Comparación del desempeño de métodos de optimización en la calibración del modelo SWMM utilizando R: Caso campus Bogotá de la Universidad Nacional de Colombia

dc.contributor.advisorMancipe Muñoz, Néstor Alonso
dc.contributor.authorSandoval Barrera, John Alexander
dc.contributor.orcidSandoval Barrera, John Alexander [0000-0002-7708-587X]
dc.contributor.researchgateSandoval Barrera, John Alexander [John_Sandoval6]
dc.contributor.researchgroupGrupo de Investigación en Ingeniería de Recursos Hidrícos Gireh
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2025-09-03T14:56:47Z
dc.date.available2025-09-03T14:56:47Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografías, mapas, planosspa
dc.description.abstractLa modelación hidrológica es una herramienta fundamental para la gestión integral del recurso hídrico en áreas urbanas. Dentro de los modelos disponibles en la actualidad, el Storm Water Management Model (SWMM) es de los más utilizados, con cientos de publicaciones asociadas cada año. La implementación rigurosa de un modelo hidrológico incluye un proceso de calibración en el que se encuentra el valor óptimo para sus parámetros de configuración. Este proceso suele ser automático, acoplando el modelo con un método de optimización. Hay gran variedad de métodos de optimización disponibles, cuyo desempeño es evaluado normalmente utilizando problemas de optimización de referencia (p. ej. problema del agente viajero). Sin embargo, poco se pone a prueba su desempeño bajo las particularidades de un modelo hidrológico, como el fenómeno de la equifinalidad. Se realizó la evaluación del desempeño de 4 métodos de optimización en la calibración del modelo SWMM para una cuenca urbana en el campus Bogotá de la Universidad Nacional de Colombia. Se evaluaron diferentes casos de simulación variando el nivel de discretización espacial de la cuenca, la cantidad de parámetros a calibrar y el evento de precipitación. Los resultados muestran que la búsqueda dimensionada dinámicamente (DDS) es, en promedio, el método que mejor se desempeñó. Se resalta la importancia de poner a prueba los métodos de optimización para la calibración automática de modelos hidrológicos. La sensibilidad paramétrica, el nivel de discretización y el grado de parsimonia del modelo influyen en el desempeño de los métodos de optimización y determinan la elección final. (Texto tomado de la fuente)spa
dc.description.abstractHydrological modeling is a fundamental tool for the integrated management of water resources in urban areas. The Storm Water Management Model (SWMM) stands out as one of the most widely used, with hundreds of peer-reviewed publications each year. The rigorous implementation of a hydrological model includes a calibration process in which the optimal value for its configuration parameters is found. This process is usually automatic, coupling the model with an optimization method. A variety of optimization methods are available, whose performance is usually evaluated using benchmark optimization problems (e.g., traveling salesman problem). However, their performance is seldom evaluated under the particularities of a hydrological model, such as the equifinality phenomenon. The performance of four optimization methods is evaluated in the calibration of the SWMM model for an urban watershed in the Bogotá campus of the National University of Colombia. Different simulation cases are evaluated by changing the level of spatial discretization of the watershed, the number of parameters to be calibrated, and the precipitation event. On average, the dynamically dimensioned search (DDS) is the optimization method with better performance in the calibration process of the study case. The results highlight the importance of assessing several optimization methods for automatic calibration of urban hydrological models. The parametric sensitivity, the level of discretization and the degree of parsimony of the model influence the optimization methods performance and define the final choice.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.description.researchareaHidrología y meteorología
dc.format.extentxvii, 115 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88574
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos
dc.relation.referencesAbdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. En Electronics (Switzerland) (Vol. 10, Número 21). https://doi.org/10.3390/electronics10212689
dc.relation.referencesAbedin, S. J. H., & Stephen, H. (2019). GIS framework for spatiotemporal mapping of urban flooding. Geosciences (Switzerland), 9(2). https://doi.org/10.3390/geosciences9020077
dc.relation.referencesAhmed, M. I., Stadnyk, T., Pietroniro, A., Awoye, H., Bajracharya, A., Mai, J., Tolson, B. A., Shen, H., Craig, J. R., Gervais, M., Sagan, K., Wruth, S., Koenig, K., Lilhare, R., Déry, S. J., Pokorny, S., Venema, H., Muhammad, A., & Taheri, M. (2023). Learning from hydrological models’ challenges: A case study from the Nelson basin model intercomparison project. Journal of Hydrology, 623. https://doi.org/10.1016/j.jhydrol.2023.129820
dc.relation.referencesAli, M. M., Khompatraporn, C., & Zabinsky, Z. B. (2005). A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. Journal of Global Optimization, 31(4). https://doi.org/10.1007/s10898-004-9972-2
dc.relation.referencesAparicio, F. (1994). Fundamentos de hidrología de superficie (7a reimp.). Limusa.
dc.relation.referencesArsenault, R., Brissette, F., & Martel, J. L. (2018). The hazards of split-sample validation in hydrological model calibration. Journal of Hydrology, 566. https://doi.org/10.1016/j.jhydrol.2018.09.027
dc.relation.referencesBach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling - Urban drainage and beyond. En Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2013.12.018
dc.relation.referencesBarr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., & Stewart, W. R. (1995). Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1). https://doi.org/10.1007/BF02430363
dc.relation.referencesBermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá (pp. 159–168).
dc.relation.referencesBeven, K. (2012). Rainfall-Runoff Modelling: The Primer: Second Edition. En Rainfall-Runoff Modelling: The Primer: Second Edition. https://doi.org/10.1002/9781119951001
dc.relation.referencesBlum, C., & Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. En ACM Computing Surveys (Vol. 35, Número 3). https://doi.org/10.1145/937503.937505
dc.relation.referencesCampisano, A., Catania, F. V., & Modica, C. (2017). Evaluating the SWMM LID Editor rain barrel option for the estimation of retention potential of rainwater harvesting systems. Urban Water Journal. https://doi.org/10.1080/1573062X.2016.1254259
dc.relation.referencesChen, C. W., & Shubinski, R. P. (1971). Computer Simulation of Urban Storm Water Runoff. Journal of the Hydraulics Division, 97(2). https://doi.org/10.1061/jyceaj.0002871
dc.relation.referencesChen, M., Tucker, C., Vallabhaneni, S., Koran, J., Gatterdam, M., & Wride, D. (2003). Comparing Different Approaches Of Catchment Delineation. 23nd Annual Esri International User Conference, October 2011.
dc.relation.referencesChoi, K. S., & Ball, J. E. (2002). Parameter estimation for urban runoff modelling. Urban Water, 4(1). https://doi.org/10.1016/S1462-0758(01)00072-3
dc.relation.referencesCorominas, A. (2023). On deciding when to stop metaheuristics: Properties, rules and termination conditions. Operations Research Perspectives, 10. https://doi.org/10.1016/j.orp.2023.100283
dc.relation.referencesCronshey, R. G., Roberts, R. T., & Miller, N. (1985). URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55 REV. ).
dc.relation.referencesDettmann, U. (2023). SoilHyP: Soil Hydraulic Properties. https://CRAN.R-project.org/package=SoilHyP
dc.relation.referencesdi Pierro, F., Khu, S. T., & Savić, D. (2006). From single-objective to multiple-objective multiple-rainfall events automatic calibration of urban storm water runoff models using genetic algorithms. Water Science and Technology, 54(6–7). https://doi.org/10.2166/wst.2006.609
dc.relation.referencesDong, Z., Bain, D. J., Akcakaya, M., & Ng, C. A. (2023). Evaluating the Thiessen polygon approach for efficient parameterization of urban stormwater models. Environmental Science and Pollution Research, 30(11). https://doi.org/10.1007/s11356-022-24162-7
dc.relation.referencesDuan, Q., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3). https://doi.org/10.1007/BF00939380
dc.relation.referencesDuan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4). https://doi.org/10.1029/91WR02985
dc.relation.referencesDuan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3–4). https://doi.org/10.1016/0022-1694(94)90057-4
dc.relation.referencesEAAB. (s/f). Sistema de Información Geográfica EAB. Empresa de Acueducto y Alcantarillado de Bogotá. https://www.acueducto.com.co/arcgis/rest/services/AlcantarilladoSanitario_2019/MapServer
dc.relation.referencesEngelbrecht, A. P. (2015). Fitness function evaluations: A fair stopping condition? IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings. https://doi.org/10.1109/SIS.2014.7011793
dc.relation.referencesEstupiñán T, H. A. (2009). Metodología para Modelar el Sistema de Drenaje Incorporando los Procesos de Acumulación y Lavado en una Cuenca Urbana. Campus Universidad Nacional de Colombia. Sede Bogotá [Trabajo de Grado]. Universidad Nacional de Colombia.
dc.relation.referencesEtgar, R., & Cohen, Y. (2022). Optimizing termination decision for meta-heuristic search techniques that converge to a static objective-value distribution. OR Spectrum, 44(1). https://doi.org/10.1007/s00291-021-00650-z
dc.relation.referencesEzugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., & Muhuri, P. K. (2021). Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artificial Intelligence Review, 54(6). https://doi.org/10.1007/s10462-020-09952-0
dc.relation.referencesFletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51. https://doi.org/10.1016/j.advwatres.2012.09.001
dc.relation.referencesGarcía, C. H. (1989). Tabelas para classificação do coeficiente De variação. IPEF - Instituto de pesquisas e estudos florestais - Circular técnica, 171.
dc.relation.referencesGhosh, I., & Hellweger, F. L. (2012). Effects of Spatial Resolution in Urban Hydrologic Simulations. Journal of Hydrologic Engineering, 17(1). https://doi.org/10.1061/(asce)he.1943-5584.0000405
dc.relation.referencesGuo, J. C., & Urbonas, B. (2009). Conversion of Natural Watershed to Kinematic Wave Cascading Plane. Journal of Hydrologic Engineering, 14(8), 839–846. https://doi.org/10.1061/(asce)he.1943-5584.0000045
dc.relation.referencesGupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2). https://doi.org/10.1016/j.jhydrol.2009.08.003
dc.relation.referencesGupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resources Research, 34(4). https://doi.org/10.1029/97WR03495
dc.relation.referencesGWP. (2013). The role of decision support systems and models in integrated river basin management. Technical Focus Paper.
dc.relation.referencesHalim, A. H., Ismail, I., & Das, S. (2021). Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artificial Intelligence Review, 54(3). https://doi.org/10.1007/s10462-020-09906-6
dc.relation.referencesHansen, N., Auger, A., Brockhoff, D., Tusar, D., & Tusar, T. (2016). COCO: Performance Assessment. CoRR, abs/1605.03560. http://arxiv.org/abs/1605.03560
dc.relation.referencesHansen, N., Auger, A., Finck, S., & Ros, R. (2009). Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup.
dc.relation.referencesHawley, R. J., & Bledsoe, B. P. (2011). How do flow peaks and durations change in suburbanizing semi-arid watersheds? A southern California case study. Journal of Hydrology, 405(1–2). https://doi.org/10.1016/j.jhydrol.2011.05.011
dc.relation.referencesHe, J., & Lin, G. (2016). Average Convergence Rate of Evolutionary Algorithms. En IEEE Transactions on Evolutionary Computation (Vol. 20, Número 2). https://doi.org/10.1109/TEVC.2015.2444793
dc.relation.referencesHellwig, M., & Beyer, H. G. (2019). Benchmarking evolutionary algorithms for single objective real-valued constrained optimization – A critical review. Swarm and Evolutionary Computation, 44. https://doi.org/10.1016/j.swevo.2018.10.002
dc.relation.referencesHenonin, J., Russo, B., Mark, O., & Gourbesville, P. (2013). Real-time urban flood forecasting and modelling - A state of the art. Journal of Hydroinformatics, 15(3). https://doi.org/10.2166/hydro.2013.132
dc.relation.referencesHolland, J. H. (2019). Adaptation in Natural and Artificial Systems. En Adaptation in Natural and Artificial Systems. https://doi.org/10.7551/mitpress/1090.001.0001
dc.relation.referencesHollis, G. E. (1975). The effect of urbanization on floods of different recurrence interval. Water Resources Research, 11(3). https://doi.org/10.1029/WR011i003p00431
dc.relation.referencesHuang, H. J., Cheng, S. J., Wen, J. C., & Lee, J. H. (2008). Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes, 22(13). https://doi.org/10.1002/hyp.6807
dc.relation.referencesHuo, J., & Liu, L. (2020). Evaluation Method of Multiobjective Functions’ Combination and Its Application in Hydrological Model Evaluation. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/8594727
dc.relation.referencesIDE de Bogotá. (2014). Modelo Digital de Terreno. Bogotá D.C. 2014. Infraestructura de Datos Especiales de Bogotá.
dc.relation.referencesIDEAM. (s/f). Características Climatológicas de Ciudades Principales de Colombia.
dc.relation.referencesIllgen, M. (2013). Hydrology of Urban Environments. En Urban Ecology. https://doi.org/10.1093/acprof:oso/9780199563562.003.0007
dc.relation.referencesJato-Espino, D., Sillanpää, N., Charlesworth, S. M., & Andrés-Doménech, I. (2016). Coupling GIS with stormwater modelling for the location prioritization and hydrological simulation of permeable pavements in urban catchments. Water (Switzerland). https://doi.org/si
dc.relation.referencesJiménez Avella, W. A. (2008). Instrumentación y análisis de la variación espacial y temporal de la precipitación en la respuesta de una cuenca urbana: caso de estudio campus Universidad Nacional de Colombia sede Bogotá. Universidad Nacional de Colombia.
dc.relation.referencesKazikova, A., Pluhacek, M., & Senkerik, R. (2021). How Does the Number of Objective Function Evaluations Impact Our Understanding of Metaheuristics Behavior? IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3066135
dc.relation.referencesKennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference on Neural Networks - Conference Proceedings, 4. https://doi.org/10.4018/ijmfmp.2015010104
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598). https://doi.org/10.1126/science.220.4598.671
dc.relation.referencesKneis, D. (2015). mcu: Model calibration utilities.
dc.relation.referencesKnoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10). https://doi.org/10.5194/hess-23-4323-2019
dc.relation.referencesKumar, A., Sarangi, A., Singh, D. K., Dash, S., & Mani, I. (2023). Evaluation of Ultrasonic Sensor for Flow Measurement in Open Channel. Journal of Scientific and Industrial Research, 82(10). https://doi.org/10.56042/jsir.v82i10.2613
dc.relation.referencesLawrence, P. L. (2013). Geospatial tools for urban water resources. En Geospatial Tools for Urban Water Resources. https://doi.org/10.1007/978-94-007-4734-0
dc.relation.referencesLee, C. Y., & Lee, D. (2014). Determination of initial temperature in fast simulated annealing. Computational Optimization and Applications, 58(2). https://doi.org/10.1007/s10589-013-9631-y
dc.relation.referencesLegates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1). https://doi.org/10.1029/1998WR900018
dc.relation.referencesLeutnant, D., Döring, A., & Uhl, M. (2019). swmmr - an R package to interface SWMM. Urban Water Journal, 16(1). https://doi.org/10.1080/1573062X.2019.1611889
dc.relation.referencesLindsay, J. B. (2016). The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 41(5). https://doi.org/10.1002/esp.3888
dc.relation.referencesLuyckx, G., & Berlamont, J. (2001). Simplified method to correct rainfall measurements from tipping bucket rain gauges. Urban Drainage Modeling, 767–776. https://doi.org/10.1061/40583(275)72
dc.relation.referencesMadsen, H. (2003). Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2). https://doi.org/10.1016/S0309-1708(02)00092-1
dc.relation.referencesMancipe, N. A., Buchberger, S., & Suidan, M. (2012). Calibration of Distributed Rainfall-Runoff Model in Hamilton County, Ohio. Journal of Water Management Modeling, February. https://doi.org/10.14796/jwmm.r245-11
dc.relation.referencesMendez-Morales, M., Calvo-Valverde, L. A., Mendez-Morales, M., & Calvo-Valverde, L. A. (2019). Comparación de métodos de optimización locales y globales para la calibración y análisis de sensibilidad de un modelo hidrológico conceptual. Revista Tecnología en Marcha, 32(3), 24–36. https://doi.org/10.18845/tm.v32i2.4477
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2018). Guía Nacional de Modelación del Recurso Hídrico para Aguas Superficiales Continentales.
dc.relation.referencesMitchell, V. G., Duncan, H., Inman, M., Rahilly, M., Stewart, J., Vieritz, A., Holt, P., Grant, A., Fletcher, T., Coleman, J., & others. (2007). Integrated Urban Water Modelling--Past, Present, and Future. Rainwater & Urban Design 2007, Joint 13th International Rainwater Catchment Systems Conference and the 5th International Water Sensitive Urban Design Conference.
dc.relation.referencesMoriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3).
dc.relation.referencesMoustafa, M. A. M., Mohamed, W. M. A., Lau, A. C. C., Chatanga, E., Qiu, Y., Hayashi, N., Naguib, D., Sato, K., Takano, A., Matsuno, K., Nonaka, N., Taylor, D. M., Kawabata, H., & Nakao, R. (2020). R A language and environment for statistical computing, R Foundation for Statistical. Computing, 20.
dc.relation.referencesMullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). DEoptim: An R Package for Global Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1–26. https://doi.org/10.18637/jss.v040.i06
dc.relation.referencesNaeini, M. R., Analui, B., Gupta, H. V., Duan, Q., & Soroosliian, S. (2019). Three decades of the shuffled complex evolution (sce-ua) optimization algorithm: Review and applications. En Scientia Iranica (Vol. 26, Número 4A). https://doi.org/10.24200/sci.2019.21500
dc.relation.referencesNannetti, E. G. (2014). La región hídrica de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(144). https://doi.org/10.18257/raccefyn.13
dc.relation.referencesNash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3). https://doi.org/10.1016/0022-1694(70)90255-6
dc.relation.referencesNelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4). https://doi.org/10.1093/comjnl/7.4.308
dc.relation.referencesNiazi, M., Nietch, C., Maghrebi, M., Jackson, N., Bennett, B. R., Tryby, M., & Massoudieh, A. (2017). Storm Water Management Model: Performance Review and Gap Analysis. En Journal of Sustainable Water in the Built Environment. https://doi.org/10.1061/JSWBAY.0000817
dc.relation.referencesNRCS. (1986). Technical Release 55: Urban Hydrology for Small Watersheds. USDA Natural Resource Conservation Service Conservation Engeneering Division Technical Release 55.
dc.relation.referencesOGA. (2020). Unidades Litológicas Superficiales de la Ciudad Universitaria. En Plan de Manejo Ambiental Sustentable de la Sede Bogotá “Multicampus Sostenible”. Oficina de Gestión Ambiental (OGA), de la Sede Bogotá de la Universidad Nacional de Colombia. https://ogabogota.unal.edu.co/componente-natural/geosfera/ciudad-universitaria/
dc.relation.referencesOGA. (2021). Cobertura y Uso del Suelo Año 2021 Ciudad Universitaria. En Plan de Manejo Ambiental Sustentable de la Sede Bogotá “Multicampus Sostenible”. Oficina de Gestión Ambiental (OGA), de la Sede Bogotá de la Universidad Nacional de Colombia. https://ogabogota.unal.edu.co/cobertura-y-uso-del-suelo/mapas/
dc.relation.referencesOsman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63. https://doi.org/10.1007/bf02125421
dc.relation.referencesPrice, K., Storn, R., & Lampinen, J. (2005). Differential Evolution-A Practical Approach to Global Optimization. En Natural Computing - NC (Vol. 141). https://doi.org/10.1007/3-540-31306-0
dc.relation.referencesRangari, V. A., Patel, A. K., & Umamahesh, N. V. (2015). Review of urban stormwater models. 20th International Conference on Hydraulics, Water Resources and River Engineering.
dc.relation.referencesRawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Green‐ampt Infiltration Parameters from Soils Data. Journal of Hydraulic Engineering, 109(1). https://doi.org/10.1061/(asce)0733-9429(1983)109:1(62)
dc.relation.referencesReddy, J. M., & Kumar, N. D. (2020). Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. En H2Open Journal (Vol. 3, Número 1). https://doi.org/10.2166/h2oj.2020.128
dc.relation.referencesRefsgaard, J. C., & Henriksen, H. J. (2004). Modelling guidelines - Terminology and guiding principles. Advances in Water Resources, 27(1). https://doi.org/10.1016/j.advwatres.2003.08.006
dc.relation.referencesRefsgaard, J. C., Henriksen, H. J., Harrar, W. G., Scholten, H., & Kassahun, A. (2005). Quality assurance in model based water management - Review of existing practice and outline of new approaches. Environmental Modelling and Software, 20(10). https://doi.org/10.1016/j.envsoft.2004.07.006
dc.relation.referencesRibeiro, C. C., Rosseti, I., & Souza, R. C. (2013). Probabilistic stopping rules for GRASP heuristics and extensions. International Transactions in Operational Research, 20(3). https://doi.org/10.1111/itor.12010
dc.relation.referencesRodríguez, Erasmo., Camacho B., L. A., Villareal P., J., Jiménez, A., Santos R., A. C., & Duarte B., M. D. P. (2008). Análisis de la variabilidad espacio-temporal de la precipitación en una microcuenca urbana, Bogotá, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía. https://doi.org/10.15446/rcdg.n17.10924
dc.relation.referencesRossman, L. A. (2015). STORM WATER MANAGEMENT MODEL USER’S MANUAL Version 5.1. EPA/600/R-14/413b, National Risk Management Laboratory Office of Research and Development. United States Environmental Protection Agency, Cincinnati, Ohio. http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT
dc.relation.referencesRossman, L. A. (2017). Storm Water Management Model Reference Manual Volume II -Hydraulics. Report (USEPA), II(EPA/600/R-17/111).
dc.relation.referencesRossman, L. A., Huber, W. C., States, U., Protection, E., Rossman, L. A., & C., W. H. (2016). Storm water management model reference manual – Volume I Hydrology (Revised). Environmental Protection Agency, I(EPA/600/R-17/111).
dc.relation.referencesSantos, L., Thirel, G., & Perrin, C. (2018). Technical note: Pitfalls in using log-transformed flows within the KGE criterion. Hydrology and Earth System Sciences, 22(8). https://doi.org/10.5194/hess-22-4583-2018
dc.relation.referencesSenning, J. (2015). Computing and estimating the rate of convergence. Dept. Math. Comput. Sci.
dc.relation.referencesShakouri G., H., Shojaee, K., & Behnam T., M. (2009). Investigation on the choice of the initial temperature in the Simulated Annealing: A mushy state SA for TSP. https://doi.org/10.1109/med.2009.5164685
dc.relation.referencesShoarinezhad, V., Wieprecht, S., & Haun, S. (2020). Comparison of local and global optimization methods for calibration of a 3D morphodynamic model of a curved channel. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051333
dc.relation.referencesShuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4). https://doi.org/10.1080/15730620500386529
dc.relation.referencesSimmons, D. L., & Reynolds, R. J. (1982). EFFECTS OF URBANIZATION ON BASE FLOW OF SELECTED SOUTH‐SHORE STREAMS, LONG ISLAND, NEW YORK. JAWRA Journal of the American Water Resources Association, 18(5). https://doi.org/10.1111/j.1752-1688.1982.tb00075.x
dc.relation.referencesSivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. En Introduction to Genetic Algorithms. https://doi.org/10.1007/978-3-540-73190-0
dc.relation.referencesSkotnicki, M., & Sowiński, M. (2015). The influence of depression storage on runoff from impervious surface of urban catchment. Urban Water Journal, 12(3). https://doi.org/10.1080/1573062X.2013.839717
dc.relation.referencesStorn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4). https://doi.org/10.1023/A:1008202821328 Sutherland, R. C. (1995). Methods for Estimating the Effective Impervious Area of Urban Watersheds. Watershed Protection Techniques, 2(1).
dc.relation.referencesSzu, H., & Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122(3–4). https://doi.org/10.1016/0375-9601(87)90796-1
dc.relation.referencesTaji, S. G., & Regulwar, D. G. (2019). LID coupled design of drainage model using GIS and SWMM. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2019.1660919
dc.relation.referencesTolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1). https://doi.org/10.1029/2005WR004723
dc.relation.referencesTomar, V., Bansal, M., & Singh, P. (2023). Metaheuristic Algorithms for Optimization: A Brief Review. Engineering Proceedings, 59(1). https://doi.org/10.3390/engproc2023059238
dc.relation.referencesTsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical Mechanics and its Applications, 233(1), 395–406. https://doi.org/https://doi.org/10.1016/S0378-4371(96)00271-3
dc.relation.referencesUrich, C., & Rauch, W. (2014). Modelling the urban water cycle as an integrated part of the city: A review. En Water Science and Technology. https://doi.org/10.2166/wst.2014.363
dc.relation.referencesUSDA. (1972). Soil Conservation Service National Engineering Handbook. Section 4: Hydrology, Chapters 4-10. National Engineering Handbook, 4.
dc.relation.referencesUSDA-NRCS. (2004). Hydrologic soil-cover complexes. National Engineering Handbook, 91(8).
dc.relation.referencesVenter, G. (2010). Review of Optimization Techniques. Encyclopedia of Aerospace Engineering, July. https://doi.org/10.1002/9780470686652.eae495
dc.relation.referencesWang, Q., Liu, R., Men, C., & Guo, L. (2018). Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. Journal of Hydrology, 560. https://doi.org/10.1016/j.jhydrol.2018.03.022
dc.relation.referencesWȩglarczyk, S. (1998). The interdependence and applicability of some statistical quality measures for hydrological models. Journal of Hydrology, 206(1–2). https://doi.org/10.1016/S0022-1694(98)00094-8
dc.relation.referencesXiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA package. R Journal, 5(1). https://doi.org/10.32614/rj-2013-002
dc.relation.referencesYoo, D. G., & Kim, J. H. (2014). Meta-heuristic algorithms as tools for hydrological science. Geoscience Letters, 1(1). https://doi.org/10.1186/2196-4092-1-4
dc.relation.referencesZahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015). Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City. Journal of Irrigation and Drainage Engineering, 141(1). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000770
dc.relation.referencesZoppou, C. (2001). Review of urban storm water models. En Environmental Modelling and Software (Vol. 16, Número 3, pp. 195–231). https://doi.org/10.1016/S1364-8152(00)00084-0
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.bneModelos hidrológicosspa
dc.subject.bneHydrological modelseng
dc.subject.lembRecursos hídricosspa
dc.subject.lembWater resourceseng
dc.subject.lembOptimizaciónspa
dc.subject.lembOptimizationeng
dc.subject.proposalModelación lluvia-escorrentía urbanaspa
dc.subject.proposalMétodos de optimizaciónspa
dc.subject.proposalSWMMspa
dc.subject.proposalUrban rainfall-runoff modellingeng
dc.subject.proposalOptimization methodseng
dc.subject.proposalSWMMeng
dc.titleComparación del desempeño de métodos de optimización en la calibración del modelo SWMM utilizando R: Caso campus Bogotá de la Universidad Nacional de Colombiaspa
dc.title.translatedAssessment of optimization methods for SWMM calibration using R: case of the Bogotá campus of the National University of Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032465090.2025.pdf
Tamaño:
4.69 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: