Metodología para la implementación de modelos predictivos para la estimación de propiedades termodinámicas y de transporte en la simulación de procesos oleoquímicos

dc.contributor.advisorOrjuela Londoño, Álvarospa
dc.contributor.advisorNarváez Rincón, Paulo Césarspa
dc.contributor.authorBautista Triana, William Estebanspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2021-02-02T19:51:27Zspa
dc.date.available2021-02-02T19:51:27Zspa
dc.date.issued2020-07-07spa
dc.description.abstractProperties of a liquid oleochemicals blend (molecular weight, density, specific heat capacity, heat of combustion, vapor pressure, heat of vaporization, viscosity, and phase equilibria) could be estimated directly from pure substance properties by adjusting parameters of models and mixing rules. This document has as main goal to present a methodology to deploy models, adjusting its equation parameters to calculate thermodynamic and transport properties for oleochemicals systems in liquid phase as pure substances, and then for blends, using mixing rules. Data was collected from 131 literature sources. As a result of this work a case of study was created in Aspen Plus v10 to assess predictive capacity of the models to estimate properties values for oleochemicals pure substance and blends. It has been found a deviation of 10% on the estimated properties when polar components, such as water, methanol and ethanol, were in the blending system. Variations of 2% to 5% on the content of a component could produce deviations up to 13% of the blend property value.spa
dc.description.abstractLas propiedades de una mezcla líquida de oleoquímicos (peso molecular, densidad, calor específico, calor de combustión, presión de vapor, calor de vaporización, viscosidad y composición en las fases) pueden estimarse directamente a partir de las propiedades de las sustancias puras mediante el ajuste de parámetros de modelos y reglas de mezclado. Este trabajo tiene como objetivo mostrar una metodología para implementar modelos, ajustando los parámetros de las ecuaciones para calcular algunas propiedades termodinámicas y de transporte en sistemas de oleoquímicos en fase líquida como sustancias puras, y posteriormente utilizar reglas de mezclado para calcular las propiedades de las mezclas. La información utilizada consta de 131 fuentes de la literatura. Como resultado se evaluó con un caso de estudio en el simulador Aspen Plus V10 la capacidad predictiva de los modelos para la estimación de valores de propiedades de sustancias puras y de mezclas de oleoquímicos. Se encontró desviación de hasta el 10% en las propiedades estimadas al adicionar sustancias polares como agua, metanol y etanol al sistema. Variaciones del 2 al 5% en la concentración de un componente en la mezcla oleoquímica puede generar desviaciones en la estimación de la propiedad en la mezcla hasta un 13%.spa
dc.description.degreelevelMaestríaspa
dc.format.extent128spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationW. Bautista, "Metodología para la implementación de modelos predictivos para la estimación de propiedades termodinámicas y de transporte en la simulación de procesos oleoquímicos", UN Bogotá, 2020.spa
dc.identifier.citationW. Bautista, "Methodology for deployment of predictive models to estimate thermodynamic and transport properties in oleochemicals process simulation applications", UN Bogota, 2020spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79038
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesBailey.A, Industrial Oils and Fats. New York: Reverté SA, 1984.spa
dc.relation.referencesH. Sanli, M. Canakci, and E. Alptekin, “Characterization of Waste Frying Oils Obtained from Different Facilities,” World Renew. Energy Congr., pp. 479–485, 2011.spa
dc.relation.referencesA. Talebian-Kiakalaieh, N. A. S. Amin, and H. Mazaheri, “A review on novel processes of biodiesel production from waste cooking oil,” Appl. Energy, vol. 104, pp. 683–710, Apr. 2013.spa
dc.relation.referencesA. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chem. Rev., vol. 107, no. 6, pp. 2411–2502, 2007.spa
dc.relation.referencesG. L. Maddikeri, A. B. Pandit, and P. R. Gogate, “Intensification approaches for biodiesel synthesis from waste cooking oil: A review,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14610–14628, 2012.spa
dc.relation.referencesC. A. Guerrero, A. Guerrero-romero, and F. E. Sierra, “Biodiesel Production from Waste Cooking Oil,” Biodiesel - Feed. Process. Technol., pp. 23–44, 2011.spa
dc.relation.referencesG. Anitescu and T. J. Bruno, “Liquid Biofuels: Fluid Properties to Optimize Feedstock Selection, Processing, Refining/Blending, Storage/Transportation, and Combustion,” Energy & Fuels, vol. 26, pp. 324–348, 2011.spa
dc.relation.referencesJ. C. Andrea Kleinová, Zuzana Cvengrošová, “Standard methyl esters from used frying oils,” Fuel, vol. 109, pp. 588–596, 2013.spa
dc.relation.referencesOECD-FAO and S. Nicholson, “OECD-FAO Agricultural Outlook 2016-2025,” 2016.spa
dc.relation.referencesFedepalma, “Desarrollo de la industria del Biodiesel en Colombia” 2015.spa
dc.relation.referencesW. W. Christie, “What is a Lipid ?,” AOCS Lipid Library. pp. 1–12, 2013.spa
dc.relation.referencesM. H. van Vliet and G. M. P. van Kempen, “Computational estimation of the triacylglycerol composition of vegetable fats from gas and liquid chromatography data,” Eur. J. Lipid Sci. Technol., vol. 106, no. 10, pp. 697–706, Oct. 2004.spa
dc.relation.referencesN. R. A. Filho, O. L. Mendes, and F. M. Lanças, “Computer prediction of triacylglycerol composition of vegetable oils by HRGC,” Chromatographia, vol. 40, no. 9, pp. 557–562, 1995.spa
dc.relation.referencesC. M. Oliveira, B. R. Garavazo, and C. E. C. Rodrigues, “Liquid-liquid equilibria for systems composed of rice bran oil and alcohol-rich solvents: Application to extraction and deacidification of oil,” J. Food Eng., vol. 110, no. 3, pp. 418–427, 2012.spa
dc.relation.referencesA. J. A. Meirelles et al., “Measurement, correlation and prediction of isothermal vapor-liquid equilibria of different systems containing vegetable oils,” Fluid Phase Equilib., vol. 395, pp. 15–25, 2015.spa
dc.relation.referencesA. E. Silva, M. Lanza, E. A. C. Batista, A. M. C. Rodrigues, A. J. A. Meirelles, and L. M. da S. Helena, “Liquid-Liquid Equilibrium Data for Systems Containing Palm Oil Fractions + Fatty Acids + Ethanol + Water,” J. Chem. Eng. Data, no. 56, pp. 1892–1898, 2011.spa
dc.relation.referencesD. Strayer, “Food Fats and Oils,” Inst. Shortening Edible Oils Inc. Inc., 2016.spa
dc.relation.referencesG. F. Hirata, C. R. A. Abreu, L. C. B. A. Bessa, M. C. Ferreira, E. A. C. Batista, and A. J. A. Meirelles, “Liquid–liquid equilibrium of fatty systems: A new approach for adjusting UNIFAC interaction parameters,” Fluid Phase Equilib., vol. 360, pp. 379–391, 2013.spa
dc.relation.referencesW. Christie, “Lipids : Definitions , Classification and Nomenclature,” The Lipid Web, 2018.spa
dc.relation.referencesD. U. N. Shen S., Wang D., Food chemistry. 2012.spa
dc.relation.referencesJ. D. Haley and C. McCabe, “Predicting the phase behavior of fatty acid methyl esters and their mixtures using the GC-SAFT-VR approach,” Fluid Phase Equilib., vol. 411, pp. 43–52, 2016.spa
dc.relation.referencesL. Zong, S. Ramanathan, and C. C. Chen, “Predicting thermophysical properties of mono- and diglycerides with the chemical constituent fragment approach,” Ind. Eng. Chem. Res., vol. 49, no. 11, pp. 5479–5484, 2010.spa
dc.relation.referencesBailey A., Industrial Oil and Fats, NY 6th Edition. 1992.spa
dc.relation.referencesR. L. Lundblad and F. M. MacDonald, Eds., Handbook of Biochemistry and Molecular Biology, Fourth Edi. 2010.spa
dc.relation.referencesL. Zong, S. Ramanathan, and C. Chen, “Fragment-Based Approach for Estimating Thermophysical Properties of Fats and Vegetable Oils for Modeling Biodiesel production process,” Ind.Eng.chem.Res, vol. 49: 3022–3, no. 2, pp. 3022–3023, 2010.spa
dc.relation.referencesAspentech, “Aspen Plus Biodiesel Model,” Components, 2008.spa
dc.relation.referencesM. J. Pratas et al., “Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel,” J. Chem. Eng. Data, vol. 56, pp. 2175–2180, 2011.spa
dc.relation.referencesF. . Gunstone, “Fatty Acid and Lipid Chemistry,” 1996.spa
dc.relation.referencesG. Knothe and K. R. Steidley, “Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbon-oxygen equivalents,” Fuel, vol. 90, pp. 3217–3224, 2011.spa
dc.relation.referencesA. W. Weitkamp and L. C. Brunstrum, “Analysis of Fatty Acids by Ester Fractionation,” Oil Soap, 1941.spa
dc.relation.referencesC. D. Evans, D. G. McCONNELL, G. R. List, and C. R. Scholfield, “Structure of Unsaturated, Vegetable Oil Glycerides: Direct Calculation From Fatty Acid Composition,” J. Am. Oil Chem. Soc., vol. 46, no. 8, 1965.spa
dc.relation.referencesF. C. de Matos, M. C. da Costa, A. J. de A. Meirelles, and E. A. C. Batista, “Binary solid-liquid equilibrium systems containing fatty acids, fatty alcohols and trilaurin by differential scanning calorimetry,” Fluid Phase Equilib., vol. 423, pp. 74–83, 2016.spa
dc.relation.referencesG. J. Maximo et al., “On the solid-liquid equilibrium of binary mixtures of fatty alcohols and fatty acids,” Fluid Phase Equilib., vol. 366, pp. 88–98, 2014.spa
dc.relation.referencesP. Specifications, “Product Data Sheet,” Homo, vol. 1, no. 3, pp. 1–2, 1999.spa
dc.relation.referencesJ. Rarey-Nies, D. Tiltmann, and J. Gmehling, “Recommended gE·Model Parameters by Simultaneous Fitting of Different Excess Properties,” Phys. Prop. Predict. Org. Chemestry, pp. 1–2, 1988.spa
dc.relation.referencesIUPAC, “Selmer groups and Tate-Shafarevich groups for the congruent number problem,” Pure Appl. Chem., vol. 52, no. 1, pp. 2349–2384, 1980.spa
dc.relation.referencesG. Knothe and K. R. Steidley, “A comprehensive evaluation of the density of neat fatty acids and esters,” J. Am. Oil Chem. Soc., vol. 91, pp. 1711–1722, 2014.spa
dc.relation.referencesW. Dispersive et al., “Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter ( Precision Method ) 1,” pp. 1–10, 2015.spa
dc.relation.referencesF. Levine, R. V Kayea, R. Wexler, D. J. Sadvary, C. Melick, and J. La Scala, “Heats of Combustion of Fatty Acids and Fatty Acid Esters,” JAOCS, J. Am. Oil Chem. Soc. AOCS, vol. 91, pp. 235–249, 2014.spa
dc.relation.referencesL. Felipe Ramírez-Verduzco, J. E. Rodríguez-Rodríguez, A. Del, and R. Jaramillo-Jacob, “Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition,” Fuel, vol. 91, pp. 102–111, 2012.spa
dc.relation.referencesJ. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to chemical engineering thermodynamics, 7th ed. Boston: McGraw-Hill chemical engineering series, 2005.spa
dc.relation.referencesJ. R. Elliot and C. Lira., “Determinación de coeficientes de fugacidad y fugacidades en cada fase, para la mezcla.,” in Introductory Chemical Engineering Thermodynamics., 2009.spa
dc.relation.referencesG. M. Acosta, R. L. Smith, and K. Arai, “High-Pressure PVT Behavior of Natural Fats and Oils , Trilaurin , Triolein , and n -Tridecane from 303 K to 353 K from Atmospheric Pressure to 150 MPa,” J. Chem. Eng. Data Eng. Data Eng. Data, vol. 41, no. 96, pp. 961–969, 1996.spa
dc.relation.referencesL. Zong, S. Ramanathan, and C. Chen, “Fragment-Based Approach for Estimating Thermophysical Properties of Fats and Vegetable Oils for Modeling Biodiesel Production Processes,” Ind.Eng.chem.Res, vol. 49, no. 2, pp. 3022–3023, 2010.spa
dc.relation.referencesJ. D. Halvorsen, J. Mammel, W.C., and L. . Clements, “Density Estimation for Fatty Acids and Vegetable Oils Based on Their Fatty Acid Composition,” J. Am. Oil Chem, vol. 70, pp. 875–880, 1993.spa
dc.relation.referencesE. C. Ihmels and J. Gmehling, “Extension and Revision of the Group Contribution Method GCVOL for the Prediction of Pure Compound Liquid Densities,” Ind. Eng. Chem. Res, vol. 42, pp. 408–412, 2003.spa
dc.relation.referencesAspenTech, “Aspen Plus Help Files.” Aspen Technology Inc., 2016.spa
dc.relation.referencesW. Yuan, A. C. Hansen, and Q. Zhang, “Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels,” Fuel, vol. 84, no. 7–8, pp. 943–950, May 2005.spa
dc.relation.referencesP. Saxena, J. Patel, and M. H. Joshipura, “Comparison of various methods for the estimation of vapor pressure of fatty acid methyl and ethyl esters (FAAE’s),” Fuel, vol. 182, pp. 842–849, 2016.spa
dc.relation.referencesP. Saxena, J. C. Patel, and M. H. Joshipura, “Prediction of vapor pressure of fatty acid methyl esters,” in Procedia Engineering, 2013, vol. 51, pp. 403–408.spa
dc.relation.referencesR. Ceriani and A. J. A. Meirelles, “Predicting vapor-liquid equilibria of fatty systems,” Fluid Phase Equilib., vol. 215, no. 2, pp. 227–236, 2004.spa
dc.relation.referencesL. Zong, S. Ramanathan, and C. C. Chen, “Predicting thermophysical properties of mono- and diglycerides with the chemical constituent fragment approach,” Ind. Eng. Chem. Res., vol. 49, no. 11, pp. 5479–5484, 2010.spa
dc.relation.referencesT. Wallek, J. Rarey, J. O. Metzger, and J. Gmehling, “Estimation of pure-component properties of biodiesel-related components: Fatty acid methyl esters, fatty acids, and triglycerides,” Ind. Eng. Chem. Res., vol. 52, pp. 16966–16978, 2013.spa
dc.relation.referencesM. L. Corazza, W. A. Fouad, and W. G. Chapman, “PC-SAFT predictions of VLE and LLE of systems related to biodiesel production,” Fluid Phase Equilib., vol. 416, pp. 130–137, 2016.spa
dc.relation.referencesT. H. Gouw, J. C. Vlugter, and C. J. A. Roelands, “Physical properties of fatty acid methyl esters. VI. Viscosity,” J. Am. Oil Chem. Soc., vol. 43, pp. 433–434, 1966.spa
dc.relation.referencesR. Ceriani, C. B. Gonçalves, and J. A. P. Coutinho, “Prediction of viscosities of fatty compounds and biodiesel by group contribution,” Energy and Fuels, vol. 25, no. 8, pp. 3712–3717, 2011.spa
dc.relation.referencesI. D. U. N. de C. Gil C, J. R. U. N. de C. Guevara L., J. L. U. N. de C. García Z., and A. U. N. de C. Leguizamón R., Análisis y simulacion de procesos en Ingeniería Química. Bogotá D.C., 2011.spa
dc.relation.referencesH. Kuramochi, K. Maeda, S. Kato, M. Osako, K. Nakamura, and S. ichi Sakai, “Application of UNIFAC models for prediction of vapor-liquid and liquid-liquid equilibria relevant to separation and purification processes of crude biodiesel fuel,” Fuel, vol. 88, no. 8, pp. 1472–1477, 2009.spa
dc.relation.referencesD. S. Damaceno, O. A. Perederic, R. Ceriani, G. M. Kontogeorgis, and R. Gani, “Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology,” Fluid Phase Equilib., vol. 470, 2017.spa
dc.relation.referencesT. T. X. Nguyen and D. NguyenHuynh, “Predicting the phase equilibria of esters/alcohols mixtures and biodiesel density from its fatty acid composition using the modified group-contribution PC-SAFT,” Fluid Phase Equilib., vol. 472, pp. 128–146, 2018.spa
dc.relation.referencesS. W. Dean, M. O. McLinden, T. J. Bruno, M. Frenkel, and M. L. Huber, “Standard Reference Data for the Thermophysical Properties of Biofuels,” J. ASTM Int., vol. 7, no. 3, p. 102586, 2010.spa
dc.relation.referencesS. M. Stigler, Statistics on the table : the history of statistical concepts and methods. Harvard University Press, 1999.spa
dc.relation.referencesM. A. Noriega, P. C. Narvaez, A. D. Imbachi, J. G. Cadavid, and A. C. Habert, “Liquid-liquid equilibrium for biodiesel-glycerol-methanol or ethanol systems using UNIFAC correlated parameters,” Energy, vol. 111, pp. 841–849, 2016.spa
dc.relation.referencesO. A. Perederic et al., “Systematic identification method for data analysis and phase equilibria modelling for lipids systems,” J. Chem. Thermodyn., vol. 121, pp. 153–169, 2018.spa
dc.relation.referencesA. Plus, A. Properties, A. E. Suite, A. Technology, T. C. Park, and O. Systems, “Part Number : Aspen Physical Property System 11 . 1 September 2001,” pp. 2–18, 2001.spa
dc.relation.referencesP. C. Narváez, S. M. Rincón, L. Z. Castañeda, and F. J. Sánchez, “Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters,” Lat. Am. Appl. Res., vol. 38, pp. 1–6, 2008.spa
dc.relation.referencesR. Ceriani and A. J. A. Meirelles, “Simulation of continuous physical refiners for edible oil deacidification,” J. Food Eng., vol. 76, no. 3, pp. 261–271, 2006.spa
dc.relation.referencesC. B. Gonçalves and A. J. A. Meirelles, “Liquid-liquid equilibrium data for the system palm oil + fatty acids + ethanol + water at 318.2 K,” Fluid Phase Equilib., vol. 221, no. 1–2, pp. 139–150, 2004.spa
dc.relation.referencesM. B. Oliveira, S. Barbedo, J. I. Soletti, S. H. V Carvalho, A. J. Queimada, and J. A. P. Coutinho, “Liquid–liquid equilibria for the canola oil biodiesel + ethanol + glycerol system,” Fuel, vol. 90, pp. 2738–2745, 2011.spa
dc.relation.referencesJ. Saleh, “A Membrane Separation Process for Biodiesel Purification,” 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalModelos predictivosspa
dc.subject.proposalpropiedades de mezclasspa
dc.subject.proposalBlend propertieseng
dc.subject.proposalSimulación de procesosspa
dc.subject.proposalMixing ruleseng
dc.titleMetodología para la implementación de modelos predictivos para la estimación de propiedades termodinámicas y de transporte en la simulación de procesos oleoquímicosspa
dc.title.alternativeMethodology for deployment of predictive models to estimate thermodynamic and transport properties in oleochemicals process simulation applications.spa
dc.typeManualspa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014196210.2020.pdf
Tamaño:
4.01 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: