Comparación del desempeño de métodos de optimización en la calibración del modelo SWMM utilizando R: Caso campus Bogotá de la Universidad Nacional de Colombia
dc.contributor.advisor | Mancipe Muñoz, Néstor Alonso | |
dc.contributor.author | Sandoval Barrera, John Alexander | |
dc.contributor.orcid | Sandoval Barrera, John Alexander [0000-0002-7708-587X] | |
dc.contributor.researchgate | Sandoval Barrera, John Alexander [John_Sandoval6] | |
dc.contributor.researchgroup | Grupo de Investigación en Ingeniería de Recursos Hidrícos Gireh | |
dc.coverage.city | Bogotá | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-03T14:56:47Z | |
dc.date.available | 2025-09-03T14:56:47Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías, mapas, planos | spa |
dc.description.abstract | La modelación hidrológica es una herramienta fundamental para la gestión integral del recurso hídrico en áreas urbanas. Dentro de los modelos disponibles en la actualidad, el Storm Water Management Model (SWMM) es de los más utilizados, con cientos de publicaciones asociadas cada año. La implementación rigurosa de un modelo hidrológico incluye un proceso de calibración en el que se encuentra el valor óptimo para sus parámetros de configuración. Este proceso suele ser automático, acoplando el modelo con un método de optimización. Hay gran variedad de métodos de optimización disponibles, cuyo desempeño es evaluado normalmente utilizando problemas de optimización de referencia (p. ej. problema del agente viajero). Sin embargo, poco se pone a prueba su desempeño bajo las particularidades de un modelo hidrológico, como el fenómeno de la equifinalidad. Se realizó la evaluación del desempeño de 4 métodos de optimización en la calibración del modelo SWMM para una cuenca urbana en el campus Bogotá de la Universidad Nacional de Colombia. Se evaluaron diferentes casos de simulación variando el nivel de discretización espacial de la cuenca, la cantidad de parámetros a calibrar y el evento de precipitación. Los resultados muestran que la búsqueda dimensionada dinámicamente (DDS) es, en promedio, el método que mejor se desempeñó. Se resalta la importancia de poner a prueba los métodos de optimización para la calibración automática de modelos hidrológicos. La sensibilidad paramétrica, el nivel de discretización y el grado de parsimonia del modelo influyen en el desempeño de los métodos de optimización y determinan la elección final. (Texto tomado de la fuente) | spa |
dc.description.abstract | Hydrological modeling is a fundamental tool for the integrated management of water resources in urban areas. The Storm Water Management Model (SWMM) stands out as one of the most widely used, with hundreds of peer-reviewed publications each year. The rigorous implementation of a hydrological model includes a calibration process in which the optimal value for its configuration parameters is found. This process is usually automatic, coupling the model with an optimization method. A variety of optimization methods are available, whose performance is usually evaluated using benchmark optimization problems (e.g., traveling salesman problem). However, their performance is seldom evaluated under the particularities of a hydrological model, such as the equifinality phenomenon. The performance of four optimization methods is evaluated in the calibration of the SWMM model for an urban watershed in the Bogotá campus of the National University of Colombia. Different simulation cases are evaluated by changing the level of spatial discretization of the watershed, the number of parameters to be calibrated, and the precipitation event. On average, the dynamically dimensioned search (DDS) is the optimization method with better performance in the calibration process of the study case. The results highlight the importance of assessing several optimization methods for automatic calibration of urban hydrological models. The parametric sensitivity, the level of discretization and the degree of parsimony of the model influence the optimization methods performance and define the final choice. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Recursos Hidráulicos | |
dc.description.researcharea | Hidrología y meteorología | |
dc.format.extent | xvii, 115 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88574 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos | |
dc.relation.references | Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. En Electronics (Switzerland) (Vol. 10, Número 21). https://doi.org/10.3390/electronics10212689 | |
dc.relation.references | Abedin, S. J. H., & Stephen, H. (2019). GIS framework for spatiotemporal mapping of urban flooding. Geosciences (Switzerland), 9(2). https://doi.org/10.3390/geosciences9020077 | |
dc.relation.references | Ahmed, M. I., Stadnyk, T., Pietroniro, A., Awoye, H., Bajracharya, A., Mai, J., Tolson, B. A., Shen, H., Craig, J. R., Gervais, M., Sagan, K., Wruth, S., Koenig, K., Lilhare, R., Déry, S. J., Pokorny, S., Venema, H., Muhammad, A., & Taheri, M. (2023). Learning from hydrological models’ challenges: A case study from the Nelson basin model intercomparison project. Journal of Hydrology, 623. https://doi.org/10.1016/j.jhydrol.2023.129820 | |
dc.relation.references | Ali, M. M., Khompatraporn, C., & Zabinsky, Z. B. (2005). A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. Journal of Global Optimization, 31(4). https://doi.org/10.1007/s10898-004-9972-2 | |
dc.relation.references | Aparicio, F. (1994). Fundamentos de hidrología de superficie (7a reimp.). Limusa. | |
dc.relation.references | Arsenault, R., Brissette, F., & Martel, J. L. (2018). The hazards of split-sample validation in hydrological model calibration. Journal of Hydrology, 566. https://doi.org/10.1016/j.jhydrol.2018.09.027 | |
dc.relation.references | Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling - Urban drainage and beyond. En Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2013.12.018 | |
dc.relation.references | Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., & Stewart, W. R. (1995). Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics, 1(1). https://doi.org/10.1007/BF02430363 | |
dc.relation.references | Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá (pp. 159–168). | |
dc.relation.references | Beven, K. (2012). Rainfall-Runoff Modelling: The Primer: Second Edition. En Rainfall-Runoff Modelling: The Primer: Second Edition. https://doi.org/10.1002/9781119951001 | |
dc.relation.references | Blum, C., & Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. En ACM Computing Surveys (Vol. 35, Número 3). https://doi.org/10.1145/937503.937505 | |
dc.relation.references | Campisano, A., Catania, F. V., & Modica, C. (2017). Evaluating the SWMM LID Editor rain barrel option for the estimation of retention potential of rainwater harvesting systems. Urban Water Journal. https://doi.org/10.1080/1573062X.2016.1254259 | |
dc.relation.references | Chen, C. W., & Shubinski, R. P. (1971). Computer Simulation of Urban Storm Water Runoff. Journal of the Hydraulics Division, 97(2). https://doi.org/10.1061/jyceaj.0002871 | |
dc.relation.references | Chen, M., Tucker, C., Vallabhaneni, S., Koran, J., Gatterdam, M., & Wride, D. (2003). Comparing Different Approaches Of Catchment Delineation. 23nd Annual Esri International User Conference, October 2011. | |
dc.relation.references | Choi, K. S., & Ball, J. E. (2002). Parameter estimation for urban runoff modelling. Urban Water, 4(1). https://doi.org/10.1016/S1462-0758(01)00072-3 | |
dc.relation.references | Corominas, A. (2023). On deciding when to stop metaheuristics: Properties, rules and termination conditions. Operations Research Perspectives, 10. https://doi.org/10.1016/j.orp.2023.100283 | |
dc.relation.references | Cronshey, R. G., Roberts, R. T., & Miller, N. (1985). URBAN HYDROLOGY FOR SMALL WATERSHEDS (TR-55 REV. ). | |
dc.relation.references | Dettmann, U. (2023). SoilHyP: Soil Hydraulic Properties. https://CRAN.R-project.org/package=SoilHyP | |
dc.relation.references | di Pierro, F., Khu, S. T., & Savić, D. (2006). From single-objective to multiple-objective multiple-rainfall events automatic calibration of urban storm water runoff models using genetic algorithms. Water Science and Technology, 54(6–7). https://doi.org/10.2166/wst.2006.609 | |
dc.relation.references | Dong, Z., Bain, D. J., Akcakaya, M., & Ng, C. A. (2023). Evaluating the Thiessen polygon approach for efficient parameterization of urban stormwater models. Environmental Science and Pollution Research, 30(11). https://doi.org/10.1007/s11356-022-24162-7 | |
dc.relation.references | Duan, Q., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3). https://doi.org/10.1007/BF00939380 | |
dc.relation.references | Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resources Research, 28(4). https://doi.org/10.1029/91WR02985 | |
dc.relation.references | Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3–4). https://doi.org/10.1016/0022-1694(94)90057-4 | |
dc.relation.references | EAAB. (s/f). Sistema de Información Geográfica EAB. Empresa de Acueducto y Alcantarillado de Bogotá. https://www.acueducto.com.co/arcgis/rest/services/AlcantarilladoSanitario_2019/MapServer | |
dc.relation.references | Engelbrecht, A. P. (2015). Fitness function evaluations: A fair stopping condition? IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings. https://doi.org/10.1109/SIS.2014.7011793 | |
dc.relation.references | Estupiñán T, H. A. (2009). Metodología para Modelar el Sistema de Drenaje Incorporando los Procesos de Acumulación y Lavado en una Cuenca Urbana. Campus Universidad Nacional de Colombia. Sede Bogotá [Trabajo de Grado]. Universidad Nacional de Colombia. | |
dc.relation.references | Etgar, R., & Cohen, Y. (2022). Optimizing termination decision for meta-heuristic search techniques that converge to a static objective-value distribution. OR Spectrum, 44(1). https://doi.org/10.1007/s00291-021-00650-z | |
dc.relation.references | Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., & Muhuri, P. K. (2021). Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artificial Intelligence Review, 54(6). https://doi.org/10.1007/s10462-020-09952-0 | |
dc.relation.references | Fletcher, T. D., Andrieu, H., & Hamel, P. (2013). Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources, 51. https://doi.org/10.1016/j.advwatres.2012.09.001 | |
dc.relation.references | García, C. H. (1989). Tabelas para classificação do coeficiente De variação. IPEF - Instituto de pesquisas e estudos florestais - Circular técnica, 171. | |
dc.relation.references | Ghosh, I., & Hellweger, F. L. (2012). Effects of Spatial Resolution in Urban Hydrologic Simulations. Journal of Hydrologic Engineering, 17(1). https://doi.org/10.1061/(asce)he.1943-5584.0000405 | |
dc.relation.references | Guo, J. C., & Urbonas, B. (2009). Conversion of Natural Watershed to Kinematic Wave Cascading Plane. Journal of Hydrologic Engineering, 14(8), 839–846. https://doi.org/10.1061/(asce)he.1943-5584.0000045 | |
dc.relation.references | Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2). https://doi.org/10.1016/j.jhydrol.2009.08.003 | |
dc.relation.references | Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resources Research, 34(4). https://doi.org/10.1029/97WR03495 | |
dc.relation.references | GWP. (2013). The role of decision support systems and models in integrated river basin management. Technical Focus Paper. | |
dc.relation.references | Halim, A. H., Ismail, I., & Das, S. (2021). Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artificial Intelligence Review, 54(3). https://doi.org/10.1007/s10462-020-09906-6 | |
dc.relation.references | Hansen, N., Auger, A., Brockhoff, D., Tusar, D., & Tusar, T. (2016). COCO: Performance Assessment. CoRR, abs/1605.03560. http://arxiv.org/abs/1605.03560 | |
dc.relation.references | Hansen, N., Auger, A., Finck, S., & Ros, R. (2009). Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup. | |
dc.relation.references | Hawley, R. J., & Bledsoe, B. P. (2011). How do flow peaks and durations change in suburbanizing semi-arid watersheds? A southern California case study. Journal of Hydrology, 405(1–2). https://doi.org/10.1016/j.jhydrol.2011.05.011 | |
dc.relation.references | He, J., & Lin, G. (2016). Average Convergence Rate of Evolutionary Algorithms. En IEEE Transactions on Evolutionary Computation (Vol. 20, Número 2). https://doi.org/10.1109/TEVC.2015.2444793 | |
dc.relation.references | Hellwig, M., & Beyer, H. G. (2019). Benchmarking evolutionary algorithms for single objective real-valued constrained optimization – A critical review. Swarm and Evolutionary Computation, 44. https://doi.org/10.1016/j.swevo.2018.10.002 | |
dc.relation.references | Henonin, J., Russo, B., Mark, O., & Gourbesville, P. (2013). Real-time urban flood forecasting and modelling - A state of the art. Journal of Hydroinformatics, 15(3). https://doi.org/10.2166/hydro.2013.132 | |
dc.relation.references | Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. En Adaptation in Natural and Artificial Systems. https://doi.org/10.7551/mitpress/1090.001.0001 | |
dc.relation.references | Hollis, G. E. (1975). The effect of urbanization on floods of different recurrence interval. Water Resources Research, 11(3). https://doi.org/10.1029/WR011i003p00431 | |
dc.relation.references | Huang, H. J., Cheng, S. J., Wen, J. C., & Lee, J. H. (2008). Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes, 22(13). https://doi.org/10.1002/hyp.6807 | |
dc.relation.references | Huo, J., & Liu, L. (2020). Evaluation Method of Multiobjective Functions’ Combination and Its Application in Hydrological Model Evaluation. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/8594727 | |
dc.relation.references | IDE de Bogotá. (2014). Modelo Digital de Terreno. Bogotá D.C. 2014. Infraestructura de Datos Especiales de Bogotá. | |
dc.relation.references | IDEAM. (s/f). Características Climatológicas de Ciudades Principales de Colombia. | |
dc.relation.references | Illgen, M. (2013). Hydrology of Urban Environments. En Urban Ecology. https://doi.org/10.1093/acprof:oso/9780199563562.003.0007 | |
dc.relation.references | Jato-Espino, D., Sillanpää, N., Charlesworth, S. M., & Andrés-Doménech, I. (2016). Coupling GIS with stormwater modelling for the location prioritization and hydrological simulation of permeable pavements in urban catchments. Water (Switzerland). https://doi.org/si | |
dc.relation.references | Jiménez Avella, W. A. (2008). Instrumentación y análisis de la variación espacial y temporal de la precipitación en la respuesta de una cuenca urbana: caso de estudio campus Universidad Nacional de Colombia sede Bogotá. Universidad Nacional de Colombia. | |
dc.relation.references | Kazikova, A., Pluhacek, M., & Senkerik, R. (2021). How Does the Number of Objective Function Evaluations Impact Our Understanding of Metaheuristics Behavior? IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3066135 | |
dc.relation.references | Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference on Neural Networks - Conference Proceedings, 4. https://doi.org/10.4018/ijmfmp.2015010104 | |
dc.relation.references | Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598). https://doi.org/10.1126/science.220.4598.671 | |
dc.relation.references | Kneis, D. (2015). mcu: Model calibration utilities. | |
dc.relation.references | Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10). https://doi.org/10.5194/hess-23-4323-2019 | |
dc.relation.references | Kumar, A., Sarangi, A., Singh, D. K., Dash, S., & Mani, I. (2023). Evaluation of Ultrasonic Sensor for Flow Measurement in Open Channel. Journal of Scientific and Industrial Research, 82(10). https://doi.org/10.56042/jsir.v82i10.2613 | |
dc.relation.references | Lawrence, P. L. (2013). Geospatial tools for urban water resources. En Geospatial Tools for Urban Water Resources. https://doi.org/10.1007/978-94-007-4734-0 | |
dc.relation.references | Lee, C. Y., & Lee, D. (2014). Determination of initial temperature in fast simulated annealing. Computational Optimization and Applications, 58(2). https://doi.org/10.1007/s10589-013-9631-y | |
dc.relation.references | Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1). https://doi.org/10.1029/1998WR900018 | |
dc.relation.references | Leutnant, D., Döring, A., & Uhl, M. (2019). swmmr - an R package to interface SWMM. Urban Water Journal, 16(1). https://doi.org/10.1080/1573062X.2019.1611889 | |
dc.relation.references | Lindsay, J. B. (2016). The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 41(5). https://doi.org/10.1002/esp.3888 | |
dc.relation.references | Luyckx, G., & Berlamont, J. (2001). Simplified method to correct rainfall measurements from tipping bucket rain gauges. Urban Drainage Modeling, 767–776. https://doi.org/10.1061/40583(275)72 | |
dc.relation.references | Madsen, H. (2003). Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2). https://doi.org/10.1016/S0309-1708(02)00092-1 | |
dc.relation.references | Mancipe, N. A., Buchberger, S., & Suidan, M. (2012). Calibration of Distributed Rainfall-Runoff Model in Hamilton County, Ohio. Journal of Water Management Modeling, February. https://doi.org/10.14796/jwmm.r245-11 | |
dc.relation.references | Mendez-Morales, M., Calvo-Valverde, L. A., Mendez-Morales, M., & Calvo-Valverde, L. A. (2019). Comparación de métodos de optimización locales y globales para la calibración y análisis de sensibilidad de un modelo hidrológico conceptual. Revista Tecnología en Marcha, 32(3), 24–36. https://doi.org/10.18845/tm.v32i2.4477 | |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2018). Guía Nacional de Modelación del Recurso Hídrico para Aguas Superficiales Continentales. | |
dc.relation.references | Mitchell, V. G., Duncan, H., Inman, M., Rahilly, M., Stewart, J., Vieritz, A., Holt, P., Grant, A., Fletcher, T., Coleman, J., & others. (2007). Integrated Urban Water Modelling--Past, Present, and Future. Rainwater & Urban Design 2007, Joint 13th International Rainwater Catchment Systems Conference and the 5th International Water Sensitive Urban Design Conference. | |
dc.relation.references | Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3). | |
dc.relation.references | Moustafa, M. A. M., Mohamed, W. M. A., Lau, A. C. C., Chatanga, E., Qiu, Y., Hayashi, N., Naguib, D., Sato, K., Takano, A., Matsuno, K., Nonaka, N., Taylor, D. M., Kawabata, H., & Nakao, R. (2020). R A language and environment for statistical computing, R Foundation for Statistical. Computing, 20. | |
dc.relation.references | Mullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). DEoptim: An R Package for Global Optimization by Differential Evolution. Journal of Statistical Software, 40(6), 1–26. https://doi.org/10.18637/jss.v040.i06 | |
dc.relation.references | Naeini, M. R., Analui, B., Gupta, H. V., Duan, Q., & Soroosliian, S. (2019). Three decades of the shuffled complex evolution (sce-ua) optimization algorithm: Review and applications. En Scientia Iranica (Vol. 26, Número 4A). https://doi.org/10.24200/sci.2019.21500 | |
dc.relation.references | Nannetti, E. G. (2014). La región hídrica de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(144). https://doi.org/10.18257/raccefyn.13 | |
dc.relation.references | Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3). https://doi.org/10.1016/0022-1694(70)90255-6 | |
dc.relation.references | Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4). https://doi.org/10.1093/comjnl/7.4.308 | |
dc.relation.references | Niazi, M., Nietch, C., Maghrebi, M., Jackson, N., Bennett, B. R., Tryby, M., & Massoudieh, A. (2017). Storm Water Management Model: Performance Review and Gap Analysis. En Journal of Sustainable Water in the Built Environment. https://doi.org/10.1061/JSWBAY.0000817 | |
dc.relation.references | NRCS. (1986). Technical Release 55: Urban Hydrology for Small Watersheds. USDA Natural Resource Conservation Service Conservation Engeneering Division Technical Release 55. | |
dc.relation.references | OGA. (2020). Unidades Litológicas Superficiales de la Ciudad Universitaria. En Plan de Manejo Ambiental Sustentable de la Sede Bogotá “Multicampus Sostenible”. Oficina de Gestión Ambiental (OGA), de la Sede Bogotá de la Universidad Nacional de Colombia. https://ogabogota.unal.edu.co/componente-natural/geosfera/ciudad-universitaria/ | |
dc.relation.references | OGA. (2021). Cobertura y Uso del Suelo Año 2021 Ciudad Universitaria. En Plan de Manejo Ambiental Sustentable de la Sede Bogotá “Multicampus Sostenible”. Oficina de Gestión Ambiental (OGA), de la Sede Bogotá de la Universidad Nacional de Colombia. https://ogabogota.unal.edu.co/cobertura-y-uso-del-suelo/mapas/ | |
dc.relation.references | Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63. https://doi.org/10.1007/bf02125421 | |
dc.relation.references | Price, K., Storn, R., & Lampinen, J. (2005). Differential Evolution-A Practical Approach to Global Optimization. En Natural Computing - NC (Vol. 141). https://doi.org/10.1007/3-540-31306-0 | |
dc.relation.references | Rangari, V. A., Patel, A. K., & Umamahesh, N. V. (2015). Review of urban stormwater models. 20th International Conference on Hydraulics, Water Resources and River Engineering. | |
dc.relation.references | Rawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Green‐ampt Infiltration Parameters from Soils Data. Journal of Hydraulic Engineering, 109(1). https://doi.org/10.1061/(asce)0733-9429(1983)109:1(62) | |
dc.relation.references | Reddy, J. M., & Kumar, N. D. (2020). Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: A state-of-the-art review. En H2Open Journal (Vol. 3, Número 1). https://doi.org/10.2166/h2oj.2020.128 | |
dc.relation.references | Refsgaard, J. C., & Henriksen, H. J. (2004). Modelling guidelines - Terminology and guiding principles. Advances in Water Resources, 27(1). https://doi.org/10.1016/j.advwatres.2003.08.006 | |
dc.relation.references | Refsgaard, J. C., Henriksen, H. J., Harrar, W. G., Scholten, H., & Kassahun, A. (2005). Quality assurance in model based water management - Review of existing practice and outline of new approaches. Environmental Modelling and Software, 20(10). https://doi.org/10.1016/j.envsoft.2004.07.006 | |
dc.relation.references | Ribeiro, C. C., Rosseti, I., & Souza, R. C. (2013). Probabilistic stopping rules for GRASP heuristics and extensions. International Transactions in Operational Research, 20(3). https://doi.org/10.1111/itor.12010 | |
dc.relation.references | Rodríguez, Erasmo., Camacho B., L. A., Villareal P., J., Jiménez, A., Santos R., A. C., & Duarte B., M. D. P. (2008). Análisis de la variabilidad espacio-temporal de la precipitación en una microcuenca urbana, Bogotá, Colombia. Cuadernos de Geografía: Revista Colombiana de Geografía. https://doi.org/10.15446/rcdg.n17.10924 | |
dc.relation.references | Rossman, L. A. (2015). STORM WATER MANAGEMENT MODEL USER’S MANUAL Version 5.1. EPA/600/R-14/413b, National Risk Management Laboratory Office of Research and Development. United States Environmental Protection Agency, Cincinnati, Ohio. http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT | |
dc.relation.references | Rossman, L. A. (2017). Storm Water Management Model Reference Manual Volume II -Hydraulics. Report (USEPA), II(EPA/600/R-17/111). | |
dc.relation.references | Rossman, L. A., Huber, W. C., States, U., Protection, E., Rossman, L. A., & C., W. H. (2016). Storm water management model reference manual – Volume I Hydrology (Revised). Environmental Protection Agency, I(EPA/600/R-17/111). | |
dc.relation.references | Santos, L., Thirel, G., & Perrin, C. (2018). Technical note: Pitfalls in using log-transformed flows within the KGE criterion. Hydrology and Earth System Sciences, 22(8). https://doi.org/10.5194/hess-22-4583-2018 | |
dc.relation.references | Senning, J. (2015). Computing and estimating the rate of convergence. Dept. Math. Comput. Sci. | |
dc.relation.references | Shakouri G., H., Shojaee, K., & Behnam T., M. (2009). Investigation on the choice of the initial temperature in the Simulated Annealing: A mushy state SA for TSP. https://doi.org/10.1109/med.2009.5164685 | |
dc.relation.references | Shoarinezhad, V., Wieprecht, S., & Haun, S. (2020). Comparison of local and global optimization methods for calibration of a 3D morphodynamic model of a curved channel. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051333 | |
dc.relation.references | Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4). https://doi.org/10.1080/15730620500386529 | |
dc.relation.references | Simmons, D. L., & Reynolds, R. J. (1982). EFFECTS OF URBANIZATION ON BASE FLOW OF SELECTED SOUTH‐SHORE STREAMS, LONG ISLAND, NEW YORK. JAWRA Journal of the American Water Resources Association, 18(5). https://doi.org/10.1111/j.1752-1688.1982.tb00075.x | |
dc.relation.references | Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to genetic algorithms. En Introduction to Genetic Algorithms. https://doi.org/10.1007/978-3-540-73190-0 | |
dc.relation.references | Skotnicki, M., & Sowiński, M. (2015). The influence of depression storage on runoff from impervious surface of urban catchment. Urban Water Journal, 12(3). https://doi.org/10.1080/1573062X.2013.839717 | |
dc.relation.references | Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4). https://doi.org/10.1023/A:1008202821328 Sutherland, R. C. (1995). Methods for Estimating the Effective Impervious Area of Urban Watersheds. Watershed Protection Techniques, 2(1). | |
dc.relation.references | Szu, H., & Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122(3–4). https://doi.org/10.1016/0375-9601(87)90796-1 | |
dc.relation.references | Taji, S. G., & Regulwar, D. G. (2019). LID coupled design of drainage model using GIS and SWMM. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2019.1660919 | |
dc.relation.references | Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1). https://doi.org/10.1029/2005WR004723 | |
dc.relation.references | Tomar, V., Bansal, M., & Singh, P. (2023). Metaheuristic Algorithms for Optimization: A Brief Review. Engineering Proceedings, 59(1). https://doi.org/10.3390/engproc2023059238 | |
dc.relation.references | Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical Mechanics and its Applications, 233(1), 395–406. https://doi.org/https://doi.org/10.1016/S0378-4371(96)00271-3 | |
dc.relation.references | Urich, C., & Rauch, W. (2014). Modelling the urban water cycle as an integrated part of the city: A review. En Water Science and Technology. https://doi.org/10.2166/wst.2014.363 | |
dc.relation.references | USDA. (1972). Soil Conservation Service National Engineering Handbook. Section 4: Hydrology, Chapters 4-10. National Engineering Handbook, 4. | |
dc.relation.references | USDA-NRCS. (2004). Hydrologic soil-cover complexes. National Engineering Handbook, 91(8). | |
dc.relation.references | Venter, G. (2010). Review of Optimization Techniques. Encyclopedia of Aerospace Engineering, July. https://doi.org/10.1002/9780470686652.eae495 | |
dc.relation.references | Wang, Q., Liu, R., Men, C., & Guo, L. (2018). Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. Journal of Hydrology, 560. https://doi.org/10.1016/j.jhydrol.2018.03.022 | |
dc.relation.references | Wȩglarczyk, S. (1998). The interdependence and applicability of some statistical quality measures for hydrological models. Journal of Hydrology, 206(1–2). https://doi.org/10.1016/S0022-1694(98)00094-8 | |
dc.relation.references | Xiang, Y., Gubian, S., Suomela, B., & Hoeng, J. (2013). Generalized simulated annealing for global optimization: The GenSA package. R Journal, 5(1). https://doi.org/10.32614/rj-2013-002 | |
dc.relation.references | Yoo, D. G., & Kim, J. H. (2014). Meta-heuristic algorithms as tools for hydrological science. Geoscience Letters, 1(1). https://doi.org/10.1186/2196-4092-1-4 | |
dc.relation.references | Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2015). Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City. Journal of Irrigation and Drainage Engineering, 141(1). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000770 | |
dc.relation.references | Zoppou, C. (2001). Review of urban storm water models. En Environmental Modelling and Software (Vol. 16, Número 3, pp. 195–231). https://doi.org/10.1016/S1364-8152(00)00084-0 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.bne | Modelos hidrológicos | spa |
dc.subject.bne | Hydrological models | eng |
dc.subject.lemb | Recursos hídricos | spa |
dc.subject.lemb | Water resources | eng |
dc.subject.lemb | Optimización | spa |
dc.subject.lemb | Optimization | eng |
dc.subject.proposal | Modelación lluvia-escorrentía urbana | spa |
dc.subject.proposal | Métodos de optimización | spa |
dc.subject.proposal | SWMM | spa |
dc.subject.proposal | Urban rainfall-runoff modelling | eng |
dc.subject.proposal | Optimization methods | eng |
dc.subject.proposal | SWMM | eng |
dc.title | Comparación del desempeño de métodos de optimización en la calibración del modelo SWMM utilizando R: Caso campus Bogotá de la Universidad Nacional de Colombia | spa |
dc.title.translated | Assessment of optimization methods for SWMM calibration using R: case of the Bogotá campus of the National University of Colombia | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |