Modelado, simulación y rediseño de un motor para aplicación dish-stirling para cubrir la necesidad energética de 1 kw.

dc.contributor.advisorFula Rojas, Manuel Alejandro
dc.contributor.authorCorrea Zea, Sergio Andrés
dc.date.accessioned2021-10-14T18:53:34Z
dc.date.available2021-10-14T18:53:34Z
dc.date.issued2021-10-11
dc.descriptionTexto de ingeniería para la obtención del titulo de Magister en Ingeniería Mecánica
dc.descriptionIlustracionesspa
dc.description.abstractPara poder hacer una reducción de CO\textsubscript{2} y la generación de energía eléctrica se toma como elección el motor Stirling acoplado a una concentración solar de potencia térmica que posibilite suplir la dependencia del combustible fósil, cuyo desempeño es por medio de combustión externadonde su virtud más importante es la sencillez de su creación, su escasa contribución a la contaminación del aire y es confiable de nombrar que el motor Stirling puede llevar a cabo funcionar con cualquier tipo de combustible, incluyendo la radiación solar. El motor Stirling tiene uno de los más elevados rendimientos de una maquina térmica, no obstante muestran retos que requieren ser afrontados si se desea obtener un diseño con elevado manejo de la misma forma, la optimización en el diseño no debe exceder ciertos precios máximos del grupo. El segundo problema que perjudica seriamente el manejo y el precio del motor Stirling es la errada selección del regenerador debido a que de este, es dependiente la operación del motor Stirling. Palabras clave: Stirling, Regenerador, Configuración, Energía, Colombia, Emisiones (Texto tomado de la fuente)spa
dc.description.abstractAbstract In order to be able to make a reduction of CO2 and the generation of electrical energy, the Stirling engine coupled to a solar concentration of thermal power is taken as a choice that makes it possible to replace the dependence on fossil fuel, whose performance is by means of external combustion, where its most important virtue is the simplicity of its creation, its low contribution to air pollution and it is reliable to name that the Stirling engine can be carried out to operate with any type of fuel, including solar radiation. The Stirling engine has one of the highest efficiencies of a thermal engine, however there are challenges that need to be faced if a design with high efficiency is to be obtained and, likewise, design optimization must not exceed certain price ceilings of the group. The second problem that seriously harms the handling and price of the Stirling engine is the wrong selection of the regenerator, since the operation of the Stirling engine depends on it. Keywords: Stirling, Regenerator, Configuration, Energy, Colombia, Emissionseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.format.extentxx, 151 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80554
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesB. Rutczyk, I. Szczygieª, and A. Kabaj, "Evaluation of an α type stirling engine regenerator using a new differential model,"Energy, vol. 209, p. 118369, 2020.spa
dc.relation.referencesD. Dai, F. Yuan, R. Long, Z. Liu, and W. Liu, "Imperfect regeneration analysis of stirling engine caused by temperature differences in regenerator,"Energy Conversion and Management, vol. 158, pp. 60-69, 2018.spa
dc.relation.referencesA. S. Nielsen, B. T. York, and B. D. MacDonald, "Stirling engine regenerators: How to attain over 95 % regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, vol. 253, p. 113557, 2019.spa
dc.relation.referencesC. Gensch, Y. Baron, and K. Moch, "World energy balances: Overview," Paris: Organization for Economic Cooperation and Development, 2018.spa
dc.relation.referencesD. Thombare and S. Verma, "Technological development in the stirling cycle engines," Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 1-38, 2008.spa
dc.relation.referencesY. M. Seshie, K. E. N'Tsoukpoe, P. Neveu, Y. Coulibaly, and Y. K. Azoumah, "Small scale concentrating solar plants for rural electrification," Renewable and Sustainable Energy Reviews, vol. 90, pp. 195-209, 2018.spa
dc.relation.referencesG. E. T. IRENA, "A roadmap to 2050," Abu Dhabi: International Renewable Energy Agency, 2018.spa
dc.relation.referencesR. M. Elshazly, "Feasibility of concentrated solar power under egyptian conditions," Renewable Energy & Energy Efficiency for the MENA Region Master Program Cairo University & University of Kassel, Egypt, 2011.spa
dc.relation.referencesI. Dincer and M. Rosen, Thermal energy storage: systems and applications. John Wiley & Sons, 2002.spa
dc.relation.referencesZ. Liu, Global energy interconnection. Academic Press, 2015.spa
dc.relation.referencesE. Rogdakis and I. Koronaki, Renewable Energy Engineering: Solar, Wind, Biomass, Hydrogen and Geothermal Energy Systems, ser. Recent Advances in Renewable Energy. Bentham Science Publishers, 2018. [Online]. Available: https://books.google.com.co/books?id=NGd-DwAAQBAJspa
dc.relation.referencesO. Achkari and A. El Fadar, "Latest developments on tes and csp technologies-energy and environmental issues, applications and research trends," Applied Thermal Engineering, vol. 167, p. 114806, 2020.spa
dc.relation.referencesP. Breeze, Power generation technologies. Newnes, 2019.spa
dc.relation.referencesD. Rodríguez-Urrego and L. Rodríguez-Urrego, "Photovoltaic energy in colombia: current status, inventory, policies and future prospects," Renewable and Sustainable Energy Reviews, vol. 92, pp. 160-170, 2018.spa
dc.relation.referencesA. R. López, A. Krumm, L. Schattenhofer, T. Burandt, F. C. Montoya, N. Oberländer, and P.-Y. Oei, "Solar pv generation in colombia-a qualitative and quantitative approach to analyze the potential of solar energy market," Renewable Energy, vol. 148, pp. 1266- 1279, 2020.spa
dc.relation.referencesK. M. Bataineh, "Numerical thermodynamic model of alpha-type stirling engine," Case studies in thermal engineering, vol. 12, pp. 104-116, 2018.spa
dc.relation.referencesS. Alfarawi, "Thermodynamic analysis of rhombic-driven and crank-driven beta-type stirling engines," International Journal of Energy Research, vol. 44, no. 7, pp. 5596- 5608, 2020.spa
dc.relation.referencesM. Marion, H. Louahlia, and H. Gualous, "Performances of a chp stirling system fuelled with glycerol," Renewable Energy, vol. 86, pp. 182-191, 2016.spa
dc.relation.referencesR. J. Meijer, The Philips hot-gas engine with rhombic drive mechanism, 1960.spa
dc.relation.referencesD. M. Clucas, "Wobble yoke assembly," May 20 1997, uS Patent 5,630,351.spa
dc.relation.referencesC. M. Hargreaves, "The phillips stirling engine,"1991.spa
dc.relation.referencesA. Sripakagorn and C. Srikam, "Design and performance of a moderate temperature difference stirling engine," Renewable Energy, vol. 36, no. 6, pp. 1728-1733, 2011.spa
dc.relation.referencesA. Ross, Making stirling engines. Ross experimental, 1993.spa
dc.relation.referencesG. Walker, "Stirling engines," 1980.spa
dc.relation.referencesK. Hirata, "Schmidt theory for stirling engines," National Maritime Research Institute (NMRI), 1997.spa
dc.relation.referencesR. Gheith, H. Hachem, F. Aloui, and S. B. Nasrallah, "4.6 stirling engines," 2018.spa
dc.relation.referencesA. S. Abduljalil, Z. Yu, and A. J. Jaworski, "Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines," Materials & Design, vol. 32, no. 1, pp. 217-228, 2011.spa
dc.relation.referencesR. Gheith, F. Aloui, and S. B. Nasrallah, "Determination of adequate regenerator for a gamma-type stirling engine," Applied energy, vol. 139, pp. 272-280, 2015.spa
dc.relation.referencesR. Gheith, F. Aloui, and S. Ben Nasrallah, "Optimization of stirling engine performance based on an experimental design approach," International journal of energy research, vol. 37, no. 12, pp. 1519-1528, 2013.spa
dc.relation.referencesJ. J. Santos, J. C. Palacio, A. M. Reyes, M. Carvalho, A. J. Freire, and M. A. Barone, "Concentrating solar power," in Advances in Renewable Energies and Power Technologies. Elsevier, 2018, pp. 373-402.spa
dc.relation.referencesA. Hafez, A. Soliman, K. El-Metwally, and I. Ismail, "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, vol. 67, pp. 1019-1036, 2017.spa
dc.relation.referencesJ. Khan and M. H. Arsalan, "Solar power technologies for sustainable electricity generation-a review," Renewable and Sustainable Energy Reviews, vol. 55, pp. 414-425, 2016.spa
dc.relation.referencesG. Walker, "The stirling engine," Scientific American, vol. 229, no. 2, pp. 80-87, 1973.spa
dc.relation.referencesY. Liu, X. Sun, V. Sethi, D. Nalianda, Y.-G. Li, and L. Wang, "Review of modern low emissions combustion technologies for aero gas turbine engines," Progress in Aerospace Sciences, vol. 94, pp. 12-45, 2017.spa
dc.relation.referencesE. C. SCHIOPU, "Evaluation of air pollution from rovinari (gorj) with substances in sospension (pm 10) as a result of auto traffic." Fiability & Durability/Fiabilitate si Durabilitate, no. 2, 2016.spa
dc.relation.referencesD. H. Meadows, D. L. Meadows, J. Randers, W. W. Behrens et al., "Los límites del crecimiento: informe al club de roma sobre el predicamento de la humanidad," fondo de cultura económica, Tech. Rep., 1972.spa
dc.relation.referencesL. Rodríguez, "Protocolo de kyoto: Debate sobre ambiente y desarrollo en las discusiones sobre cambio climático," Gestión y Ambiente, vol. 10, no. 2, pp. 119-128, 2007.spa
dc.relation.referencesG. Schmidt, "Classical analysis of operation of stirling engine," A report published in German engineering union (Original German), vol. 15, pp. 1-12, 1871.spa
dc.relation.referencesC. Ulloa, J. Porteiro, P. Eguía, and J. M. Pousada-Carballo, "Application model for a stirling engine micro-generation system in caravans in different european locations," Energies, vol. 6, no. 2, pp. 717-732, 2013.spa
dc.relation.referencesI. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, and M. Kettner, "Development of micro-scale biomass-fuelled chp system using stirling engine," Energy Procedia, vol. 75, pp. 1108-1113, 2015.spa
dc.relation.referencesB. Flannery, O. Finckh, H. Berresheim, and R. F. Monaghan, "Hybrid stirling engineadsorption chiller for truck auxiliary power unit applications," International Journal of Refrigeration, vol. 76, pp. 356-366, 2017.spa
dc.relation.referencesA. C. Ferreira, M. L. Nunes, J. C. Teixeira, L. A. Martins, S. F. Teixeira, and S. A. Nebra, "Design of a solar dish stirling cogeneration system: Application of a multiobjective optimization approach," Applied Thermal Engineering, vol. 123, pp. 646-657, 2017.spa
dc.relation.referencesU. R. Singh and A. Kumar, "Review on solar stirling engine: development and performance," Thermal Science and Engineering Progress, vol. 8, pp. 244-256, 2018.spa
dc.relation.referencesG. Barreto and P. Canhoto, "Modelling of a stirling engine with parabolic dish for thermal to electric conversion of solar energy," Energy Conversion and Management, vol. 132, pp. 119-135, 2017.spa
dc.relation.referencesF. Formosa and G. Despesse, "Analytical model for stirling cycle machine design," Energy Conversion and Management, vol. 51, no. 10, pp. 1855"1863, 2010.spa
dc.relation.referencesJ. Egas and D. M. Clucas, "Stirling engine configuration selection," Energies, vol. 11, no. 3, p. 584, 2018.spa
dc.relation.referencesD. Erol, H. Yaman, and B. Do§an, "A review development of rhombic drive mechanism used in the stirling engines," Renewable and Sustainable Energy Reviews, vol. 78, pp. 1044-1067, 2017.spa
dc.relation.referencesC.-H. Cheng and Y.-F. Chen, "Numerical simulation of thermal and flow fields inside a 1-kw beta-type stirling engine," Applied Thermal Engineering, vol. 121, pp. 554-561, 2017.spa
dc.relation.referencesJ. Kropiwnicki, "Analysis of start energy of stirling engine type alpha," Archives of Thermodynamics, vol. 40, 2019.spa
dc.relation.referencesR. Vasu and F. B. Ismail, "Design and implementation of solar powered stirling engines," in AIP Conference Proceedings, vol. 2035, no. 1. AIP Publishing LLC, 2018, p. 040002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lemTermotécniaspa
dc.subject.lembMotores Stirlingeng
dc.subject.lembStirling engineseng
dc.subject.lembEnergía solarspa
dc.subject.proposalStirlingeng
dc.subject.proposalRegeneratoreng
dc.subject.proposalEnergyeng
dc.subject.proposalEmissionseng
dc.subject.proposalRegeneradorspa
dc.subject.proposalEnergíaspa
dc.subject.proposalEmisionesspa
dc.titleModelado, simulación y rediseño de un motor para aplicación dish-stirling para cubrir la necesidad energética de 1 kw.spa
dc.title.translatedModelling, simulation and redesign of an engine for dish-stirling application to cover the energy requirement of 1 kWeng
dc.title.translatedModelling, simulation and redesign of an engine for dish-stirling application to cover the energy requirement of 1 kW.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152444264.2021.pdf
Tamaño:
7.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: