectrum and could serve as a basis for the development of novel detection systems in mango fruits with multispectral vision systems.eng
dc.description.abstractUna de las enfermedades más relevantes en mango es la antracnosis, causada principalmente por Colletotrichum sp. La relevancia de la antracnosis se debe a su alta incidencia en los cultivos de mango, causando alrededor del 60% de las pérdidas de mango en todo el mundo, aunque, en regiones con periodos de alta pluviosidad y humedad, la incidencia ha llegado a alcanzar el 100% de la producción de fruta de mango. El control actual de la antracnosis en mango se realiza de forma visual, lo que significa que la detección se realiza en una fase tardı́a (visible) y está sujeta a la pericia, entrenamiento y agudeza visual de un experto humano. Con el auge de las técnicas de aprendizaje automático, los sistemas de visión hiperespectral han encontrado el complemento para el desarrollo de aplicaciones robustas de detección y clasificación de objetos. Esto ha desencadenado una revolución tecnológica en la inspección y el control de calidad de la fruta, impulsando la investigación y el desarrollo de nuevas soluciones que aborden retos latentes en la agroindustria como la detección temprana de enfermedades en frutas. Ası́ pues, el objetivo de esta investigación ha consistido en desarrollar una metodologı́a para la detección de antracnosis en mango (frutos y hojas) en una fase temprana utilizando imágenes hiperespectrales Vis-NIR y técnicas de aprendizaje automático. Además, esta investigación ha evaluado el potencial de los datos espectrales para caracterizar los sı́ntomas de antracnosis en mango con el fin de establecer un conjunto de longitudes de onda relevantes que representen los principales cambios espectrales inducidos por la enfermedad. Esta investigación también ha abarcado la selección de muestras representativas de frutos y hojas de mango de 3 variedades, la inoculación controlada de Colletotrichum sp. y la adquisición de imágenes hiperespectrales en condiciones de laboratorio. Además, ha definido un marco para implementar diferentes filtros de preprocesado espectral y modelos de aprendizaje automático para clasificar y detectar muestras enfermas de antracnosis. También se han implementado varias técnicas de selección de caracterı́sticas para seleccionar un conjunto representativo de longitudes de onda (10) que representaran las diferentes etapas de desarrollo de los sı́ntomas de la enfermedad. Como resultado, se obtuvieron modelos de clasificación, basados en redes neuronales y análisis discriminante cuadrático, con métricas superiores al 95%, mostrando ser eficientes en la detección de muestras enfermas de antracnosis 48-72 horas antes de que los sı́ntomas se hicieran distinguibles. Además, se ha encontrado que existen varias regiones espectrales en el rango Vis-NIR relacionadas con los sı́ntomas de antracnosis, permitiendo su caracterización desde los estadios tempranos (no visibles) hasta los tardı́os. Los hallazgos reportados en esta investigación han evidenciado el enorme potencial de las imágenes hiperespectrales y los modelos de aprendizaje automático para la detección temprana de la antracnosis en mango con espectro completo o reducido, pudiendo servir de base para el desarrollo de novedosos sistemas de detección en frutos de mango con sistemas de visión multiespectral. (Texto tomado de la fuente).spa
dc.description.abstractUna de les malalties més rellevants del mango és l’ antracnosi, principalment causada per Colletotrichum sp. La importància de l’antracnosi és deguda a l’alta incidència en el cultiu de mangos, que causa al voltant del 60% de pèrdues a nivell mundial, tot i que en regions amb perı́odes d’alta pluviositat i humitat la incidència pot arribar al 100% de la producció de fruita. Actualment, el control de l’antracnosi en mango es fa visualment, la qual cosa implica que la detecció es produeix en una etapa (visual) tardana i que està condicionada a l’experiència, entrenament i agudesa visual de la persona experta. Amb l’auge de les tècniques d’aprenentatge automàtic, els sistemes de visió hiperespectral han trobat el complement per al desenvolupament d’aplicacions robustes de detecció i classificació d’objectes. Aquesta circumstància ha desencadenat una revolució tecnològica en la inspecció de fruita i el control de qualitat, i ha impulsat la recerca i el desenvolupament de noves solucions que adrecen reptes latents en la indústria agroalimentària com la detecció primerenca de malalties de la fruita. Aixı́ doncs, aquesta recerca ha consistit a desenrotllar una metodologia per a la detecció d’antracnosi en mango (fruits i fulles) en una etapa primerenca emprant imatge hiperespectral Vis-NIR i tècniques d’aprenentatge automàtic. A més, aquesta recerca ha avaluat el potencial de les dades espectrals per a caracteritzar els sı́mptomes d’antracnosi en mango per establir un conjunt rellevant de longituds d’ona que representen els principals canvis a nivell espectral introduı̈ts per la malaltia. Aquesta recerca ha definit una metodologia que ha inclòs la selecció de mostres representatives de fruits i fulles de mango de 3 varietats, la inoculació controlada de Colletotrichum i l’adquisició d’imatges hiperespectrals en condicions de laboratori. Addicionalment, s’ha definit un marc de treball per a implementar diferents filtres de preprocessament espectral i models d’aprenentatge automàtic per a la detecció i classificació de mostres amb la malaltia d’antracnosi. També s’han implementat diverses tècniques de selecció de caracterı́stiques per tal de triar un conjunt representatiu de longituds d’ona (10) que representen les diferents fases del desenvolupament dels sı́mptomes de la malaltia. Com a resultat, s’han obtingut models de classificació basats en xarxes neuronals i anàlisi discriminant quadràtic amb mètriques per damunt del 95% i han mostrat ser eficients en detectar mostres amb antracnosi 48-72 hores abans que els sı́mptomes visibles esdevingueren distingibles. A més, es va trobar que hi ha diverses regions espectrals en el rang Vis-NIR relacionats amb sı́mptomes d’antracnosi, cosa que permet la caracterització des d’etapes primerenques (no visibles) fins a tardanes. Els resultats d’aquesta investigació evidencien l’enorme potencial de la imatge hiperespectral i els models d’aprenentatge automàtic per a la detecció primerenca de l’antracnosi en mango amb tot o part de l’espectre i pot servir de base per al desenvolupament de nous sistemes de detecció en fruit de mango amb sistemes de visió multiespectralother
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.methodsEn los capítulos 3, 4 y 5 del documento de tesis se explica de forma amplia y detallada
dc.description.researchareaMachine learning and computer vision for spectral analysis
dc.description.researchareaAdvanced optical systems for fruit quality inspection and other applications
dc.description.researchareaPrecision agriculture
dc.description.sponsorshipMinciencias
dc.format.extentxxix, 200 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88555
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherUniversitat Politècnica de València
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.relation.referencesAbdulridha, J.; Ehsani, R. ; De Castro, A.: Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. In: Agriculture, 6(4) (2016)
dc.relation.referencesAcosta, Maylin; Quiñones, Ana; Munera, Sandra; de Paz, José M. ; Blasco, José: Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy. In: Sensors 23 (2023), Nr. 14, S. 6530
dc.relation.referencesAcosta, Maylin; Rodrı́guez-Carretero, Isabel; Blasco, José; de Paz, José M. ; Quiñones, Ana: Non-Destructive Appraisal of Macro- and Micronutrients in Per- simmon Leaves Using Vis/NIR Hyperspectral Imaging. In: Agriculture 13 (2023), Nr. 4, S. 916
dc.relation.referencesAcosta, Maylin; Visconti, Fernando; Quiñones, Ana; Blasco, José ; de Paz, José M.: Estimation of Macro and Micronutrients in Persimmon (Diospyros kaki L.) cv. ‘Rojo Brillante’ Leaves through Vis-NIR Reflectance Spectroscopy. In: Agronomy 13 (2023), Nr. 4, S. 1105
dc.relation.referencesAdebayo, Segun E.; Hashim, Norhashila; Abdan, Khalina; Hanafi, Marsyita ; Mollazade, Kaveh: Prediction of quality attributes and ripeness classification of bananas using optical properties. In: Scientia Horticulturae 212 (2016), S. 171–182
dc.relation.referencesAdão, Telmo; Hruška, Jonáš; Pádua, Luı́s; Bessa, José; Peres, Emanuel; Morais, Raul ; Sousa, Joaquim J.: Hyperspectral Imaging: A Review on UAV- Based Sensors, Data Processing and Applications for Agriculture and Forestry. In: Remote Sensing 9, Nr. 11, S. 2017
dc.relation.referencesAgronet: Reporte: Area, Producción y Rendimiento Nacional por Cultivo [online]. 2024. – Accessed on August 3rd, 2024
dc.relation.referencesAhmad, Muhammad: Literature Review – Traditional to Deep Models. Università Degli Studi Di Messina, 2021. – 16–51 S
dc.relation.referencesAires, Priscila S.; Gambarra-Neto, Francisco F.; Coutinho, Wirton M.; de Araújo, Alderi E.; da Silva, G. F.; Gouveia, J. P. ; Medeiros, Everaldo P.: Near infrared hyperspectral images and pattern recognition techniques used to identify etiological agents of cotton anthracnose and ramulosis. In: Journal of Spectral Imaging 7(2018), S. a8
dc.relation.referencesAkbari, Hamed; Uto, Kuniaki; Kosugi, Yukio; Kojima, Kazuyuki ; Tanaka, Naofumi: Cancer detection using infrared hyperspectral imaging. In: Cancer science 102 (2011), Nr. 4, S. 852–857
dc.relation.referencesAl-Sanabani, Dheya Galal A.; Solihin, Mahmud I.; Pui, Liew P.; Astuti, Winda; Ang, Chun K. ; Hong, Lim W.: Development of non-destructive mango assess- ment using Handheld Spectroscopy and Machine Learning Regression. In: Journal of Physics: Conference Series 1367 (2019), Nr. 1, S. 012030
dc.relation.referencesAlibabaei, K.; Gaspar, P. D.; Lima, T. M.; Campos, R. M.; Girao, I.; Monteiro, J. ; Lopes, C. M.: A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities. In: Remote Sensing 14 (2022), Nr. 3
dc.relation.referencesAlsalam, Bilal Hazim Y.; Morton, Kye; Campbell, Duncan ; Gonzalez, Felipe: Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. In: 2017 IEEE Aerospace Conference, 2017, S. 1–12
dc.relation.referencesAmat Rodrigo, Joaquı́n: Machine Learning con R [online]. 2017. – Accessed on August 3rd, 2024
dc.relation.referencesAnagnostis, A.; Tagarakis, A.C.; Asiminari, G.; Papageorgiou, E.; Kateris, D.; Moshou, D. ; Bochtis, D.: A deep learning approach for anthracnose infected trees classification in walnut orchards. In: Computers and Electronics in Agriculture 182 (2021), S. 105998
dc.relation.referencesArakeri, Megha. P.; Kumar, B. P. V.; Barsaiya, Shubham ; Sairam, H. V.: Computer vision based robotic weed control system for precision agriculture. In: 2017 International Conference on Advances in Computing, Communications and Informat- ics (ICACCI), 2017, S. 1201–1205
dc.relation.referencesArendse, Ebrahiema; Fawole, Olaniyi A.; Magwaza, Lembe S. ; Opara, Umezu- ruike L.: Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. In: Journal of Food Engineering 217 (2018), S. 11–23
dc.relation.referencesArivazhagan, S.; Ligi, S.V.: Mango leaf diseases identification using convolutional neural network. In: International Journal of Pure and Applied Mathematics 120 (2018), S. 11067–11079
dc.relation.referencesAshraful, A.; Kumar, A. S. ; Mahtalat, A.: Morphological characterization of Colletotrichum gloeosporioiedes identified from anthracnose of mangifera indica L. In: Asian Journal of Plant Pathology 11 (2017), Nr. 3, S. 102–117
dc.relation.referencesAttri, Ishana; Awasthi, Lalit K.; Sharma, Teek P. ; Rathee, Priyanka: A review of deep learning techniques used in agriculture. In: Ecological Informatics 77 (2023), S. 102217
dc.relation.referencesAvendano, J.; Ramos, P.J. ; Prieto, F.A.: A system for classifying vegetative structures on coffee branches based on videos recorded in the field by a mobile device. In: Expert Systems with Applications 88 (2017), S. 178–192. – ISSN 0957–4174
dc.relation.referencesBastidas-Rodriguez, Marı́a X.; Polania, Luisa; Gruson, Adrien ; Prieto- Ortiz, Flavio: Deep Learning for fractographic classification in metallic materials. In: Engineering Failure Analysis 113 (2020), S. 104532. – ISSN 1350–6307
dc.relation.referencesBhagwat, R. G.; Mehta, B. P.; Patil, V. A. ; Sharma, H.: Screening Of Culti- vars/Varieties Against Mango Anthracnose Caused by Colletotrichum Gloeosporioides. In: International Journal of Environmental & Agriculture Research 1 (2015), Nr. 1, S. 21–23
dc.relation.referencesBincader, S.; Pongpisutta, R. ; Rattanakreetakul, C.: Diversity of Col- letotrichum Species causing Anthracnose Disease from Mango cv. Nam Dork Mai See Tong based on ISSR-PCR. In: Indian Journal of Agricultural Research 56 (2022), Nr. 1, S. 81–90
dc.relation.referencesBrazilian Farmers: Mango: 7 varieties of a tropical global passion [online]. 2022. – Accessed on August 3rd, 2024
dc.relation.referencesBurglewski, N.; Srinivasagan, S.; Ketterings, Q. ; van Aardt, J.: Spatial and Spectral Dependencies of Maize Yield Estimation Using Remote Sensing. In: Sensors 24 (2024), Nr. 12
dc.relation.referencesBurrueco, Daniel: Matriz de pesos [online]. – Accessed on August 3rd, 2024
dc.relation.referencesByrnes, Walker; Ahlin, Konrad; Rains, Glen ; McMurray, Gary: Methodology for Stress Identification in Crop Fields Using 4D Height Data. In: IFAC-PapersOnLine 52 (2019), Nr. 30, S. 336–341
dc.relation.referencesBégué, A.; Lebourgeois, V.; Bappel, E.; Todoroff, P.; Pellegrino, A.; Bail- larin, F. ; Siegmund, B.: Spatio-temporal variability of sugarcane fields and rec- ommendations for yield forecast using NDVI. In: International Journal of Remote Sensing 31 (2010), Nr. 20, S. 5391–5407. – ISSN 0143–1161
dc.relation.referencesCabrera Ardila, C. E.; Alberto Ramirez, L. ; Prieto Ortiz, F. A.: Spectral analysis for the early detection of anthracnose in fruits of Sugar Mango (Mangifera indica). In: Computers and Electronics in Agriculture 173 (2020), S. 105357
dc.relation.referencesCastillo-Girones, S.; Van Belleghem, R.; Wouters, N.; Munera, S.; Blasco, J. ; Saeys, W.: Detection of subsurface bruises in plums using spectral imaging and deep learning with wavelength selection. In: Postharvest Biology and Technology 207 (2024), S. 112615
dc.relation.referencesCastillo-Girones, S.; Van Belleghem, R.; Wouters, N.; Munera, S.; Blasco, J. ; Saeys, W.: Detection of subsurface bruises in plums using spectral imaging and deep learning with wavelength selection. In: Postharvest Biology and Technology 207 (2024), S. 112615
dc.relation.referencesChillet, M.; Andrianjafinandrasana, S.; Minier, J.; Danthu, P.; Ramonta, I. R. ; Lechaudel, M.: Alternative methods to control postharvest disease of mango. In: Acta Horticulturae 1183 (2017), S. 319–324
dc.relation.referencesChrys, N. A.: Mango Anthracnose Disease: Present Status and Future Research Priorities. In: Plant Pathology Journal 5 (2006), Nr. 3, S. 266–273
dc.relation.referencesColilles, Enrique: Nace en España la Interprofesional del Aguacate y Mango [online]. 2023. – Accessed on August 3rd, 2024
dc.relation.referencesCorkidi, G.; Balderas-Ruı́z, K. A.; Taboada, B.; Serrano-Carreón, L. ; Galindo, E.: Assessing mango anthracnose using a new three-dimensional image- analysis technique to quantify lesions on fruit. In: 55 55 (2006), Nr. 2, S. 250–257
dc.relation.referencesCortés, V.; Ortiz, C.; Aleixos, N.; Blasco, J.; Cubero, S. ; Talens, P.: A new internal quality index for mango and its prediction by external visible and near- infrared reflection spectroscopy. In: Postharvest Biology and Technology 118 (2016), S. 148–158
dc.relation.referencesCui, Lihan; Yan, Lijie; Zhao1, Xiaohu; Yuan, Lin; Jin, Jing ; Zhang, Jingcheng: Detection and Discrimination of Tea Plant Stresses Based on Hyperspectral Imag- ing Technique at a Canopy Level. In: Phyton-International Journal of Experimental Botany 90 (2021), Nr. 2, S. 621–634
dc.relation.referencesDepartamento administrativo nacional de estadı́stica, DANE. El cultivo del mango, Mangifera indica, y su comportamiento frente a las condiciones ambien- tales y de manejo. Boletı́n mensual ”insumos y factores de asociados a la producción agropercuaria. 2015
dc.relation.referencesDofuor, A. K.; Quartey, N. K.; Osabutey, A. F.; Antwi-Agyakwa, A. K.; Asante, K.; Boateng, B. O.; Ablormeti, F. K.; Lutuf, H.; Osei-Owusu, J.; Osei, J. H. N.; Ekloh, W.; Loh, S. K.; Honger, J. O.; Aidoo, O. F. ; Ninsin, K. D.: Mango anthracnose disease: the current situation and direction for future research. In: Frontiers in microbiology 14 (2023), S. 1168203
dc.relation.referencesDong, J.; Burnham, J. G.; Boots, B.; Rains, G. ; Dellaert, F.: 4D crop monitoring: Spatio-temporal reconstruction for agriculture. (2017), S. 3878–3885
dc.relation.referencesDong, J.; Burnham, J. G.; Boots, B.; Rains, G. ; Dellaert, F.: 4D crop monitoring: Spatio-temporal reconstruction for agriculture. (2017), S. 3878–3885
dc.relation.referencesdos Santos Neto, João P.; de Assis, Mateus Wagner D.; Casagrande, Izabella P.; Cunha Júnior, Luis C. ; de Almeida Teixeira, Gustavo H.: Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. In: Postharvest Biology and Technology 130 (2017), S. 75–80
dc.relation.referencesDı́az, J.F.; Correa, J.C.: Comparación entre árboles de regresión CART y regresión lineal. In: Comunicaciones en Estadı́stica 6 (2013), Nr. 2, S. 175–195
dc.relation.referencesEllen Grice, Kathy R.; Edward Bally, Ian S.; Louise Wright, Carole; Mad- dox, Cheryldene; Ali, Asjad ; Louise Dillon, Natalie: Mango germplasm screening for the identification of sources of tolerance to anthracnose. In: Australasian Plant Pathology 52 (2023), S. 27–41
dc.relation.referencesEspinel, O. F. P.; Hernandez, C. A. V. ; Ortiz, F. A. P.: Detection of anthracnose in mango leaves by hyperspectral image analysis. In: 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 2021, S. 1–6
dc.relation.referencesEvans, E. A.; Ballen, F. H. ; Siddiq, M.: Mango Production, Global Trade, Con- sumption Trends, and Postharvest Processing and Nutrition. John Wiley & Sons, Ltd, 2017. – 1–16 S
dc.relation.referencesFazari, Antonio; Pellicer-Valero, Oscar J.; Gómez-Sanchıs, Juan; Bernardi, Bruno; Cubero, Sergio; Benalia, Souraya; Zimbalatti, Giuseppe ; Blasco, Jose: Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. In: Computers and Electronics in Agriculture 187 (2021), S. 106252
dc.relation.referencesFood and Agriculture Organization, FAO. Major Tropical Fuits Market Review 2022. 2023
dc.relation.referencesFood and Agriculture Organization, FAO: Crops production and trade statis- tics [online]. 2024. – Accessed on August 3rd, 2024
dc.relation.referencesGabriëls, Suzan H.; Mishra, Puneet; Mensink, Manon G.; Spoelstra, Patrick ; Woltering, Ernst J.: Non-destructive measurement of internal browning in mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis. In: Postharvest Biology and Technology 166 (2020), S. 111206
dc.relation.referencesGalán-Saúco, V.: Trends in world mango production and marketing. In: Acta Horticulturae 1183 (2017), S. 351–364
dc.relation.referencesGarcı́a, J.; Abaunza, C. A. ; Rivera, J. E.: Modelo productivo para el cultivo de mango en el valle del Alto Magdalena para el departamento del Tolima. Corpoica, 2017. – 104–119 S
dc.relation.referencesGañán, L.; Álvarez, E. ; Castaño-Zapata, J.: Identificación genética de ais- lamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, ba- nano, mango y tomate de árbol. In: Revista de la Academia Colombiana de Ciencias Exactas, Fı́sicas y Naturales 39 (2015), Nr. 152
dc.relation.referencesGebishu, M.; Fikadu, B.; Bekele, B.; Jule, L. T.; Nagaprasad, N. ; Ra- maswamy, K.: Fluorescence and UV/visible spectroscopic investigation of orange and mango fruit juice quality in case of Adama Town. In: Scientific Reports 12 (2022), S. 7345
dc.relation.referencesGedeon, T.D.: Data Mining of Inputs: Analysing Magnitude and Functional Mea- sures. In: International Journal of Neural Systems 8 (1997), Nr. 2, S. 209–218
dc.relation.referencesGhazal, Sumaira; Munir, Arslan ; Qureshi, Waqar S.: Computer vision in smart agriculture and precision farming: Techniques and applications. In: Artificial Intelli- gence in Agriculture 13 (2024), S. 64–83
dc.relation.referencesGimenez, J.; Sansoni, S.; Tosetti, S.; Capraro, F. ; Carelli, R.: Trunk detec- tion in tree crops using RGB-D images for structure-based ICM-SLAM. In: Computers and Electronics in Agriculture 199 (2022), S. 11. – ISSN 0168–1699
dc.relation.referencesGómez-Sanchis, J.; Blasco, J.; Soria-Olivas, E.; Lorente, D.; Escandell- Montero, P.; Martı́nez-Martı́nez, J.M.; Martı́nez-Sober, M. ; Aleixos, N.: Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. In: Postharvest Biology and Technology 82 (2013), S. 76–86
dc.relation.referencesHamuda, Esmael; Glavin, Martin ; Jones, Edward: A survey of image processing techniques for plant extraction and segmentation in the field. In: Computers and Electronics in Agriculture 125 (2016), S. 184–199
dc.relation.referencesHerbario Universidad Distrital, UDBC. Guı́a para la Recolección y Preser- vación de Muestras Botánicas en Campo. 2009
dc.relation.referencesHoltorf, Tim; Knoll, Florian J. ; Hussmann, Stephan: Multimodal image stitch- ing algorithm for weed control applications in organic farming. In: 2016 SAI Computing Conference (SAI), 2016
dc.relation.referencesHussain, Abid; Pu, Hongbin ; Sun, Da-Wen: Innovative nondestructive imaging techniques for ripening and maturity of fruits – A review of recent applications. In: Trends in Food Science & Technology 72 (2018), S. 144–152
dc.relation.referencesIshida, T.; Kurihara, J.; Viray, F. A.; Namuco, S. B.; Paringit, E. C.; Perez, G. J.; Takahashi, Y. ; Marciano, J. J.: A novel approach for vegetation classi- fication using UAV-based hyperspectral imaging. In: Computers and Electronics in Agriculture 144 (2018), S. 80–85. – ISSN 0168–1699
dc.relation.referencesIshida, Tetsuro; Kurihara, Junichi; Viray, Fra A.; Namuco, Shielo B.; Paringit, Enrico C.; Perez, Gay J.; Takahashi, Yukihiro ; Marciano, Joel J.: A novel approach for vegetation classification using UAV-based hyperspectral imaging. In: Computers and Electronics in Agriculture 144 (2018), S. 80–85
dc.relation.referencesIsmail, A.M.; El-Ganainy, S.M.: Characterization of Colletotrichum species associ- ating with anthracnose disease of mango in Egypt. In: Journal of Plant Diseases and Protection 129 (2022), Nr. 2, S. 449–454
dc.relation.referencesJafari, M.; Minaei, S. ; Safaie, N.: Detection of pre-symptomatic rose powdery- mildew and gray-mold diseases based on thermal vision. In: Infrared Physics & Tech- nology 85 (2017), S. 170–183
dc.relation.referencesJhaumeer Laulloo, S.; Bhowon, M. G.; Soyfoo, S. ; Chua, L. S.: Nutritional and Biological Evaluation of Leaves of Mangifera indica from Mauritius. In: Journal of Chemistry 2018 (2018), Nr. 1, S. 6869294
dc.relation.referencesJiang, Qiyou; Wu, Gangshan; Tian, Chongfeng; Li, Na; Yang, Huan; Bai, Yuhao ; Zhang, Baohua: Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. In: Infrared Physics & Technology 118 (2021), S. 103898
dc.relation.referencesJiang, Qiyou; Wu, Gangshan; Tian, Chongfeng; Li, Na; Yang, Huan; Bai, Yuhao ; Zhang, Baohua: Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. In: Infrared Physics & Technology 118 (2021), S. 103898
dc.relation.referencesKabir, Yearul; Shekhar, Hossain U. ; Sidhu, J. S.: Phytochemical Compounds in Functional Properties of Mangoes. John Wiley & Sons, Ltd, 2017. – 237–254 S
dc.relation.referencesKamilaris, A.; Prenafeta-Boldú, F. X.: Deep learning in agriculture: A survey. In: Computers and electronics in agriculture 147 (2018), S. 70–90
dc.relation.referencesKarunanayake, L.C.; Sinniah, G.D.; Adikaram, N.K.B. ; Abayasekara, C.L.: How constitutive defences affect the development of postharvest anthracnose and stem- end rot in mango fruit. In: Acta Horticulturae 1183 (2017), S. 245–250
dc.relation.referencesKhan, M. S.; Uandai, S. B. ; Srinivasan, H.: Anthracnose disease diagnosis by image processing, support vector machine and correlation with pigments. In: Journal of Plant Pathology 101 (2019), S. 749–751
dc.relation.referencesKhan, Muhammad J.; Khan, Hamid S.; Yousaf, Adeel; Khurshid, Khurram ; Abbas, Asad: Modern Trends in Hyperspectral Image Analysis: A Review. In: IEEE Access 6 (2018), S. 14118–14129
dc.relation.referencesKhanna, R.; Möller, M.; Pfeifer, J.; Liebisch, F.; Walter, A. ; Siegwart, R.: Beyond point clouds - 3D mapping and field parameter measurements using UAVs. In: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 2015, S. 1–4
dc.relation.referencesKhirade, S. D.; Patil, A. B.: Plant disease detection using image processing. In: 2015 International conference on computing communication control and automation (2015), S. 768–771
dc.relation.referencesKoley, Chhanda; Nirala, Anil K.: Activity assessment of anthracnose disease in- fected region of aonla. In: AIP Conference Proceedings Bd. 2352, 2021, S. 030013
dc.relation.referencesKotwal, Jameer; Kashyap, Dr.Ramgopal ; Pathan, Dr.Shafi: Agricultural plant diseases identification: From traditional approach to deep learning. In: Materials Today: Proceedings 80 (2023), S. 344–356
dc.relation.referencesKumar, M.; Saurabh, V.; Tomar, M.; Hasan, M.; Changan, S.; Sasi, M.; Ma- heshwari, C.; Prajapati, U.; Singh, S.; Prajapat, R. K.; Dhumal, S.; Punia, S.; Amarowicz, R. ; Mekhemar, M.: Mango (Mangifera indica L.) Leaves: Nutri- tional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. In: Antioxidants (Basel, Switzerland) 10 (2021), Nr. 2, S. 99
dc.relation.referencesKumar, Vinod; Singh, Ravi S.; Rambabu, Medara ; Dua, Yaman: Deep learning for hyperspectral image classification: A survey. In: Computer Science Review 53 (2024), S. 100658
dc.relation.referencesKumari, Pavitra; Singh, Rajender: Anthracnose of Mango Incited by Colletotrichum gloeosporioides: A Comprehensive Review. In: International Journal of Pure and Applied Bio-science 5 (2017), Nr. 1, S. 48–56
dc.relation.referencesKumari, Pavitra; Singh, Rajender ; Punia, Rakesh: Evaluation of Different In- oculation Methods for Mango Anthracnose Disease Development. In: International Journal of Current Microbiology and Applied Sciences (IJCMAS) 6 (2017), Nr. 11, S. 3028–3032
dc.relation.referencesLangford, Z. L.; Kumar, J. ; Hoffman, F. M.: Convolutional neural network approach for mapping arctic vegetation using multi-sensor remote sensing fusion. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW) (2017), S. 322–331
dc.relation.referencesLeCun, Y.; Bengio, Y. ; Hinton, G.: Deep learning. In: Nature 521 (2015), S. 436–444
dc.relation.referencesLee, David W.; Brammeier, Susan ; Smith, Alan P.: The Selective Advantages of Anthocyanins in Developing Leaves of Mango and Cacao. In: Biotropica 19 (1987), Nr. 1, S. 40–49
dc.relation.referencesLee, L.C.; Liong, C.Y. ; Jemain, A.A.: Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. In: A 143 (2018), Nr. 15, S. 3526–3539
dc.relation.referencesLi, Cheng; He, Mengyu; Cai, Zeyi; Qi, Hengnian; Zhang, Jianhong ; Zhang, Chu: Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru. In: Foods 12 (2023), Nr. 2, S. 247
dc.relation.referencesLi, J.; Liu, Z. ; Wang, D.: A Lightweight Algorithm for Recognizing Pear Leaf Diseases in Natural Scenes Based on an Improved YOLOv5 Deep Learning Model. In: Agriculture 14 (2024), Nr. 2, S. 273
dc.relation.referencesLi, Q.; Bu, J.; Shu, J.; Yu, Z.; Tang, L.; Huang, S.; Guo, T.; Mo, J.; Luo, S.; Solangi, G. S. ; Hsiang, T.: Colletotrichum species associated with mango in southern China. In: Scientific Reports 9 (2019), S. 18891
dc.relation.referencesLi, Xiong; Liu, Yande; Jiang, Xiaogang ; Wang, Guantian: Supervised classification of slightly bruised peaches with respect to the time after bruising by using hyperspec- tral imaging technology. In: Infrared Physics & Technology 113 (2021), S. 103557
dc.relation.referencesLi, Yuhua; Luo, Zhihui; Wang, Fengjie ; Wang, Yingxu: Hyperspectral Leaf Image- Based Cucumber Disease Recognition Using the Extended Collaborative Representa- tion Model. In: Sensors 20 (2020), Nr. 14, S. 4045
dc.relation.referencesLiu, F.; Damm, U.; Cai, L. ; Crous, P. W.: Species of the Colletotrichum gloeospori- oides complex associated with anthracnose diseases of Proteaceae. In: Fungal diversity 61 (2013), S. 89–105
dc.relation.referencesLiu, L.; Tao, H.; Fang, J.; Zheng, W.; Wang, L. ; Jin, X.: Identifying Anthracnose and Black Spot of Pear Leaves on Near-infrared Hyperspectroscopy. In: Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery 52 (2022), Nr. 2, S. 221–230
dc.relation.referencesLiu, Nanfeng; Townsend, Philip A.; Naber, Mack R.; Bethke, Paul C.; Hills, William B. ; Wang, Yi: Hyperspectral imagery to monitor crop nutrient status within and across growing seasons. In: Remote Sensing of Environment 255 (2021), S. 112303
dc.relation.referencesLiu, Xuan; Wang, Juan; Wang, Hao; Huang, Yirui ; Ren, Zhenhui: Prediction of prunoideae fruit quality characteristics based on machine learning and spectral char- acteristic acquisition optimization. In: Food Control 165 (2024), S. 110627
dc.relation.referencesLu, G.; Fei, B.: Medical hyperspectral imaging: a review. In: Journal of biomedical optics 19(1) (2014)
dc.relation.referencesLu, Jinzhu; Ehsani, Reza; Shi, Yeyin; Abdulridha, Jaafar; de Castro, Ana I. ; Xu, Yunjun: Field detection of anthracnose crown rot in strawberry using spectroscopy technology. In: Computers and Electronics in Agriculture 135 (2017), S. 289–299
dc.relation.referencesM., Jianyou; Z., Guang; L., Qili; S., Ghulam S.; T., Lihua; G., Tangxun; H., Suiping ; H., Tom: Identification and Characterization of Colletotrichum Species Associated with Mango Anthracnose in Guangxi, China. In: Plant Disease 102 (2018), Nr. 7, S. 1283–1289
dc.relation.referencesMadiwalar, Shriroop C.; Wyawahare, Medha V.: Plant disease identification: A comparative study. In: 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, S. 13–18
dc.relation.referencesMahlein, A.K.; Kuska, M.T.; Thomas, S.; Bohnenkamp, D.; Alisaac, E.; Behmann, J.; Wahabzada, M. ; Kersting, K.: Plant disease detection by hy- perspectral imaging: from the lab to the field. In: Advances in Animal Biosciences 8 (2017), Nr. 2, S. 238–243
dc.relation.referencesMakino, Y.; Isami, A.; Suhara, T.; Oshita, S.; Kawagoe, Y.; Tsukada, M.; Ishiyama, R.; Serizawa, M.; Purwanto, Y.A.; Ahmad, U.; Mardjan, S. ; Kuroki, S.: Non-destructive analysis of internal and external qualities of mango fruits during storage by hyperspectral imaging. In: Acta Horticulturae 1011 (2013), S. 443–449
dc.relation.referencesMaldonado-Celis, M. E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B. ; Ospina, J. C. G.: Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. In: Frontiers in plant science 10 (2019), S. 1073
dc.relation.referencesMishra, Puneet; Woltering, Ernst ; El Harchioui, Najim: Improved prediction of ‘Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. In: Infrared Physics & Technology 110 (2020), S. 103459
dc.relation.referencesMo, J.; Zhao, G.; Li, Q.; Solangi, G. S.; Tang, L.; Guo, T.; Huang, S. ; Hsiang, T.: Identification and Characterization of Colletotrichum Species Associated with Mango Anthracnose in Guangxi. In: Plant Disease 102 (2018), Nr. 7, S. 1283–1289
dc.relation.referencesMonteiro, S. T.; Kosugi, Y.; Uto, K. ; Watanabe, E.: Towards applying hy- perspectral imagery as an intraoperative visual aid tool. In: Proceedings of the 4th IASTED international conference on Visualization, Imaging and Image Processing (2004), S. 483–488
dc.relation.referencesMonteon Ojeda, A.; Islas, J.S. S.; Mora Aguilera, J.A.; De Leon Garcı́a De Alba, C.; Rodrı́guez, A. P. ; Lopez, A. V.: An alternative inoculation technique of Colletotrichum gloeosporioides on mango for early anthracnose tolerance screening. In: Agronomı́a Mesoamericana 29 (2018), Nr. 2, S. 263–274
dc.relation.referencesMoshou, D.; Bravo, C.; West, J.; Wahlen, S.; McCartney, A. ; Ramon, H.: Automatic detection of ‘yellow rust’in wheat using reflectance measurements and neu- ral networks. In: Computers and electronics in agriculture 44(3) (2004), S. 173–188
dc.relation.referencesMunawar, Agus A.; Zulfahrizal; Meilina, Hesti ; Pawelzik, Elke: Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of in- tact mango: Comparison among regression approaches. In: Computers and Electronics in Agriculture 193 (2022), S. 106657
dc.relation.referencesMunera, Sandra; Besada, Cristina; Aleixos, Nuria; Talens, Pau; Salvador, Ale- jandra; Sun, Da-Wen; Cubero, Sergio ; Blasco, José: Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. In: LWT 77 (2017), S. 241–248
dc.relation.referencesMunera, Sandra; Besada, Cristina; Blasco, José; Cubero, Sergio; Salvador, Alejandra; Talens, Pau ; Aleixos, Nuria: Astringency assessment of persimmon by hyperspectral imaging. In: Postharvest Biology and Technology 125 (2017), S. 35–41
dc.relation.referencesNansen, C.; Abidi, N.; Sidumo, A. J. ; Gharalari, A. H.: Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment. In: Remote Sensing 2 (2010), Nr. 4, S. 908–925
dc.relation.referencesNational mango board: Mango varieties & Availability [online]. 2024. – Accessed on August 3rd, 2024
dc.relation.referencesNavrozidis, I.; Alexandridis, T.K.; Dimitrakos, A.; Lagopodi, A.L.; Moshou, D. ; Zalidis, G.: Identification of purple spot disease on asparagus crops across spatial and spectral scales. In: Computers and Electronics in Agriculture 148 (2018), S. 322–329
dc.relation.referencesN’Guettia, M. Y.; Kouassi, N.; Diallo, H. A. ; Kouakou, F. R. Y. Y.: Evaluation of Anthracnose Disease of Mango (Mangifera indica L.) Fruits and Characterization of Causal Agent in Côte d’Ivoire. In: International Journal of Agriculture Innovations and Research 2 (2014), Nr. 6, S. 1008–1017
dc.relation.referencesOkyere, F. G.; Cudjoe, D.; Sadeghi-Tehran, P.; Virlet, N.; Riche, A. B.; Castle, M.; Greche, L.; Simms, D.; Mhada, M.; Mohareb, F. ; Hawkesford, M. J.: Modeling the spatial-spectral characteristics of plants for nutrient status iden- tification using hyperspectral data and deep learning methods. In: Frontiers in Plant Science 14 (2023)
dc.relation.referencesOmar, A.F.; Atan, H. ; MatJafri, M.Z.: Peak Response Identification through Near-Infrared Spectroscopy Analysis on Aqueous Sucrose, Glucose, and Fructose So- lution. In: Spectroscopy Letters 45 (2012), Nr. 3, S. 190–201
dc.relation.referencesOrtı́z, M. A.; Vargas, M. R.; G., R.; Madinaveitia, Chew ; Velázquez, J. A. M.: Propiedades funcionales de las antocianinas. In: Biotecnia 13 (2011), Nr. 2, S. 16–22
dc.relation.referencesPanche, A. N.; Diwan, A. D. ; Chandra1, S. R.: Flavonoids: an overview. In: Journal of nutritional science 5 (2016), S. e47
dc.relation.referencesPandey, A.; Pandey, B.K.; Muthukuma, M.; Yadava, L.P. ; Chauhan, U.K.: Histopathological Study of Infection Process of Colletotrichum gloeosporioides Penz and Sacc. on Mangifera indica L. In: Plant Pathology Journal 11 (2012), Nr. 1, S. 18–24
dc.relation.referencesParra, Francisco: Estadı́stica y Machine Learning con R [online]. 2019. – Accessed on August 3rd, 2024
dc.relation.referencesParvez, GM M.: Pharmacological Activities of Mango (Mangifera Indica): A Review. In: Journal of Pharmacognosy and Phytochemistry 5 (2016), Nr. 3, S. 1–7
dc.relation.referencesPatel, K.K.; Kar, A. ; Khan, M.A.: Potential of reflected UV imaging technique for detection of defects on the surface area of mango. In: Journal of food science and technology 56 (2019), Nr. 3
dc.relation.referencesPatil, P.; Yaligar, N. ; Meena, S. M.: Comparison of Performance of Classifiers- SVM, RF and ANN in Potato Blight Disease Detection Using Leaf Images. In: 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (2017), S. 1–5
dc.relation.referencesPolak, Adam; Kelman, Timothy; Murray, Paul; Marshall, Stephen; Stothard, David J.; Eastaugh, Nicholas ; Eastaugh, Francis: Hyperspectral imaging combined with data classification techniques as an aid for artwork authenti- cation. In: Journal of Cultural Heritage 26 (2017), S. 1–11
dc.relation.referencesPrabu, M.; Chelliah, Balika J.: Mango leaf disease identification and classifica- tion using a CNN architecture optimized by crossover-based levy flight distribution algorithm. In: Neural Computing and Applications 34 (2022), S. 7311–7324
dc.relation.referencesPáez Redondo, A. R. Tecnologı́as sostenibles para el manejo de la antracnosis (Colletotrichum gloesporioides (Penz.) Penz. y Sacc.) en papaya (Carica papaya L.) y mango (Mangifera indica L.). Boletı́n técnico No.7. 2003
dc.relation.referencesQin, L. P.; Zhang, Y.; Su, Q.; Chen, Y. L.; Nong, Q.; Xie, L.; Yu, G. M. ; Huang, S. L.: First report of anthracnose of Mangifera indica caused by Colletotrichum scovillei in China. In: Plant Disease 103 (2019), Nr. 5
dc.relation.referencesRaghavendra, Anitha; Guru, D.S. ; Rao, Mahesh K.: Mango internal defect detection based on optimal wavelength selection method using NIR spectroscopy. In: Artificial Intelligence in Agriculture 5 (2021), S. 43–51
dc.relation.referencesRai, Nitin; Zhang, Yu; Ram, Billy G.; Schumacher, Leon; Yellavajjala, Ravi K.; Bajwa, Sreekala ; Sun, Xin: Applications of deep learning in precision weed management: A review. In: Computers and Electronics in Agriculture 206 (2023), S. 107698
dc.relation.referencesRamos, P.J.; Prieto, F.A.; Montoya, E.C. ; Oliveros, C.E.: Automatic fruit count on coffee branches using computer vision. In: Computers and Electronics in Agriculture 137 (2017), S. 9–22. – ISSN 0168–1699
dc.relation.referencesRamı́rez Alberto, L.; Cabrera Ardila, C. E. ; Prieto Ortiz, F. A.: A com- puter vision system for early detection of anthracnose in sugar mango (Mangifera indica) based on UV-A illumination. In: Information Processing in Agriculture 10 (2023), Nr. 2, S. 204–215
dc.relation.referencesRibeiro, Sônia Machado R.; Schieber, Andreas ; Watson, Ronald R. (Hrsg.); Preedy, Victor R. (Hrsg.): Chapter 34 - Bioactive Compounds in Mango (Mangifera indica L.). Academic Press, 2010. – 507–523 S
dc.relation.referencesRizvee, Redwan A.; Orpa, Tasnim H.; Ahnaf, Adil; Kabir, Md A.; Ahmmad Rashid, Mohammad R.; Islam, Mohammad M.; Islam, Maheen; Jabid, Taskeed ; Ali, Md S.: LeafNet: A proficient convolutional neural network for detecting seven prominent mango leaf diseases. In: Journal of Agriculture and Food Research 14 (2023), S. 100787
dc.relation.referencesRungpichayapichet, Parika; Chaiyarattanachote, Nimmitra; Khuwijitjaru, Pramote; Nakagawa, Kyuya; Nagle, Marcus; Müller, Joachim ; Mahayothee, Busarakorn: Comparison of near-infrared spectroscopy and hyperspectral imaging for internal quality determination of ‘Nam Dok Mai’ mango during ripening. In: Journal of Food Measurement and Characterization 17 (2023), S. 1501–1514
dc.relation.referencesRungpichayapichet, Parika; Mahayothee, Busarakorn; Nagle, Marcus; Khuwi- jitjaru, Pramote ; Müller, Joachim: Robust NIRS models for non-destructive pre- diction of postharvest fruit ripeness and quality in mango. In: Postharvest Biology and Technology 111 (2016), S. 31–40
dc.relation.referencesRungpichayapichet, Parika; Nagle, Marcus; Yuwanbun, Pasinee; Khuwijit- jaru, Pramote; Mahayothee, Busarakorn ; Müller, Joachim: Prediction mapping of physicochemical properties in mango by hyperspectral imaging. In: Biosystems En- gineering 159 (2017), S. 109–120
dc.relation.referencesSaha, Dhritiman; Manickavasagan, Annamalai: Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. In: Current Research in Food Science 4 (2021), S. 28–44
dc.relation.referencesSalazar-Castro, R.: El cultivo del mango. In: ASIAVA (2003), S. 111–119
dc.relation.referencesSaleem, Rabia; Shah, Jamal Hussain; Sharif, Muhammad; Yasmin, Mussarat; Yong, Hwan-Seung ; Cha, Jaehyuk: Mango Leaf Disease Recognition and Classifi- cation Using Novel Segmentation and Vein Pattern Technique. In: Applied Sciences 11 (2021), S. 11901
dc.relation.referencesSanders, G.M.; Korsten, L.: Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides. In: Microbio- logical Research 158 (2003), Nr. 2, S. 143–150
dc.relation.referencesSangeetha, C. G.; Rawal, R. D.: Nutritional studies of Colletotrichum gloeospo- rioides (Penz.)Penz. and Sacc. the incitant of mango anthracnose. In: American- Eurasian Journal of Sustainable Agriculture 1 (2007), S. 37–41
dc.relation.referencesSawant, S. S.; Manoharan, P.: New framework for hyperspectral band selection us- ing modified wind-driven optimization algorithm. In: International Journal of Remote Sensing 40 (2019), Nr. 20, S. 7852–7873
dc.relation.referencesSerna-Escolano, Vicente; Giménez, Marı́a J.; Zapata, Pedro J.; Cubero, Sergio; Blasco, José ; Munera, Sandra: Non-destructive assessment of ’Fino’ lemon quality through ripening using NIRS and chemometric analysis. In: Postharvest Biology and Technology 212 (2024), S. 112870
dc.relation.referencesShahrayini, E.; Shafizadeh-Moghadam, H.; Noroozi, A.A. ; Eghbal, M.K.: Multiple-depth modeling of soil organic carbon using visible–near infrared spec- troscopy. In: Geocarto International 37 (2022), Nr. 5, S. 1393–1407
dc.relation.referencesSharma, Adikshita; Sharma, Inder M.; Sharma, Monica; Sharma, Kishor ; Sharma, Amit: Effectiveness of fungal, bacterial and yeast antagonists for manage- ment of mango anthracnose (Colletotrichum gloeosporioides). In: Egyptian Journal of Biological Pest Control 31 (2021), Nr. 135
dc.relation.referencesSharma, Sneha; Sirisomboon, Panmanas ; Pornchaloempong, Pimpen: Ap- plication of a Vis-NIR Spectroscopic Technique to Measure the Total Soluble Solids Content of Intact Mangoes in Motion on a Belt Conveyor. In: The Horticulture Journal 89 (2020), Nr. 5, S. 545–552
dc.relation.referencesSingh, U. P.; Chouhan, S. S.; Jain, S. ; Jain, S.: Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. In: IEEE Access 7 (2019), S. 43721–43729
dc.relation.referencesSiripatrawan, U.; Makino, Y.: Early Detection of Anthracnose on Mango Fruit Using Hyperspectral Imaging. In: Rep. Grant. Res., Asahi Glass Foundation 90 (2021)
dc.relation.referencesSiripatrawan, U.; Makino, Y.: Hyperspectral imaging coupled with machine learn- ing for classification of anthracnose infection on mango fruit. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 309 (2024), S. 123825
dc.relation.referencesSivankalyani, Velu; Feygenberg, Oleg; Diskin, Sonia; Wright, Ben ; Alkan, Noam: Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. In: Postharvest Biology and Technology 111 (2016), S. 132–139
dc.relation.referencesSubedi, P.P.; Walsh, K.B.: Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. In: Postharvest Biology and Technology 62 (2011), Nr. 3, S. 238–245
dc.relation.referencesSun, Meijun; Zhang, Dong; Liu, Li ; Wang, Zheng: How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method. In: Food Chemistry 218 (2017), S. 413–421
dc.relation.referencesSun, W.; Du, Q.: Hyperspectral Band Selection: A Review. In: IEEE Geoscience and Remote Sensing Magazine 7 (2019), Nr. 2, S. 118–139
dc.relation.referencesSwetha, K.; Venkataraman, Veena; Sadhana, G.D. ; Priyatharshini, R.: Hybrid approach for anthracnose detection using intensity and size features. In: 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), 2016, S. 28–32
dc.relation.referencesTovar-Pedraza, J. M.; Mora-Aguilera, J. A.; Nava-Dı́az, C.; Lima, N. B.; Michereff, S. J.; Sandoval-Islas, J. S.; Câmara, M. P. S.; Téliz-Ortiz, D. ; Leyva-Mir, S. G.: Distribution and Pathogenicity of Colletotrichum Species Associated With Mango Anthracnose in Mexico. In: Plant Disease 104 (2020), Nr. 1, S. 137–142
dc.relation.referencesTripathi, M. K.; Reddy, P. K.; Neelakantappa, M.; Andhare, C. V. ; Shiv- endra, S.: Identification of mango variety using near infrared spectroscopy. In: Indonesian Journal of Electrical Engineering and Computer Science 31 (2023), Nr. 3, S. 1776–1783
dc.relation.referencesUddin, M. N.; Shefat, S. H. T.; Afroz, M. ; Moon, N. J.: Management of Anthracnose Disease of Mango Caused by Colletotrichum gloeosporioides: A Review. In: Acta Scientific Agriculture 2 (2018), Nr. 10, S. 169–177
dc.relation.referencesUlya, Millatul; Chamidah, Nur ; Saifudin, Toha: Mango quality prediction based on near-infrared spectroscopy using multi-predictor local polynomial regression mod- eling. In: F1000Research 12 (2024), Nr. 656, S. 1–24
dc.relation.referencesValencia Fruits: El cultivo de mango sigue en auge [online]. 2022. – Accessed on August 3rd, 2024
dc.relation.referencesVélez-Rivera, Nayeli; Blasco, José; Chanona-Pérez, Jorge; Calderón- Domı́nguez, Georgina; de Jesús Perea-Flores, Marı́a; Arzate-Vázquez, Israel; Cubero, Sergio ; Farrera-Rebollo, Reynold: Computer Vision System Applied to Classification of “Manila” Mangoes During Ripening Process. In: Food and Bioprocess Technology 7 (2014), S. 1183–1194
dc.relation.referencesVélez-Rivera, Nayeli; Gómez-Sanchis, Juan; Chanona-Pérez, Jorge; Car- rasco, Juan J.; Millán-Giraldo, Mónica; Lorente, Delia; Cubero, Sergio ; Blasco, José: Early detection of mechanical damage in mango using NIR hyper- spectral images and machine learning. In: Biosystems Engineering 122 (2014), S. 91–98
dc.relation.referencesWang, F.; Wang, F.; Zhang, Y.; Hu, J.; Huang, J. ; Xie, J.: Rice Yield Estima- tion Using Parcel-Level Relative Spectral Variables From UAV-Based Hyperspectral Imagery. In: Frontiers in Plant Science 10 (2019)
dc.relation.referencesWeir, B.S.; Johnston, P.R. ; Damm, U.: The Colletotrichum gloeosporioides species complex. In: Studies in Mycology 73 (2012), S. 115–180
dc.relation.referencesWongsila, S.; Chantrasri, P. ; Sureephong, P.: Machine Learning Algorithm Development for detection of Mango infected by Anthracnose Disease. In: 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI North- ern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, 2021, S. 249–252
dc.relation.referencesYeh, Yu-Hui; Chung, Wei-Chang; Liao, Jui-Yu; Chung, Chia-Lin; Kuo, Yan-Fu ; Lin, Ta-Te: Strawberry foliar anthracnose assessment by hyperspectral imaging. In: Computers and Electronics in Agriculture 122 (2016), S. 1–9
dc.relation.referencesYeh, Yu-Hui F.; Chung, Wei-Chang; Liao, Jui-Yu; Chung, Chia-Lin; Kuo, Yan-Fu ; Lin, Ta-Te: A Comparison of Machine Learning Methods on Hyperspectral Plant Disease Assessments. In: IFAC Proceedings Volumes 46 (2013), Nr. 4, S. 361–365
dc.relation.referencesZakaria, L.: Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops—A review. In: Agriculture 11 (2021), Nr. 4, S. 297
dc.relation.referencesZarco-Tejada, P. J.; Camino, C.; Beck, P. S. A.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; Gonzalez-Dugo, V.; North, P. R. J.; Landa, B. B.; Boscia, D.; Saponari, M. ; Navas-Cortes, J. A.: Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. In: Nature Plants 4 (2018), S. 432–439
dc.relation.referencesZaw, M.M.; Setha, S. ; Naradisorn, M.: Comparison of hot water and UV-C treatments in controlling postharvest disease and maintaining postharvest quality of ’Nam Dok Mai Si Thong’ mango. In: Acta Horticulturae 1336 (2022), S. 149–158
dc.relation.referenceszhang, Chu; Guo, Chentong; Liu, Fei; Kong, Wenwen; He, Yong ; Lou, Binggan: Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. In: Journal of Food Engineering 179 (2016), S. 11–18
dc.relation.referencesZhang, Jingcheng; Tian, Yangyang; Yan, Lijie; Wang, Bin; Wang, Ling; Xu, Junfeng ; Wu, Kaihua: Diagnosing the symptoms of sheath blight disease on rice stalk with an in-situ hyperspectral imaging technique. In: Biosystems Engineering 209 (2021), S. 94–105
dc.relation.referencesZhang, Peipei; Wang, Huaiwen; Ji, Hongwei; Li, Yankun; Zhang, Xiaochuan ; Wang, Yanan: Hyperspectral imaging-based early damage degree representation of apple: a method of correlation coefficient. In: Postharvest Biology and Technology 199 (2023), S. 112309
dc.relation.referencesZhang, Ruihua; Wang, Meng; Liu, Pengfei; Zhu, Tianyu; Qu, Xiaotian; Chen, Xujun ; Xiao, Xinqing: Flexible Vis/NIR sensing system for banana chilling injury. In: Postharvest Biology and Technology 207 (2024), S. 112623
dc.relation.referencesZhao, Xiaohu; Zhang, Jingcheng; Huang, Yanbo; Tian, Yangyang ; Yuan, Lin: Detection and discrimination of disease and insect stress of tea plants using hyper- spectral imaging combined with wavelet analysis. In: Computers and Electronics in Agriculture 193 (2022), S. 106717
dc.relation.referencesZheng, Z.; Liu, Y.; He, M.; Chen, D.; Sun, L. ; Zhu, F.: Effective band selection of hyperspectral image by an attention mechanism-based convolutional network. In: RSC Advances 12 (2022), Nr. 14, S. 8750–8759
dc.relation.referencesZhu, Wenjing; Chen, Hua; Ciechanowska, Izabela ; Spaner, Dean: Applica- tion of infrared thermal imaging for the rapid diagnosis of crop disease. In: IFAC- PapersOnLine 51 (2018), Nr. 17, S. 424–430
dc.relation.referencesZou, Lin; Li, Huijun; Ding, Xuejie; Liu, Zifan; He, Dongqiong; Kowah, Jamal A. H.; Wang, Lisheng; Yuan, Mingqing ; Liu, Xu: A Review of The Application of Spec- troscopy to Flavonoids from Medicine and Food Homology Materials. In: Molecules (Basel, Switzerland) 27 (2022), Nr. 22, S. 7766
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalMachine learningeng
dc.subject.proposalHyperspectral imagingeng
dc.subject.proposalAnthracnose detectioneng
dc.subject.proposalWavelength selectioneng
dc.subject.proposalAprendizaje automaticospa
dc.subject.proposalImagen hiperespectralspa
dc.subject.proposalDetección de antracnosisspa
dc.subject.proposalSelección de longitudes de ondasspa
dc.subject.proposalMangifera indica L.eng
dc.subject.proposalMangospa
dc.subject.proposalAprenentatge automàticother
dc.subject.proposalImatge hiperespectralother
dc.subject.proposalDetecció d’antracnosiother
dc.subject.proposalSelecció de longituds d’onaother
dc.subject.proposalMangoother
dc.subject.wikidataartificial neural networkeng
dc.subject.wikidatared neuronal artificialspa
dc.subject.wikidatacankereng
dc.subject.wikidataAntracnosisspa
dc.subject.wikidataColletotrichumeng
dc.subject.wikidataColletotrichumspa
dc.subject.wikidatamachine learningeng
dc.subject.wikidataaprendizaje automáticospa
dc.titleEarly detection of asymptomatic anthracnose disease in mango by hyperspectral imaging and machine learningeng
dc.title.translatedDetección temprana de antracnosis asintomática en mango mediante imágenes hiperespectrales y aprendizaje automáticospa
dc.title.translatedDetecció precoç de antracnosi asimptomàtica en mànec mitjançant imatges hiperespectrales i aprenentatge automàticother
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvocatoria 785 - Doctorados nacionales
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_doctorado_carlos.pdf
Tamaño:
106.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: