Respuestas fenotípicas en aves andinas a cambios ambientales operando a escalas de tiempo contemporánea y evolutiva

dc.contributor.advisorCuervo Maya, Andrés Mauricio
dc.contributor.authorVáquiro García, Juan Camilo Di Carlo
dc.contributor.orcidVáquiro-García, Juan Camilo [0000-0002-9481-6945]
dc.contributor.researchgroupORNIS: Evolución y Ecología de Avesspa
dc.contributor.scopusVáquiro García, Juan Camilo [57428450100]
dc.coverage.countryColombiaspa
dc.date.accessioned2025-09-10T16:08:01Z
dc.date.available2025-09-10T16:08:01Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficos, fotografías, mapasspa
dc.description.abstractEl fenotipo como expresión visible resultante de la interacción entre la información genética y las condiciones ambientales, se manifiesta en múltiples formas y escenarios, permitiendo explorar la estabilidad y variabilidad de las especies en contextos ecológicos y evolutivos específicos. En este trabajo se evalúan respuestas fenotípicas expresadas a diferentes escalas temporales en aves andinas sometidas a diversas presiones ambientales, las cuales han moldeado la diversidad que conocemos en la actualidad. Por un lado, se analizaron rasgos morfométricos en una comunidad de aves de una misma área ubicada en la cordillera Oriental, separada por 60 años de transformaciones ambientales y paisajísticas. Mediante la implementación de modelos mixtos jerárquicos bayesianos, se identificaron tendencias relevantes como la reducción en la longitud del ala paralela al aumento en la longitud de la cola, junto con otros cambios morfométricos en el pico y el cuerpo, los cuales se relacionan con múltiples presiones y causas potenciales que podrían estar estimulando dichos patrones. Por otro lado, se realizó una evaluación vocal del complejo de subespecies de Synallaxis unirufa y sus especies hermanas Synallaxis fuscorufa y Synallaxis castanea, con el fin de revisar si la estructura vocal del complejo presentaba una divergencia suficiente en comparación con los análisis genéticos previos. Este complejo ha estado expuesto a múltiples cambios topográficos y ambientales que han favorecido el aislamiento entre poblaciones, las cuales, tras millones de años, podrían estar mostrando diferencias contundentes que sugieren la necesidad de una reestructuración taxonómica que la clasificación tradicional no ha permitido visualizar con suficiente detalle.spa
dc.description.abstractThe phenotype, as the visible expression resulting from the interaction between genetic information and environmental conditions, manifests itself in multiple forms and scenarios, allowing us to explore the stability and variability of species in specific ecological and evolutionary contexts. This study evaluates phenotypic responses expressed at different temporal scales in Andean birds subjected to various environmental pressures, which have shaped the diversity we know today. On the one hand, morphometric traits were analyzed in a bird community from the same area located in the Eastern Cordillera, separated by 60 years of environmental and landscape transformations. Through the implementation of Bayesian hierarchical mixed models, relevant trends were identified, such as the reduction in wing length parallel to the increase in tail length, along with other morphometric changes in the beak and body, which are related to multiple pressures and potential causes that could be stimulating these patterns. On the other hand, a vocal assessment of the Synallaxis unirufa subspecies complex and its sister species Synallaxis fuscorufa and Synallaxis castanea was carried out to review whether the vocal structure of the complex showed sufficient divergence compared to previous genetic analyses. This complex has been exposed to multiple topographical and environmental changes that have favored isolation between populations, which, after millions of years, could be showing striking differences that suggest the need for a taxonomic restructuring that traditional classification has not allowed to be visualized in sufficient detail.eng
dc.description.curricularareaBiología.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaTaxonomía y Evolución
dc.format.extentviii, 83 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88694
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbrahamczyk S, Kessler M, Roth T, et al., Temporal changes in the Swiss flora: implications for flower-visiting insects. BMC Ecology and Evolution, 2022; 22(1). https://doi.org/10.1186/s12862-022-02061-2
dc.relation.referencesAllen JA. The influence of physical conditions in the genesis of species. Radical Review, 1877;1, 108-140.
dc.relation.referencesAreta JI, Monteleone DL. Species limits and biogeography of the White-browed Tapaculo (Scytalopus superciliaris) complex and the Puna Tapaculo (S. simonsi). Journal of Ornithology, 2023; 164(1): 13–35. https://doi.org/10.1007/s10336-022-02012-0
dc.relation.referencesBaldwin JW, Garcia-Porta J, Botero CA. Complementarity in Allen’s and Bergmann’s rules among birds. Nature Communications, 2023; 14(1). https://doi.org/10.1038/s41467-023-39954-9
dc.relation.referencesBarnagaud JY, Gaüzère P, Zuckerberg B, et al., Temporal changes in bird functional diversity across the United States. Oecologia, 2017; 185(4), 737–748. https://doi.org/10.1007/s00442-017-3967-4
dc.relation.referencesBenham PM, Cuervo AM, Mcguire JA, et al., Biogeography of the Andean metaltail hummingbirds: Contrasting evolutionary histories of tree line and habitat-generalist clades. Journal of Biogeography, 2015; 42(4): 763–777. https://doi.org/10.1111/jbi.12452
dc.relation.referencesBergmann C. On the relationships of the heat economy of animals to their size. Göttinger Studie, 1847.
dc.relation.referencesBlake JG, Loiselle BA. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. Peer J, 2015; (8). https://doi.org/10.7717/peerj.1177
dc.relation.referencesBrumfield RT, Edwards SV. Evolution into and out of the Andes: A Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution, 2007; 61(2): 346–367. https://doi.org/10.1111/j.1558-5646.2007.00039.x
dc.relation.referencesCadena CD, Cuervo AM, Céspedes LN, et al., Systematics, biogeography and diversification of Scytalopus tapaculos (Rhinocryptidae), an enigmatic radiation of Neotropical montane birds. The Auk, 2020; 137(2): 077. https://doi.org/10.1101/600775
dc.relation.referencesCarrión PL, Raeymaekers JAM, De León LF, et al., The terroir of the finch: How spatial and temporal variation shapes phenotypic traits in Darwin’s finches. Ecology and Evolution, 2022; 12(10). https://doi.org/10.1002/ece3.9399
dc.relation.referencesCéspedes-Arias LN, Cuervo AM, Bonaccorso E, et al., Extensive hybridization between two Andean warbler species with shallow divergence in mtDNA. Ornithology, 2021; 138, 1–28. https://10.1093/ornithology/ukaa065
dc.relation.referencesCharmantier A, McCleery RH, Cole LR, et al., Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science, 2008; 320(5877):800-803.
dc.relation.referencesChaves JA, Weir JT, Smith TB. Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology, 2011; 20(21): 4564–4576. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.relation.referencesCuervo AM, Restrepo C. Assemblage and population-level consequences of forest fragmentation on bilateral asymmetry in tropical montane birds. Biological Journal of the Linnean Society, 2007; 92(1), 119-133. https://doi.org/10.1111/j.1095-8312.2007.00884.x
dc.relation.referencesCuervo AM. Evolutionary assembly of the Neotropical montane avifauna. PhD dissertation, Louisiana State University, Baton Rouge, LA, USA, 2013. https://doi.org/10.31390/gradschool_dissertations.275
dc.relation.referencesd’Horta FM, Cuervo AM, Ribas CC, et al., Phylogeny and comparative phylogeography of Sclerurus (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. Journal of Biogeography, 2013; 40(1): 37-49.
dc.relation.referencesDerryberry EP, Claramunt S, Derryberry G, R, et al., Lineage diversification and morphological evolution in a large‐scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae), Evolution, 2011; 65 (10): 2973–2986. https://doi.org/10.1111/j.1558-5646.2011.01374.x
dc.relation.referencesDesrochers A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology, 2010; 91(6): 1577-1582.
dc.relation.referencesDubiner S, Meiri S. Widespread recent changes in morphology of old world birds, global warming the immediate suspect. Global Ecology and Biogeography, 2022; 31(4):791-801.https://doi.org/10.1111/geb.13474
dc.relation.referencesEcheverría C, Newton AC, Lara A, et al., Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecology and Biogeography, 2007; 16(4):426-439. https://doi.org/10.1111/j.1466-8238.2007.00311.x
dc.relation.referencesFjeldså J, Bowie RCK, Rahbek C. The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 2012; 249–265. https://doi.org/10.1146/annurev-ecolsys-102710-145113.
dc.relation.referencesFitzpatrick S. Birds' tails as signaling devices: markings, shape, length, and feather quality. The American Naturalist, 1998; 151: 157-173. https://doi.org/10.1086/286109
dc.relation.referencesGhalambor CK, McKay JK, Carroll SP, et al., Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 2007; 21(3):394-407. https://doi.org/10.1111/j.1365-2435.2007.01283.x
dc.relation.referencesGienapp P, Leimu R, Merilä J. Responses to climate change in avian migration time - Microevolution versus phenotypic plasticity. Climate Research, 2007; 35(1-2):25-35. https://doi.org/10.3354/cr00712
dc.relation.referencesGómez C, Tenorio EA, Cadena CD. Change in avian functional fingerprints of a Neotropical montane forest over 100 years as an indicator of ecosystem integrity. Conservation Biology, 2021; 35(5):1552-1563. https://doi.org/10.1111/cobi.13714
dc.relation.referencesGoodman RE, Lebuhn G, Seavy NE, et al., Avian body size changes and climate change: Warming or increasing variability? Global Change Biology, 2012; 18(1):63-73. https://doi.org/10.1111/j.1365-2486.2011.02538.x
dc.relation.referencesGrant PR, Grant BR. Unpredictable evolution in a 30-year study of Darwin’s finches. 2002. www.sciencemag.org
dc.relation.referencesGreenberg R. Ecological plasticity, neophobia, and resource use in birds. Studies in Avian Biology, 1990; 13(1): 58.
dc.relation.referencesGreenberg R, Cadena V, Danner RM, et al., Heat loss may explain bill size differences between birds occupying different habitats. PloS One, 2012; 7(7): 40933.
dc.relation.referencesGregory-Wodzicki KM. Uplift history of the Central and Northern Andes: a review. Geological society of America bulletin, 2000; 112(7): 1091-1105. https://doi.org/10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2
dc.relation.referencesGutiérrez-Carrillo DA, Mateus-Aguilar B, Gómez C, et al., Records from Neotropical non-breeding grounds reveal shifts in bird migration phenology over six decades. Current Biology, 2024; 34(20):4845-4851. https://doi.org/10.1016/j.cub.2024.08.061
dc.relation.referencesHadfield JD. MCMC Methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 2010; 33(2), 1-22. URL https://www.jstatsoft.org/v33/i02/.
dc.relation.referencesHaffer J. Speciation in Colombian forest birds west of the Andes. Am. Mus. Novit, 1967; 294:1–57.
dc.relation.referencesHazzi NA, Moreno JS, Ortiz-Movliav C. et al., Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 2018; 115(31): 7985–7990. https://doi.org/10.1073/pnas.1803908115.
dc.relation.referencesIsler ML, Chesser RT, Robbins MB, et al. Taxonomic evaluation of the Grallaria rufula (Rufous Antpitta) complex (Aves: Passeriformes: Grallariidae) distinguishes sixteen species. Zootaxa, 2020; (1) 4817. https://doi.org/10.1093/zoolinnean/zlad108
dc.relation.referencesIsler ML, Cuervo AM, Bravo GA, et al., An integrative approach to species-level systematics reveals the depth of diversification in an Andean Thamnophilid, the Long-tailed Antbird. Condor, 2012; 114(3): 571–583. https://doi.org/10.1525/cond.2012.120012.
dc.relation.referencesJirinec V, Burner RC, Amaral BR, et al., Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci Adv, 2021; 7.
dc.relation.referencesKattan GH, Alvarez-López H, Giraldo M. Forest fragmentation and bird extinctions: San Antonio eighty years later. Conservation Biology, 1994; 8(1):138-146. https://doi.org/10.1046/j.1523-1739.1994.08010138.x
dc.relation.referencesKattan GH, Franco P, Saavedra-Rodríguez CA, et al., Spatial components of bird diversity in the Andes of Colombia: implications for designing a regional reserve system. Conservation Biology, 2006; 20(4):1203-1211.
dc.relation.referencesKrugler J, Benham PM, Bowie RCK. Shared temporal increases in bill size among songbirds of the San Francisco bay area are due to different seasonal selective pressures. Authorea, October 13, 2024. DOI: 10.22541/au.172879980.04174533/v1
dc.relation.referencesLara CE, Cuervo AM, Valderrama SV, et al., A new species of wren (Troglodytidae: Thryophilus) from the dry Cauca River Canyon, northwestern Colombia. The Auk, 2012; 129(3): 537-550.
dc.relation.referencesLima RD, Bocalini F, Silveira LF. Integrative revision of species limits in the genus Schiffornis (Aves: Tityridae) reveals cryptic diversity in the Neotropics. Zoological Journal of the Linnean Society, 2024; 200(4): 1048–1079. https://doi.org/10.1093/zoolinnean
dc.relation.referencesLindhe Norberg UM, Åke Norberg R. Evolutionary divergence of body size and wing and leg structure in relation to foraging mode in Darwin’s Galapagos finches. Biological Journal of the Linnean Society, 2023; 140(2):240.
dc.relation.referencesMartínez-Gómez SC, Lara CE, Remsen JV, et al., Genetic, vocal, and body size divergence across the Northern Peruvian Low supports two species within the Masked Flowerpiercer (Diglossa cyanea). bioRxiv, 2022. https://doi.org/10.1101/2022.05.18.492535
dc.relation.referencesMaruyama PK, Bosenbecker C, Cardoso JCF, et al., Urban environments increase generalization of hummingbird-plant networks across climate gradients. Proceedings of the National Academy of Sciences of the United States of America, 2024; 121(48). https://doi.org/10.1073/pnas.2322347121
dc.relation.referencesMcKechnie AE, Dunn PO. Physiological and morphological effects of climate change. Effects of Climate Change on Birds, 2019; 42:120.
dc.relation.referencesMoore RP, Robinson WD, Lovette IJ, et al., Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecology Letters, 2008; 11(9):960-968.
dc.relation.referencesMusher LJ, Krabbe NK, Areta JI. Underestimated Neotropical diversity: Integrative taxonomy reveals two unrelated look-alike species in a suboscine bird (Pachyramphus albogriseus). Ornithology, 2023; 140(1). https://doi.org/10.1093/ornithology/ukac047
dc.relation.referencesNeate-Clegg MHC, Tingley MW, Newmark WD. Afromontane understory birds increase in body size over four decades. Ecography, 2024; (4). https://doi.org/10.1111/ecog.07106
dc.relation.referencesNijhout HF, Kudla AM, Hazelwood CC. Genetic assimilation and accommodation: Models and mechanisms. Current Topics in Developmental Biology, 2021; 141:337-369. https://doi.org/10.1016/bs.ctdb.2020.11.006
dc.relation.referencesO’Shea, B.J. Evolution of vocal signals in a neotropical avian lineage. Dissertation. Louisiana State University and Agricultural & Mechanical College, 2009. https://digitalcommons.lsu.edu/gradschool_dissertations/3211.
dc.relation.referencesPalacio RD, Kattan GH, Pimm SL. Bird extirpations and community dynamics in an Andean cloud forest over 100 years of land-use change. Conservation Biology, 2020; 34(3):677-687. https://doi.org/10.1111/cobi.13423
dc.relation.referencesParra JL, Remsen JV, Álvarez-Rebolledo M, et al., Molecular phylogenetics of the hummingbird genus Coeligena. Molecular Phylogenetics and Evolution, 2009; 53(2):425-434. https://doi.org/10.1016/j.ympev.2009.07.006
dc.relation.referencesPérez-Amaya N, Neate-Clegg MHC, Ocampo-Peñuela N, et al. Century-long shifts in body size and proportions of lowland rainforest birds. Evolutionary Ecology, 2025. https://doi.org/10.1007/s10682-025-10343-6
dc.relation.referencesPodos J. Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 2001; 409(6817): 185-188.
dc.relation.referencesPollock HS, Brawn JD, Cheviron ZA. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 2021; 35(1):93-104. https://doi.org/10.1111/1365-2435.13693
dc.relation.referencesPryke SR, Andersson S, Lawes MJ. Sexual selection of multiple handicaps in the red‐collared widowbird: female choice of tail length but not carotenoid display. Evolution, 2001; 55: 1452-1463. https://doi.org/10.1111/j.0014-3820.2001.tb00665.x
dc.relation.referencesR Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2024. https://www.R-project.org/
dc.relation.referencesRestrepo C, Walker LR, Shiels AB, et al., Landsliding and its multiscale influence on mountainscapes. BioScience, 2009; 59(8):685-698. https://doi.org/10.1525/bio.2009.59.8.10
dc.relation.referencesSchlick-Steiner BC, Steiner FM, Seifert B, et al., Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology, 2010; 421–438. https://doi.org/10.1146/annurev-ento-112408-085432
dc.relation.referencesSchluter D. Variable success in linking micro-and macroevolution. Evolutionary Journal of the Linnean Society, 2024; 3(1): 16. https://doi.org/10.1093/evolinnean/kzae016
dc.relation.referencesSonne J, Rahbek C. Idiosyncratic patterns of local species richness and turnover define global biodiversity hotspots. Proceedings of the National Academy of Sciences, 2024; 121(3): 2313106121.
dc.relation.referencesStouffer PC, Jirinec V, Rutt CL, et al., Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecology Letters, 2021; 24(2):186-195. https://doi.org/10.1111/ele.13628
dc.relation.referencesTattersall GJ, Arnaout B, Symonds MR. The evolution of the avian bill as a thermoregulatory organ. Biological Reviews, 2017; 92(3):1630-1656.
dc.relation.referencesTinoco BA, Latta SC, Astudillo PX, et al., Temporal stability in species richness but reordering in species abundances within avian assemblages of a tropical Andes conservation hot spot. Biotropica, 2021; 53(6):1673-1684. https://doi.org/10.1111/btp.13016
dc.relation.referencesTöpfer T. Morphological variation in birds: Plasticity, adaptation, and speciation. En D. T. Tietze (Ed.), Bird species: Fascinating life sciences (pp. 63–74). Springer, 2018. https://doi.org/10.1007/978-3-319-91689-7_4
dc.relation.referencesValderrama E, Pérez-Emán JL, Brumfield RT, et al., The influence of the complex topography and dynamic history of the montane Neotropics on the evolutionary differentiation of a cloud forest bird (Premnoplex brunnescens, Furnariidae). Journal of Biogeography, 2014; 41(8): 1533–1546. https://doi.org/10.1111/jbi.12317
dc.relation.referencesVan Buskirk J, Mulvihill RS, Leberman RC. Phenotypic plasticity alone cannot explain climate-induced change in avian migration timing. Ecology and Evolution, 2012; 2(10):2430-2437. https://doi.org/10.1002/ece3.367
dc.relation.referencesWeeks BC, Klemz M, Wada H, et al., Temperature, size and developmental plasticity in birds. Biology Letters, 2022; 18(12). https://doi.org/10.1098/rsbl.2022.0357
dc.relation.referencesWeeks BC, Willard DE, Zimova M, et al., Shared morphological consequences of global warming in North American migratory birds. Ecology Letters, 2019; 23(2):316-325. https://doi.org/10.1111/ele.13434
dc.relation.referencesWeeks TL, Betts MG, Pfeifer M, et al., Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nature Ecology and Evolution, 2023; 7(7):1079-1091. https://doi.org/10.1038/s41559-023-02077-x
dc.relation.referencesWest-Eberhard MJ. Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005; 304(6):610-618. https://doi.org/10.1002/jez.b.21071
dc.relation.referencesWickham H, François R, Henry L, et al., dplyr: A grammar of data manipulation_. R package version 1.1.4, 2023. <https://CRAN.R-project.org/package=dplyr>.
dc.relation.referencesWickham H. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016.
dc.relation.referencesWilcox RC, Benson TJ, Brawn JD, et al., Observed declines in body size have differential effects on survival and recruitment, but no effect on population growth in tropical birds. Global Change Biology, 2024; 30(8). https://doi.org/10.1111/gcb.17455
dc.relation.referencesYoungflesh C, Saracco JF, Siegel RB, et al., Abiotic conditions shape spatial and temporal morphological variation in North American birds. Nature Ecology & Evolution, 2022; 6(12), 1860-1870. https://doi.org/10.1101/2022.02.17.480905
dc.relation.referencesZazueta-Algara JDJ, Sosa-López JR, Coro Arizmendi M, et al., Structure and divergence of vocal traits in the Acorn Woodpecker (Melanerpes formicivorus). Wilson Journal of Ornithology, 2022; 134(1): 1–18. https://doi.org/10.1676/21-00066
dc.relation.referencesZimova M, Weeks BC, Willard DE, et al., Body size predicts the rate of contemporary morphological change in birds. Proceedings of the National Academy of Sciences of the United States of America, 2023; 120(20). https://doi.org/10.1073/pnas.2206971120
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionadosspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembFenotiposspa
dc.subject.lembPhenotypeeng
dc.subject.lembAvesspa
dc.subject.lembBirdseng
dc.subject.lembTamizaje genéticospa
dc.subject.lembGenetic screeningeng
dc.subject.proposalMorfometríaspa
dc.subject.proposalDivergencia vocalspa
dc.subject.proposalTaxonomíaspa
dc.subject.proposalAislamiento geográficospa
dc.subject.proposalSynallaxis unirufaspa
dc.subject.proposalPlasticidad fenotípicaspa
dc.subject.proposalMorphometryeng
dc.subject.proposalVocal divergenceeng
dc.subject.proposalTaxonomyeng
dc.subject.proposalGeographical isolationeng
dc.subject.proposalSynallaxis unirufaeng
dc.subject.proposalPhenotypic plasticityeng
dc.titleRespuestas fenotípicas en aves andinas a cambios ambientales operando a escalas de tiempo contemporánea y evolutivaspa
dc.title.translatedPhenotypic responses in Andean birds to environmental change operating at contemporary and evolutionary timescaleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110577787.2025.pdf
Tamaño:
2.88 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: