Fases cuánticas de mezclas de átomos bosónicos y fermiónicos en una dimensión

dc.contributor.advisorSilva Valencia, Jeresonspa
dc.contributor.advisorMendoza Arenas, Juan Josespa
dc.contributor.authorAvella Sarmiento, Richard Giovannispa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupGrupo de Sistemas Correlacionadosspa
dc.date.accessioned2020-08-07T04:35:37Zspa
dc.date.available2020-08-07T04:35:37Zspa
dc.date.issued2020-07-08spa
dc.description.abstractLas mezclas de partículas que satisfacen diferentes estadísticas han sucitado gran interes tanto teórico como experimental en la últimas decadas, debido a la posibilidad de confinar y manipular gases cuánticos en redes ópticas a bajas temperaturas. En este trabajo se estudia el estado fundamental de un sistema unidimensional, conformado por fermiones con espı́n 1/2 que interactuan con bosones escalares, por medio del Hamiltoniano Bose-Fermi-Hubbard; este Hamiltoniano no tiene solución exacta, por lo que se hace uso de la técnica conocida como grupo de renormalización de la matriz densidad. En esta investigación se encontró, que además de los estados aislantes relacionados con cada uno de los portadores y considerando una interacción de tipo repulsivo entre bosones y fermiones, surgen dos fases aislantes debidas a la mezcla Bose-Fermi. Uno de estos estados emerge, cuando la densidad total de partı́culas es conmesurable con el número de sitios de la red y cumple con la relación ρ_B + ρ_F = n (n = 1, 2); este estado se denomina estado aislante de Mott mezclado. Los otros estados aislantes surgen, cuando la densidad total de partı́culas no es conmesurable, cumplen con la relación ρ_B + 1/2 ρ_F = n (n = 1, 2) y se ubican entre los estados aislantes de Mott triviales. Al considerar que la interacción bosón-fermión es de tipo atractivo, se encontraron estados aislantes no conmesurados que cumplen con las relaciones ρ_B − ρ_F = n y ρ_B − 1/2 ρ_F = n con n = 0, ±1. Teniendo en cuenta los diferentes resultados experimentales, en este trabajo también se consideró el efecto de un potencial de confinamiento de tipo armónico sobre la mezcla de Bose-Fermi y se encontró un estado fundamental caracterizado por la coexistencia de regiones aislantes y regiones superfluidas. En particular se encontró la coexistencia de un aislante de Mott bosónico y fermiónico en el centro del potencial de confinamiento. También se encontraron estados con diferentes configuraciones de separación de fase. Los modelos que se estudiaron, pueden ser realizados con las técnicas actuales de atrapamiento y confinamiento de átomos ultrafrı́os en redes ópticas y se espera que este trabajo estimule nuevas investigaciones.spa
dc.description.abstractThe ground state of one-dimensional mixture of spin 1/2 fermions and scalar bosons, are studied in the framework of the Bose-Fermi-Hubbard model, using density matrix renormalization group technique. This study allowed to find the relationships ρ_B ± ρ_F=(n± \delta) and ρ_B ± 1/2ρ_F=(n±delta), where plus(minus) is for repulsive (attractive) interactions and n is an integer (n = 1,2), \delta=0 when the coupling parameter boson-fermión is repulsive and \delta=1 for attractive case. Zero-temperature phase diagrams were built for the system, considering scalar bosons in the hard-core and soft-core limit. The repulsive fermión-fermion and boson-fermion interactions are considered in the hard-core limit. The phase diagram was calculated and it allowed to determine that to a given fermionic density ρ_F , the insulator states are located at the bosonic densities ρ_B = 1-ρ_F and ρ_B = 1 - 1/2ρ_F, and emerge even in the absence of fermion-fermion coupling. In addition, the boson-fermion repulsion drives quantum phase transitions inside the insulator lobes with ρ_B = 1/2$. In the soft-core limit, repulsive intraspecies interactions and attractive or repulsive interspecies ones were considered. In addition to the trivial Mott insulator phases, we reported the emergence of new non-trivial insulator phases depending on the sign of the boson-fermion interaction. These non-trivial insulator phases must satisfy the conditions. Spin gapless and gapfull parameters were found for all insulator phases, suggesting a very diverse magnetic response of the system. The models studied are feasible in the current cold-atom setups and we expected that the suggested insulators could be observed in current cold-atom experimental platforms. For the base state of a mixture of fermions with two degrees of internal freedom that interact with scalar bosons in the soft-core limit and considering the potentials of bosonic and fermionic external confinement are the same, we found the coexistence of Bosonic and fermionic Mott insulators around the center of the trap, these can be obtained varying the different system parameters, in addition we found various types of phase separation.spa
dc.description.additionalLínea de investigación: Mecánica Cuánticaspa
dc.description.degreelevelDoctoradospa
dc.description.projectbecas de Colciencias de la convocatoria 727spa
dc.description.sponsorshipColcienciasspa
dc.format.extent118spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77980
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relationR. Avella, J. J. Mendoza-Arenas, R. Franco, and J. Silva- Valencia, Phys. Rev. A 100, 063620 (2019).spa
dc.relation.referencesK. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75, 3969 (1995).spa
dc.relation.referencesM. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995).spa
dc.relation.referencesJ. Klaers, J. Schmitt, F. Vewinger and M. Weitz. Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 7323 (2010).spa
dc.relation.referencesJ. D. Plumhof, T. Stöferle, L. Mai, U. Scherf and R. F. Mahrt. Room-temperature Bose- Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mat. 13, 247 (2014).spa
dc.relation.referencesS. Sachdev. Quantum Phase Transitions. Cambridge University Press, Cambridge (1999).spa
dc.relation.referencesD. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998).spa
dc.relation.referencesW. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, and M.D. Lukin. High-temperature super- fluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407, (2002).spa
dc.relation.referencesI. Bloch , J. Dalibard and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).spa
dc.relation.referencesT. Byrnes, K. Wen and Y. Yamamoto. Macroscopic quantum computation using Bose- Einstein condensates. Phys. Rev. A 85, 040306(R) (2012).spa
dc.relation.referencesD. Becker, M. D. Lachmann and E. M. Rasel. Space-borne Bose-Einstein condensation for precision interferometry. Nature 562, 391 (2018).spa
dc.relation.referencesN. Lundblad, R.A. Carollo, C. Lannert, et al. Shell potentials for microgravity Bose- Einstein condensates. npj Microgravity 5, 30 (2019).spa
dc.relation.referencesP. G. Matthew, A. Niayesh and B. M. Robert. Bose-Einstein condensates as gravitational wave detectors. Journal of Cosmology and Astroparticle Physics 2019, 032 (2019).spa
dc.relation.referencesB. DeMarco, and D. Jin. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703. (1999).spa
dc.relation.referencesF. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403 (2001).spa
dc.relation.referencesJ. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst, and W. Vassen. Degenerate Bose-Fermi mixture of metastable atoms. Phys. Rev. Lett. 97, 080404 (2006).spa
dc.relation.referencesT. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).spa
dc.relation.referencesB. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C. Killian. Degenerate Fermi gas of 87 Sr. Phys. Rev. Lett. 105, 030402 (2010).spa
dc.relation.referencesM. Lu, N. Q. Burdick, and B. L. Lev. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).spa
dc.relation.referencesK. Aikawa, et al. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett. 112, 010404 (2014).spa
dc.relation.referencesNaylor, B. et al.. Chromium dipolar Fermi sea. Phys. Rev. A 91, 011603(R) (2015).spa
dc.relation.referencesS. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita and Y. Takahashi. Interac- tion and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Phys. 7, 642 (2011).spa
dc.relation.referencesI. Ferrier-Barbut, M. Delehaye, S. Laurent, A. Grier, M. Pierce, B. Rem, F. Chevy, and C. Salomon. A mixture of Bose and Fermi superfluids. Science, 345, 1035 (2014).spa
dc.relation.referencesF. Schäfer, N. Mizukami, P. Yu, S. Koibuchi, A. Bouscal, and Y. Takahashi. Experimen- tal realization of ultracold Y b − 7 Li mixtures in mixed dimensions. Phys. Rev. A 98, 051602(R) (2018).spa
dc.relation.referencesM.-J. Zhu, H. Yang, L. Liu, D.-C. Zhang, Y.-X. Liu, J. Nan, J. Rui, B. Zhao, J.-W. Pan, and E. Tiemann. Feshbach loss spectroscopy in an ultracold 23 N a − 40 K mixture. Phys. Rev. A 96, 062705 (2017).spa
dc.relation.referencesV. Vaidya, J. Tiamsuphat, S. Rolston, J. Porto. Degenerate Bose-Fermi mixtures of ru- bidium and ytterbium. Phys. Rev. A 92, 043604 2015.spa
dc.relation.referencesM. W. Zwierlein, C. H. Schunck, A. Schirotzek and W. Ketterle. Direct observation of the superfluid phase transition in ultracold Fermi gases. Nature 442, 54 (2006).spa
dc.relation.referencesZ. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ketterle Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases. Phys. Rev. Lett. 88, 160401 (2002).spa
dc.relation.referencesL. Mathey and D. W. Wang. Phase diagrams of one-dimensional Bose-Fermi mixtures of ultracold atoms. Phys. Rev. A 75, 013612 (2007).spa
dc.relation.referencesM. Lewenstein, L. Santos, M. Baranov, and H. Fehrmann. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004).spa
dc.relation.referencesI. Titvinidze, M. Snoek, and W. Hofstetter. Supersolid Bose-Fermi mixtures in optical lattices. Phys. Rev. Lett. 100, 100401 (2008).spa
dc.relation.referencesC. Lai and C. Yang. Ground-state energy of a mixture of fermions and bosons in One dimension with a repulsive δ-function interaction. Phys. Rev. A 3, (1971).spa
dc.relation.referencesR. Roy, A. Green, R. Bowler, and S. Gupta. Two-element mixture of Bose and Fermi superfluids. Phys. Rev. Lett. 118, 055301 (2017).spa
dc.relation.referencesS. Ospelkaus, C. Ospelkaus, O. Wille, et al. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006).spa
dc.relation.referencesT. Ikemachi, A. Ito, Y. Aratake, Y. Chen, M. Koashi. et al. All- optical production of dual Bose-Einstein condensates of paired fermions and bosons with 6 Li and 7 Li. J. Phys. B 50, 01LT01 (2017).spa
dc.relation.referencesJ. Scaramazza, B. Kain, and H. Ling. Competing orders in a dipolar Bose-Fermi mixture on a square optical lattice: mean-field perspective. Eur. Phys. J. D 70, 147 (2016).spa
dc.relation.referencesK. Günter, T. Stöferle, H. Moritz, et al. Bose-Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006).spa
dc.relation.referencesTh. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, I. Bloch, and D. S. Lühmann. Role of interactions in 87 Rb− 40 K Bose-Fermi mixtures in a 3D optical lattice. Phys. Rev. Lett. 102, 030408 (2009).spa
dc.relation.referencesM. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).spa
dc.relation.referencesA. Zujev, A. Baldwin, R. T. Scalettar, V. G. Rousseau, P. J. H. Denteneer, and M. Ri- gol Superfluid and Mott-insulator phases of one-dimensional Bose-Fermi mixtures. Phys. Rev. A. 78,033619. (2008).spa
dc.relation.referencesW. Q. Ning, S. J. Gu, C. Q. Wu and H. Q. Lin. Phase diagrams of Bose-Fermi mixture in a one dimensional optical lattice in terms of fidelity and entanglement. Arxiv:07083.3178v1 (2007).spa
dc.relation.referencesL. Pollet, M. Troyer, K. Van Houcke, and S. M. A. Rombouts. Phase diagram of Bose- Fermi mixtures in one-dimensional optical lattices. Phys. Rev. Lett 96, 190402 (2006).spa
dc.relation.referencesA. Mering and M. Fleischhauer. One-dimensional Bose-Fermi-Hubbard model in the heavy-fermion limit. Phys. Rev. A 77, 023601 (2008).spa
dc.relation.referencesK. Noda, R. Peters y N. Kawakami Many-body effects in a Bose-Fermi mixture. Phys. Rev. A 85, 043628 (2012).spa
dc.relation.referencesS. Sinha y K. Sengupta. Phases and collective modes of a hardcore Bose-Fermi mixture in an optical lattice. Phys. Rev. B 79, 115124 (2009).spa
dc.relation.referencesA. Albus , F. Illuminati , J. Eisert. Mixtures of bosonic and fermionic atoms in optical lattices. Phys. Rev. A 68, 023606 (2003).spa
dc.relation.referencesL. Mathey. Commensurate mixtures of ultracold atoms in one dimension. Phys. Rev. B 75, 144510 (2007).spa
dc.relation.referencesX. Barillier-Pertuisel, S. Pittel, L. Pollet, and P. Schuck. Boson-fermion pairing in Bose- Fermi mixtures on one-dimensional optical lattices. Phys. Rev. A 77, 012115 (2008).spa
dc.relation.referencesA. Imambekov and E. Demler. Exactly solvable case of a one-dimensional Bose-Fermi mixture. Phys. Rev. A 73, 021602(R) (2006).spa
dc.relation.referencesH. Frahm and G. Palacios. Correlation functions of one-dimensional Bose-Fermi mixtu- res. Phys. Rev. A 72, 061604(R) (2005).spa
dc.relation.referencesM. Rizzi and A. Imambekov. Pairing of one-dimensional Bose-Fermi mixtures with une- qual masses. Phys. Rev. A 77, 023621 (2008).spa
dc.relation.referencesP. Sengupta and L. Pryadko. Quantum degenerate Bose-Fermi mixtures on one- dimensional optical lattices. Phys. Rev. B 75, 132507 (2007).spa
dc.relation.referencesY. Takeuchi and H. Mori. Mixing-demixing transition in one-dimensional boson-fermion mixtures. Phys. Rev. A 72, 063617 (2005).spa
dc.relation.referencesG. Bertaina, E. Fratini, S. Giorgini and P. Pieri. Probing the interface of a phase-separated state in a repulsive Bose-Fermi mixture. Phys. Rev. Lett. 120, 243403. (2018).spa
dc.relation.referencesA. Guidini, G. Bertaina, D. E. Galli, and P. Pieri. Condensed phase of Bose-Fermi mix- tures with a pairing interaction. Phys. Rev. A 91, 023603. (2015).spa
dc.relation.referencesM. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405. (2011).spa
dc.relation.referencesL. Mathey, D. Wang, W. Hofstetter, M. Lukin, and E. Delmer. Luttinger liquid of polarons in one-dimensional boson-fermion mixtures. Phys. Rev. Lett. 93, 120404 (2004).spa
dc.relation.referencesM. Batchelor, M. Bortz, X. Guan, and N. Oelkers. Exact results for the one-dimensional mixed boson-fermion interacting gas. Phys. Rev. A 72, 061603(R) (2005).spa
dc.relation.referencesA. P. Albus, F. Illuminati, and M. Wilkens. Ground-state properties of trapped Bose- Fermi mixtures: Role of exchange correlation. Phys. Rev. A 67,063606 (2003).spa
dc.relation.referencesK. Gunter, T. Stoferle, H. Moritz, M. Kohl and T. Essling. Bose-fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2009).spa
dc.relation.referencesF. Hébert, G. G. Batrouni, X. Roy, and V. G. Rousseau. Supersolids in one-dimensional Bose-Fermi mixtures. Phys. Rev. B 78, 184505 (2008)spa
dc.relation.referencesH. Fehrmann, M. Baranov, B. Damski, M. Lewenstein and L. Santos. Meanfield theory of bose-fermi mixtures in optical lattices. Opt. Comm. 243, 23 (2004).spa
dc.relation.referencesM. Bukov and L. Pollet. Mean-field phase diagram of the Bose-Fermi Hubbard model. Phys. Rev. B 89, 094502 (2014).spa
dc.relation.referencesD. Wang. Strong-Coupling Theory for the Superfluidity of Bose-Fermi Mixtures. Phys. Rev. Lett. 96, 140404 (2006).spa
dc.relation.referencesL. Mathey, S. W. Tsai, and A. H. Net. Exotic superconducting phases of ultracold atom mixtures on triangular lattices. Phys. Rev. B. 75, 174516 (2007).spa
dc.relation.referencesL. Mathey, S.-W. Tsai, and A. H. Castro Neto. Competing Types of Order in Two- Dimensional Bose-Fermi Mixtures. Phys. Rev. Lett. 97, 030601 (2006).spa
dc.relation.referencesA. Mering and M. Fleischhauer. Fermion-mediated long-range interactions of bosons in the one-dimensional Bose-Fermi-Hubbard model. Phys. Rev. A 81, 011603 (2010).spa
dc.relation.referencesA. Masaki and H. Mori. Mott transition of Bose-Fermi mixtures in optical lattices induced by attractive interactions. J. Phys. Soc. Jpn. 82, 074002 (2013).spa
dc.relation.referencesL. Pollet, C. Kollath, U. Schollwöck, and M. Troyer. Mixture of bosonic and spin-polarized fermionic atoms in an optical lattice. Phys. Rev. A 77, 023608 (2008).spa
dc.relation.referencesF. Illuminati and A. Albus. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures. Phys. Rev. Lett. 93, 090406 (2004).spa
dc.relation.referencesS. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. 69, 2863 (1992).spa
dc.relation.referencesS. White. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993).spa
dc.relation.referencesO. Legeza, J. Röder, and B. A. Hess. Controlling the accuracy of the density matrix renormalization group method: The Dynamical Block State Selection approach. Phys. Rev. B 67, 125114 (2003).spa
dc.relation.referencesP. Stoliar, M. Rozenberg, E. Janod, B. Corraze, J. Tranchant, and L. Cario. Nonthermal and purely electronic resistive switching in a Mott memory. Phys. Rev. B 90, 045146 (2014).spa
dc.relation.referencesY. Cui et al. Thermochromic V O 2 for Energy-Efficient Smart Windows. Joule, 2 1707 (2018)spa
dc.relation.referencesKim, Hyun-Tak. Metal-Insulator Transition Mechanism and Sensors Using Mott Insula- tor V O 2 . isbn 978-94-017-9004-8 (2015).spa
dc.relation.referencesW. Lingfei, L. Yongfeng, et al. Device Performance of the Mott Insulator LaVO 3 as a Photovoltaic Material. Phys. Rev. Applied 3, 064015 (2015).spa
dc.relation.referencesG. Pupillo, Ana Maria Rey, G. Brennen, C. J. Williams and Charles W. Clark Scalable quantum computation in systems with Bose-Hubbard dynamics. Journal of Modern Optics 51, 2395 (2004).spa
dc.relation.referencesH.J. Briegel, T. Calarco, D. Jaksch, J.I. Cirac, P. Zoller Quantum computing with neutral atoms J.Mod.Opt. 47, 415 (2000).spa
dc.relation.referencesR. Raussendorf, H.J. Briegel. A One-Way Quantum Computer Phys.Rev.Lett. 86, 5188 (2001).spa
dc.relation.referencesS. Lee, J. Thompson, S. Raeisi, P. Kurzynski and D. Kaszlikowski. Quantum information approach to Bose-Einstein condensation of composite bosons. New Journal of Physics 17, 30 (2015).spa
dc.relation.referencesW. Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131, (2002).spa
dc.relation.referencesD. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak. Bose-Einstein Condensation of Atomic Hydrogen. Phys. Rev. Lett. 81, 3811 (1998).spa
dc.relation.referencesC. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75, 1687 (1997).spa
dc.relation.referencesA. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook and A. Aspect. A Bose-Einstein Condensate of Metastable Atoms. Science 292, 461 (2001).spa
dc.relation.referencesG. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio. Bose- Einstein Condensation of Potassium Atoms by Sympathetic Cooling. Science 294, 1320 (2001).spa
dc.relation.referencesP. A. Altin et al. 85 Rb tunable-interaction Bose-Einstein condensate machine. Rev. Sci. Instrum. 81, 063103 (2010).spa
dc.relation.referencesD. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Köppinger, and S. L. Cornish. Dual- species Bose-Einstein condensate of 87 Rb and 133 Cs. Phys. Rev. A 84, 011603(R) (2011).spa
dc.relation.referencesT. Fukuhara, S. Sugawa, and Y. Takahashi. Bose-Einstein condensation of an ytterbium isotope. Phys. Rev. A 76, 051604(R) (2007).spa
dc.relation.referencesT. Fukuhara and S. Sugawa and Y. Takasu, and Y. Takahashi. All-optical formation of quantum degenerate mixtures. Phys. Rev. A 79, 021601(R) (2009).spa
dc.relation.referencesG. Salomon, L. Fouché, S. Lepoutre, A. Aspect, and T. Bourdel. All-optical cooling of 39 K to Bose-Einstein condensation. Phys. Rev. A 90, 033405. (2014).spa
dc.relation.referencesA. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau. Bose-Einstein Condensa- tion of Chromium. Phys. Rev. Lett. 94, 160401 . (2005).spa
dc.relation.referencesJ. F. Bertelsen, H. K. Andersen, S. Mai, and M. Budde. Mixing of ultracold atomic clouds by merging of two magnetic traps. Phys. Rev. A. 75, 013404 (2007).spa
dc.relation.referencesA. Albus, F. Illuminati, and J. Eisert. Mixtures of bosonic and fermionic atoms in optical lattices. Phys Rev A 68, 023606 (2003).spa
dc.relation.referencesI. Bloch. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23 (2005).spa
dc.relation.referencesN. Gemelke, X, Zhang, C. Hung and C. Chin. In situ observation of incompressible Mott- insulating domains in ultracold atomic gases. Nature 460, 995 (2009).spa
dc.relation.referencesM. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein conden- sate from a Fermi gas. Nature 426, 537 (2003).spa
dc.relation.referencesA. Imambekov, M. Lukin and E. Demler. Applications of exact solution for strongly interacting one dimensional bose-fermi mixture: low-temperature correlation functions, density profiles and collective modes. Phys. Rev. A 68, 063602 (2003).spa
dc.relation.referencesR. Jördens, N. Strohmaier, et al. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204 (2008).spa
dc.relation.referencesC. Regal, M. Greiner, and D. Jin. Observation of Resonance Condensation of Fermionic Atom Pairs. Phys. Rev. Lett. 92, 040403 (2004).spa
dc.relation.referencesM. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm. Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas. Phys. Rev. Lett. 92, 120401 (2004).spa
dc.relation.referencesM. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004).spa
dc.relation.referencesG. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio. Atom Interferometry with Trapped Fermi Gases. Phys. Rev. Lett. 92, 230402 (2004).spa
dc.relation.referencesM. Köhl, H. Moritz, T. Stöoferle, K. Günter, and T. Esslinger. Phys. Rev. Lett. 94, 080403 (2005).spa
dc.relation.referencesH. Hu, L. Guan and S. Chen. Strongly interacting Bose-Fermi mixtures in one dimen- sion. New J. Phys. 18 025009 (2016).spa
dc.relation.referencesU. Schünemann, H. Engler, M. Zielonowski, M. Weidemüller, and R. Grimm. Magneto- optic trapping of lithium using semiconductor lasers. Opt. Comm. 158, 263 (1998)spa
dc.relation.referencesW. Zheng and H. Zhai. Quasiparticle Lifetime in a Mixture of Bose and Fermi Super- fluids. Phys. Rev. Lett 113, 265304 (2014).spa
dc.relation.referencesR. Zhang, W. Zhang, H. Zhai, and P. Zhang Calibration of the interaction energy between Bose and Fermi superfluids. Phys. Rev. A 90, 063614 (2014).spa
dc.relation.referencesA. Truscott and K. Strecker and W. McAlexander and G. Partridge, and R. Hulet. Observation of Fermi Pressure in a Gas of Trapped Atoms. Science 91, 2570 (2001)spa
dc.relation.referencesG. Roati and F. Riboli and G. Modugno, and M. Inguscio. Fermi-Bose Quantum De- generate 40 K − 87 Rb Mixture with Attractive Interaction. Phys. Rev. Lett. 89, 150403 2002.spa
dc.relation.referencesM. Tey and S. Stellmer and R. Grimm, and F. Schreck. Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A 82, 11608 (2010).spa
dc.relation.referencesC. Silber and S. Günther and C. Marzok and B. Deh and W. Courteille, and C. Zim- mermann. Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases Phys. Rev. Lett. 95, 170408 (2005)spa
dc.relation.referencesB. Deh, W. Gunton, B. Klappauf, Z. Li, M. Semczuk, J. Van Dongen, and K. Madison. Giant Feshbach resonances in 6 Li − 85 Rb mixtures Phys. Rev. A 82, 020701(R) (2010).spa
dc.relation.referencesS. Tung and C. Parker and J. Johansen and C. Chin and Y. Wang, and P. Julienne. Ultracold mixtures of atomic 6 Li and 133 Cs with tunable interactions. Phys. Rev. A 87, 010702(R) 2013.spa
dc.relation.referencesY. Wu, X. Yao, H. Chen, et al. A quantum degenerate Bose-Fermi mixture of J. Phys. B 50, 094001 (2017).spa
dc.relation.referencesH. Edri, B. Raz, N. Matzliah, N. Davidson and R. Ozeri. Observation of spin- spin fermion-mediated interactions between ultra-cold bosons. arXiv:1910.01341v1 [physics.atom-ph] . (2019).spa
dc.relation.referencesA. Auerbach. Interacting electrons and quantum magnetism. Springer, New York (1994).spa
dc.relation.referencesG. Kotliar and D. Vollhardt. Strongly correlated materials: insights from dynamical mean-field theory. Physics Today, 57, 53 (2004).spa
dc.relation.referencesJ. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. London, Ser A 276, 238 (1963).spa
dc.relation.referencesC. Pethick and H. Smith. Bose-Einstein Condensation inDilute Gases. Cambridge Uni- versity Press, (2002).spa
dc.relation.referencesV. V. Meshkov, A. V. Stolyarov, and R. J. Le Roy. Rapid Accurate Calculation of the s-wave Scattering Length J. Chem. Phys. 135, 154108. (2011).spa
dc.relation.referencesM. Lewenstein, A. Sanpera, V. Ahufinger. Ultracold Atoms in Optical Lattices Simulating quantum many-body systems. Oxford University press (2012).spa
dc.relation.referencesQuantum Degenerate Fermi-Bose Mixtures of 40 K and 87 Rb in 3D Optical Lattices. S. Ospelkaus Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universität Hamburg. (2006).spa
dc.relation.referencesC. Kim and Z.-X. Shen. Separation of spin and charge excitations in one-dimensional SrCuO 2 . Phys. Rev. B. 56, 15589. (1997).spa
dc.relation.referencesK. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov. Mott-Hubbard metal- insulator transition in paramagnetic V 2 O 3 : an LDA+DMFT(QMC) Study. Phys. Rev. Lett. 86, 5345 (2001).spa
dc.relation.referencesD. K. Campbell, J. Tinka Gammel, and E. Y. Loh, Jr. Modeling electron-electron interac- tions in reduced-dimensional materials: Bond-charge Coulomb repulsion and dimerization in Peierls-Hubbard models. Phys. Rev. B 42, 11608 (1990).spa
dc.relation.referencesM. J. Rozenberg. Integer-filling metal-insulator transitions in the degenerate Hubbard model. Phys. Rev. B 55, R4855 (1997).spa
dc.relation.referencesE. H. Lieb, and F. Y. Wu. Absence of Mott transition in an exact solution of the short- range one-band model in one dimension. Phys. Rev. Lett. 20, 1445. (1968).spa
dc.relation.referencesE. H. Lieb, and F. Y. Wu,. The one-dimensional hubbard model: a reminiscence. Physica A: Statistical Mechanics and its Applications 321, 1. (2003).spa
dc.relation.referencesB. Kumar. Exact solution of the infinite-U Hubbard problem and other models in one dimension. Phys. Rev. B 79, 155121 (2009).spa
dc.relation.referencesR. T. Scalettar. An Introduction to the Hubbard Hamiltonian. in: quantum materials: experiments and theory 6 (2016).spa
dc.relation.referencesS. Ejima, H. Fehske, and F. Gebhard. Dynamic properties of the one-dimensional Bose- Hubbard model. EPL. 93, 30002 (2011).spa
dc.relation.referencesD.S. Petrov, C. Salomon, G. V. Shlyapnikov . Weakly bound dimers of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004).spa
dc.relation.referencesY. Murakami, P. Werner, N. Tsuji, and H. Aoki. Supersolid phase accompanied by a quantum critical point in the intermediate coupling regime of the Holstein model. Phys. Rev. Lett. 113, 266404 (2014).spa
dc.relation.referencesP. Anders, P. Werner, M. Troyer, M. Sigrist, and L. Pollet. From the Cooper problem to canted supersolids in Bose-Fermi mixtures. Phys. Rev. Lett. 109, 206401. (2012).spa
dc.relation.referencesI.V. Stasyuk and I.R. Dulepa. Density of states of one-dimensional Pauli ionic conduc- tor. Cond. Matt. Phys. 10, 259 (20078).spa
dc.relation.referencesK. Sengupta, N. Dupuis, and P. Majumdar. Bose-Fermi mixtures in an optical lattice. Phys. Rev. A. 75, 063625. (2007).spa
dc.relation.referencesT. Ozawa, A. Recati, M. Delehaye,F. Chevy, and S. Stringari. Chandrasekhar-Clogston limit and critical polarization in a Fermi-Bose superfluid mixture. Phys. Rev. A 90, 043608 (2014).spa
dc.relation.referencesL. Mathey, S.-W. Tsai, and A. H. C. Neto. Competing types of order in two-dimensional Bose-Fermi mixtures. Phys. Rev. Lett. 97, 030601. (2006).spa
dc.relation.referencesF. Klironomos and S. Tsai. Pairing and density-wave phases in boson-fermion mixtures at fixed filling. Phys. Rev. Lett. 99, 100401 (2007).spa
dc.relation.referencesT. Bilitewski. Exotic superconductivity through bosons in a dynamical cluster approxi- mation. Phys. Rev. B 92, 184505 (2015).spa
dc.relation.referencesX.-W. Guan, M. T. Batchelor, and C. Lee. Fermi gases in one dimension: From Bethe ansatz to experiments. Rev. Mod. Phys. 85, 1633 (2013).spa
dc.relation.referencesN. Nygaard and K. Molmer. Component separation in harmonically trapped boson- fermion mixtures. Phys. Rev. A 59, 2974 (1999).spa
dc.relation.referencesK. Wilson. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975).spa
dc.relation.referencesJ. W. Bray, S.T. Chui. Computer renormalization-group calculations of 2k F and 4k F co- rrelation functions of the one-dimensional Hubbard model. Phys. Rev. B 19, 4876 (1979).spa
dc.relation.referencesS. J. Gu. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010).spa
dc.relation.referencesU. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005).spa
dc.relation.referencesC. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950). Res. Nat. Bur. Stand. 45, 255 (1950).spa
dc.relation.referencesE. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corres- ponding eigenvectors of large real- symmetric matrices. J. Comput. Phys. 17, 87 (1975).spa
dc.relation.referencesK. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. H. Denschlang, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller. Repulsively bound atom pairs in an optical lattice. Nature 441, 853. (2006).spa
dc.relation.referencesT. D. Kühner, S. R. White, H. Monien. One-dimensional Bose-Hubbard model with nearest-neighbor interaction. Phys. Rev. B 61, 063602 (2000).spa
dc.relation.referencesS. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Ya- mashita, and Y. Takahashi Nat. Phys. 7, 642. (2011).spa
dc.relation.referencesR. Avella, J. J. Mendoza-Arenas, R. Franco, and J. Silva-Valencia. Insulator phases of a mixture of spinor fermions and hard-core bosons. Phys. Rev. A 100, 063620 (2019).spa
dc.relation.referencesE. K. Laird, Z.-Y. Shi, M. M. Parish, and J. Levinsen. SU(N) fermions in a one- dimensional harmonic trap. Phys. Rev. A 96, 032701 (2017).spa
dc.relation.referencesG. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E. Leanhardt, L. G. Marcassa, D. E. Pritchard, and W. Ketterle. Imaging the Mott insulator shells by using atomic clock shifts. Science 313, 649 (2006).spa
dc.relation.referencesS. Fölling, A. Widera, T. Mueller, F. Gerbier, and I. Bloch, Formation of spatial shell structure in the superfluid to Mott insulator transition. Phys. Rev. Lett. 97, 060403 (2006).spa
dc.relation.referencesG. G. Batrouni, F. F. Assaad, R. T. Scalettar, and P. J. H. Denteneer Many-body expansion dynamics of a Bose-Fermi mixture confined in an optical lattice. Phys. Rev. A 72, 031601(R)(2005).spa
dc.relation.referencesF. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch. Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).spa
dc.relation.referencesT. Grining, M. Tomza, M. Lesiuk, M. Przybytek, M. Musia l, R. Moszynski, M. Le- wenstein, and P. Massignan. Crossover between Few and Many Fermions in a Harmonic Trap. Phys. Rev. A 92, 061601 (2015).spa
dc.relation.referencesA. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe and S. Jochim. From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013).spa
dc.relation.referencesY. Zhong, Y. Liu, and H.-G. Luo. Simulating heavy fermion physics in optical latti- ce: Periodic Anderson model with harmonic trapping potential. Front. Phys 12, 127502 (2017).spa
dc.relation.referencesJ. Silva-Valencia and A. M. C. Souza. Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices. Eur. Phys. J. B85, 5 (2012).spa
dc.relation.referencesJ. Silva-Valencia and A. M. C. Souza. Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices. Phys. Rev. A 85, 033612 (2012).spa
dc.relation.referencesR. C. Caro, R. Franco, and J. Silva-Valencia. Spin-liquid state in an inhomogeneous periodic Anderson model. Phys. Rev. A 97, 023630 (2018).spa
dc.relation.referencesJ. Silva-Valencia, R. Franco, M.S. Figueira. Entanglement and the ground state of fer- mions trapped in optical lattices. Physica B 404, 3332 (2009).spa
dc.relation.referencesT. Bergeman, M. G. Moore, and M. Olshanii. Atom-atom scattering under cylindrical harmonic confinement: numerical and analytic studies of the confinement induced reso- nance. Phys. Rev. Lett. 91, 163201 (2003).spa
dc.relation.referencesD. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu , S. Blatt, F. Huber , G. Ji and M. Greiner. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953 (2016).spa
dc.relation.referencesShi-Guo Peng, Hui Hu, Xia-Ji Liu, and Peter D. Drummond. Confinement-induced re- sonances in anharmonic waveguides. Phys. Rev. A 84, 043619 (2011).spa
dc.relation.referencesV. G. Rousseau, G. G. Batrouni, D. E. Sheehy, J. Moreno and M. Jarrell. Pure Mott phases in confined ultracold atomic systems. Phys. Rev. Lett. 104, 167201 (2010).spa
dc.relation.referencesW. Geist, L. You, and T. A. B. Kennedy. Sympathetic cooling of an atomic Bose-Fermi gas mixture. Phys Rev A 59 1500 (1999).spa
dc.relation.referencesZ. Akdeniz, P. Vignolo, A. Minguzzi, M.P. Tosi. Phase separation in a boson-fermion mixture of lithium atoms. J. Phys. B 35, L105 (2002).spa
dc.relation.referencesC. Klempt et al.. Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap. Eur. Phys. J. D 48, 121 (2008).spa
dc.relation.referencesT. Karpiuk, M. Brewczyk, and K. Bright solitons in Bose-Fermi mixtures. Phys Rev A 73, 053602 (2006).spa
dc.relation.referencesL. Vichi et al. Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures. J. Phys. B 31 L899 (1998).spa
dc.relation.referencesR. S. Lous, I. Fritsche, M. Jag, F. Lehmann and E. Kirilov. Probing the Interface of a Phase-Separated State in a Repulsive Bose-Fermi Mixture. Phys. Rev. Lett. 120, 243403 (2018).spa
dc.relation.referencesH. Hu, L. Pan, and S. Chen. Strongly interacting one-dimensional quantum gas mixtures with weak p-wave interactions. Phys Rev A 93, 033636 (2016)spa
dc.relation.referencesF. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann, and L. Santos. Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures. Phys Rev A 95, 043630 (2017).spa
dc.relation.referencesA S Dehkharghani et al. Hard-core Bose-Fermi mixture in one-dimensional split traps. J. Phys. B: At. Mol. Opt. Phys 50, 144002 (2017).spa
dc.relation.referencesJ. Decamp et al. Strongly correlated one-dimensional Bose-Fermi quantum mixtures: symmetry and correlations. New J. Phys. 19, 125001 (2017).spa
dc.relation.referencesP. Siegl, S. I. Mistakidis, and P. Schmelcher. Many-body expansion dynamics of a Bose- Fermi mixture confined in an optical lattice. Phys. Rev. A 97, 053626 (2018).spa
dc.relation.referencesS. Peil, et al. Patterned loading of a Bose-Einstein condensate into an optical lattice. Phys. Rev. A 67, 051603 (2003).spa
dc.relation.referencesJ. H. Denschlang, et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).spa
dc.relation.referencesP. L. Gould, G. A. Ruff y D. E. Pritchard, Diffraction of atoms by light: The near- resonant Kapitza-Dirac effect. Phys. Rev. Lett. 56, 827 (1998).spa
dc.relation.referencesP. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard. Scattering of atoms from a standing light wave. Phys. Rev. Lett. 60, 515 (1988).spa
dc.relation.referencesC. S. Adams, M. Siegel y J. Mlynek. Atom optics. Phys. Rev. Rep. 240, 143 (1994).spa
dc.relation.referencesA. Hemmerich, and T. W. Hänsch. Two-dimesional atomic crystal bound by light. Phys. Rev. Lett. 70, 410 (1993).spa
dc.relation.referencesM. Weidmller, A. Hemmerich, A. Gorlitzz, T. Esslinger, and T. W. Hänsch. Bragg diffraction in an atomic lattice bound by light. Phys. Rev. Lett. 75, 4583 (1995).spa
dc.relation.referencesD. Yamamoto, T. Ozaki, C. A. R. S ́a de Melo, and I. Danshita. First-order phase transition and anomalous hysteresis of binary Bose mixtures in an optical lattice. Phys. Rev. A 88, 033624 (2013).spa
dc.relation.referencesTarruell, L. and Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C. R. Phys. 19, 365 (2018).spa
dc.relation.referencesG. G. Batrouni y V. Rousseau Mott Domains of Bosons Confined on Optical Lattices. Phys. Rev. Lett. 89, 117203 (2002).spa
dc.relation.referencesB. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah, J. Struck and M. W. Zwierlein. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).spa
dc.relation.referencesM. Cramer, J. Eisert and F. Illuminati Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices. Phys. Rev. Lett. 93, 190405(2004).spa
dc.relation.referencesM. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 415, 39 (2003).spa
dc.relation.referencesY. Takasu and Y. Takahashi. Condensed phase of Bose-Fermi mixtures with a pairing interaction. J. Phys. Soc. Jpn. 78, 012001 (2009).spa
dc.relation.referencesC. Gross, T. Zibold, E. Nicklas, J. Estéve, M. K. Oberthaler. Nonlinear atom interfero- meter surpasses classical precision limit. Nature 464, 1165 (2010).spa
dc.relation.referencesH. Moritz , T. Stöferle , M. Köhl and T. Esslinger. Exciting collective oscillations in a trapped 1d gas. Phys. Rev. Lett. 91, 250402 (2003).spa
dc.relation.referencesB. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch and I. Bloch. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature. 429, 277 (2004).spa
dc.relation.referencesD. Clément, N. Fabbri, L. Fallani, C. Fort and M. Inguscio. Exploring correlated 1d Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).spa
dc.relation.referencesF. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz and S. Jochim. Deter- ministic preparation of a tunable few-fermion system. Nature Phys. 332, 336 (2011).spa
dc.relation.referencesG. Pagano et al. A one-dimensional liquid of fermions with tunable spin. Nature Phys. 10, 198 (2014).spa
dc.relation.referencesM. A. Cazalilla and A. M. Rey . Ultracold Fermi gases with emergent SU(N) symmetry. Rep. Prog. Phys. 77, 124401 (2014).spa
dc.relation.referencesS. Laurent, M. Pierce, M. Delehaye, T. Yefsah, F. Chevy, and C. Salomon. Connecting few-body inelastic decay to quantum correlations in a many-body system: A weakly coupled impurity in a resonant Fermi gas. Phys. Rev. Lett. 118, 103403 (2017).spa
dc.relation.referencesM. A. Cazalilla and A. F. Ho. Instabilities in binary mixtures of one-dimensional quan- tum degenerate gases. Phys. Rev. Lett. 91, 150403 (2003).spa
dc.relation.referencesF. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khaykovich, M. O. Mewes, and C. Salomon. Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy. Phys. Rev. A 64, 011402(R)) (2001).spa
dc.relation.referencesM. Fisher, P. Weichman, G. Grinstein and D. Fisher. Boson localization and the super- fluid insulator transition. Phys. Rev. B 40, 546 (1989).spa
dc.relation.referencesI. Stasyuk, T. Mysakovych, V. Krasnov Phase diagrams of the Bose-Fermi-Hubbard model: Hubbard operator approach. Condens. Matter Phys, 13, 13003 (2010)spa
dc.relation.referencesG. Bertaina, E. Fratini, S. Giorgini, and P. Pieri. Quantum Monte Carlo Study of a Resonant Bose-Fermi Mixture. Phys. Rev. Lett. 110, 115303. (2013).spa
dc.relation.referencesC.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W. Zwierlein. Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Phys. Rev. A 84, 011601(R) (2011).spa
dc.relation.referencesA. J. Leggett. Bose-Einstein condensation in the alkali gases: Some fundamental con- cepts. Rev. Mod. Phys. 73 333, (2001).spa
dc.relation.referencesZ. Hadzibabic, S. Gupta, C. A. Stanm, C. H. Schunck, M. W. Zwierlein, K. Dieckmann, and W. Ketterle. Fiftyfold improvement in the number of quantum degenerate fermionic atoms. Phys. Rev. Lett. 91, 160401 (2003).spa
dc.relation.referencesI. Bloch, J. Dailbard, and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).spa
dc.relation.referencesHoubiers, M., H. Stoof, W. McAlexander y R. Hulet. Elastic and inelastic collisions of 6 Li atoms in magnetic and optical traps. Phys. Rev. A 57, R1497. (1998).spa
dc.relation.referencesA. Mering. The one-dimensional Bose-Fermi-Hubbard model in the ultrafast-fermion li- mit: Charge density wave phase and MI-CDW phase separation. arXiv:1408.4472v1 [cond- mat.quant-gas].spa
dc.relation.referencesV. G. Rousseau, G. G. Batrouni, D. E. Sheehy, J. Moreno and M. Jarrell. Pure Mott phases in confined ultracold atomic systems. Phys. Rev. Lett. 104, 167201 (2010).spa
dc.relation.referencesK. Targonska and K. Sacha. Self-localization of a small number of Bose particles in a superfluid Fermi system. Phys. Rev. A 82, 033601. (2010).spa
dc.relation.referencesH. F. Hess, G. P. Kochanski, J. M. Doyle, N. Masuhara, D. Kleppner and T. J. Greytak Magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev.Lett. 59, 672 (1987).spa
dc.relation.referencesI. Stasyuk V. Krasnov. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit. Condensed Matter 511, 109 (2017).spa
dc.relation.referencesI. Stasyuk V. Krasnov. Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach. Condensed Matter Physics, 18, 43702 (2015).spa
dc.relation.referencesT. Polak. Zero-temperature phase diagram of Bose-Fermi gaseous mixtures in optical lattices. Phys. Rev. A 81, 043612 (2010).spa
dc.relation.referencesN. Oelkers, M. Batchelor, M. Bortz and X. Guan. Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions. J. Phys. A. Math. 39, 1073 (2006).spa
dc.relation.referencesF. Zhou. Mott states under the influence of fermion-boson conversion. Phys. Rev. B 72, 220501(R) (2005).spa
dc.relation.referencesK. Sacha, K. Targonska, and J. Zakrzewski. Frustration and time reversal symmetry breaking for Fermi and Bose-Fermi systems. Phys. Rev. A 85, 053613 (2012).spa
dc.relation.referencesS. Modak, S. Tsai, and K. Sengupta. Renormalization group approach to spinor Bose- Fermi mixtures in a shallow optical lattice. Phys. Rev. B 84, 134508 (2011).spa
dc.relation.referencesL. Wen and J. Li. Exotic superconductivity through bosons in a dynamical cluster ap- proximation. Phys. Rev. A 90, 053621 (2014).spa
dc.relation.referencesD. van Oosten, P. van der Straten, and H.T.C. Stoof. Quantum phases in an optical lattice. Phys. Rev. A. 63, 053601, (2001).spa
dc.relation.referencesJ. Ruostekoski, G. V. Dunne, and J. Javanainen. Particle number fractionalization of an atomic Fermi-Dirac gas in an optical lattice. Phys. Rev. 88, 180401 (2002).spa
dc.relation.referencesJ. Van Leeuwen and E. Cohen. Phase separation in isotopic Fermi-Bose mixtures. Phys. Rev. 176, 385 (1968).spa
dc.relation.referencesM. Tylutki, A. Recati, F. Dalfovo and S. Stringari. Dark-bright solitons in a superfluid Bose-Fermi mixture. New J. Phys. 18, 053014 (2016).spa
dc.relation.referencesC. Recher and H. Kohler. From Hardcore Bosons to Free Fermions with Painlevé V. J. Stat. Phys. 147, 542 (2012).spa
dc.relation.referencesL. Carr and M. Holland. Quantum phase transitions in the Fermi-Bose Hubbard model. Phys. Rev. A 72, 031604 (R) (2005).spa
dc.relation.referencesS. Bhongale and H. Pu. Phase separation in a mixture of a Bose-Einstein condensate and a two-component Fermi gas as a probe of Fermi superfluidity. Phys. Rev. A 78, 061606 (R) (2008).spa
dc.relation.referencesI. Peschel, X. Wang, M. Kaulke and K. Hallberg. Density Matrix Renormalization, Series: Lecture Notes in Physics. Springer, Berlin, Germany (1999).spa
dc.relation.referencesHui Hu and Xia-Ji Liu. Thermodynamics of a trapped Bose-Fermi mixture. Phys Rev A 68, 023608 (2003).spa
dc.relation.referencesL. Salasnich and F. Toigo. Bright solitons in Bose-Fermi mixtures. Phys Rev A 75, 013623 (2007).spa
dc.relation.referencesM. D. Girardeau, and A. Minguzzi. Soluble models of strongly interacting ultracold gas mixtures in tight waveguides. Phys. Rev. Lett. 99, 230402 (2007).spa
dc.relation.referencesS. K. Adhikari and L. Salasnich. Superfluid Bose-Fermi mixture from weak coupling to unitarity. Phys. Rev. A 78, 043616 (2008).spa
dc.relation.referencesX. La, X. Yin, and Y. Zhang. Hard-core Bose-Fermi mixture in one-dimensional split traps. Phys. Rev. A 81, 043607 (2010).spa
dc.relation.referencesB. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, and A. Minguzzi. Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose- Fermi mixture. Phys. Rev. A 84, 023626 (2011).spa
dc.relation.referencesM. Snoek, I. Titvinidze, I. Bloch, and W. Hofstetter. Effect of interactions on harmo- nically confined Bose-Fermi mixtures in optical lattices. Phys. Rev. Lett. 106, 155301 (2011).spa
dc.relation.referencesJ. Chen, J. M. Schurer, and P. Schmelcher. Bunching-antibunching crossover in harmo- nically trapped few-body Bose-Fermi mixtures. Phys Rev A 98, 023602 (2018).spa
dc.relation.referencesJ. Sakuray. Modern Quantum Mechanics. Addison-Wesley Publishing Company. Estados Unidos (1994).spa
dc.relation.referencesSchneider, U. and Hackermüller, L. and Will, S. and Best, Th. and Bloch, I. and Costi, T. A. and Helmes, R. W. and Rasch, D. and Rosch, A. Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice Science 322, 5907 (2008).spa
dc.relation.referencesC.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi, and M. W.Zwierlein Metallic and Insu- lating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice Phys. Rev. A 84, 011601 (2011).spa
dc.relation.referencesC. Chin, R. Grimm, P. Julienne and E. Tiesinga Feshbach Resonances in Ultracold Gases Rev. Mod. Phys 82, 1225 (2010).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc539 - Física modernaspa
dc.subject.proposalpartı́culas fermiónicasspa
dc.subject.proposalfermionic particleseng
dc.subject.proposalpartı́culas bosónicasspa
dc.subject.proposalbosonic particleseng
dc.subject.proposalfermi-Hubbard Modeleng
dc.subject.proposalmezclas Bose-Fermispa
dc.subject.proposalmodelo Bose-Fermi-Hubbardspa
dc.subject.proposalbose-Fermi-Hubbard modeleng
dc.subject.proposalgrupo de renormalización de la matriz densidadspa
dc.subject.proposaldensity matrix renormalization groupeng
dc.subject.proposalquantum phase transitionseng
dc.subject.proposaltransiciones de fase cuánticasspa
dc.titleFases cuánticas de mezclas de átomos bosónicos y fermiónicos en una dimensiónspa
dc.title.alternativeQuantum phases of bosonic and fermionic atoms mixture in one dimensionspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80048586_2020.pdf
Tamaño:
4.55 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: