Análisis de datos de accidentalidad vial de la ciudad de Bogotá a partir de datos abiertos y datos obtenidos desde redes sociales

dc.contributor.advisorPedraza Bonilla, César Augustospa
dc.contributor.authorVargas Montero, Fernandospa
dc.contributor.researchgroupPlas Programming languages And Systemsspa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.date.accessioned2022-06-13T18:59:40Z
dc.date.available2022-06-13T18:59:40Z
dc.date.issued2022-03-18
dc.descriptionilustraciones, gráficas, mapas, tablasspa
dc.description.abstractLa accidentalidad vial es un tema que siempre se desea minimizar, pero no se han aplicado técnicas tecnológicas para encontrar y entender el comportamiento vial según las distintas variables que intervienen. Por esta necesidad se genera un motivo de poder aportar a esta comprensión de la accidentalidad vial para así mismo apoyar en la mitigación y de este modo lograr salvar vidas. En este trabajo se encontrará desde las arquitectura y técnicas de extracción de los datos viales en la ciudad de Bogotá, hasta el análisis estadístico para poder comprender el comportamiento de este. Para poder llegar al análisis estadístico inicialmente se realizó una arquitectura autosostenible de recolección de datos viales en la ciudad de Bogotá a través de redes sociales. Al tener ya recolectada la información se procedió a su representación en una herramienta geográfica para su comprensión visual. Se procede a un análisis inicial de estos datos. Luego se aplican técnicas estadísticas geográficas para su análisis estadístico. (Texto tomado de la fuente).spa
dc.description.abstractRoad accidents are an issue that we always want to minimize, but technological techniques have not been applied to find and understand road behavior according to the different variables involved. Due to this need, a reason is generated to be able to contribute to this understanding of road accidents to support mitigation and thus save lives. In this work you will find everything from the architecture and techniques of extracting road data in the city of Bogotá, to the statistical analysis to understand its behavior. To reach the statistical analysis, a self-sustaining architecture for road data collection was initially carried out in the city of Bogotá through social networks. Having already collected the information, it was represented in a geographic tool for visual understanding. An initial analysis of these data is carried out, then geographical statistical techniques are then applied for statistical analysis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaSistemas inteligentesspa
dc.format.extentxiv, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81571
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesRedacción Portal Bogotá, La movilidad también está en tus manos: cada 5,6 minutos ocurre un accidente, https://bogota.gov.co/mi-ciudad/movilidad/analisis-de-accidentes-viales-en-bogota-en-2019.spa
dc.relation.referencesAli J. Ghandour, Huda Hammoud, Mohammad Dimassi, Houssam Krayem, Jamal Haydar, Adam Issa, Allometric scaling of road accidents using social media crowd-sourced data, Physica A: Statistical Mechanics and its Applications, Volume 545, 2020, http://www.sciencedirect.com/science/article/pii/S0378437119319703spa
dc.relation.referencesAndrienko, G., & Andrienko, N. 2008. A Visual Analytics Approach to Exploration of Large Amounts of Movement Data. International Conference on Visual Information Systems: Web- Based Visual Information Search and Management. https://link.springer.com/chapter/10.1007/978-3-540-85891-1_1spa
dc.relation.referencesAndrienko, G. L., Andrienko, N. V., Dykes, J., Fabrikant, S. I., and Wachowicz, M. 2008. Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. Information Visualization.http://geoanalytics.net/and/papers/ivs08a.pdfspa
dc.relation.referencesA Survey of Traffic Data Visualization Wei Chen, Fangzhou Guo, and Fei-Yue Wang, Fellow IEEE. http://www.cad.zju.edu.cn/home/vagblog/VAG_Work/IEEEITS2015/TrafficVASurvey.pdfspa
dc.relation.referencesEster, M., peter Kriegel, H., S, J. and Xu, X., 1996. A density- based algorithm for discovering clusters in large spatial databases with noise. International Conference on Knowledge Discovery and Data Mining, https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdfspa
dc.relation.referencesPiringer, Harald & Buchetics, Matthias & Benedik, Rudolf. (2012). AlVis: Situation awareness in the surveillance of road tunnels. IEEE Conference on Visual Analytics Science and Technology 2012, VAST 2012 - Proceedings. 153-162. 10.1109/VAST.2012.6400556. https://www.researchgate.net/publication/261483062_AlVis_Situation_awareness_in_the_surveillance_of_road_tunnelsspa
dc.relation.referencesAbdullah, E., Emam, A. Traffic accidents analyzer using big data (2016) Proceedings - 2015 International Conference on Computational Science and Computational Intelligence, CSCI 2015, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964561145&doi=10.1109%2fCSCI.2015.187&partnerID=40&md5=e1909c89f81870b9fd5c8c435eb43c5aspa
dc.relation.referencesAgarwal, Amit & Toshniwal, Durga. (2019). Face off: Travel habits, Road conditions and Traffic city characteristics bared using Twitter. IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2917159. https://www.researchgate.net/publication/333121821_Face_off_Travel_habits_Road_conditions_and_Traffic_city_characteristics_bared_using_Twitterspa
dc.relation.referencesMd Sharikur Rahman, Mohamed Abdel-Aty, Samiul Hasan, Qing Cai. Applying machine learning approaches to analyze the vulnerable road-users' crashes at statewide traffic analysis zones. https://doi.org/10.1016/j.jsr.2019.04.008spa
dc.relation.referencesGhandour, A.J., Hammoud, H., Telesca, L. Transportation hazard spatial analysis using crowd-sourced social network data (2019) Physica A: Statistical Mechanics and its Applications, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060328987&doi=10.1016%2fj.physa.2019.01.025&partnerID=40&md5=b0443e086122d7c04ab4367e84e29871spa
dc.relation.referencesPan, D., Zhang, W., Hamdar, S.H. From traffic analysis to real-time control: A hazard-based model to estimate postcollision recovery periods (2019) International Conference on Transportation and Development 2019: Smarter and Safer Mobility and Cities - Selected Papers from the International Conference on Transportation and Development 2019, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073015365&doi=10.1061%2f9780784482575.011&partnerID=40&md5=f0f6cd530e3c2bb2e8fe383236c2116fspa
dc.relation.referencesRyan Mitchell, Web Scraping with Python, Second edition, https://books.google.com.co/books?hl=es&lr=&id=TYtSDwAAQBAJ&oi=fnd&pg=PT30&dq=web+scraping&ots=y1v3AEkpfh&sig=WGuQtDVi9tsfuRBKsT1mTplK88o&redir_esc=y#v=onepage&q=web%20scraping&f=falsespa
dc.relation.referencesP. Compieta, S. Di Martino, M. Bertolotto, F. Ferrucci, T. Kechadi, Exploratory spatio-temporal data mining and visualization, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.7878&rep=rep1&type=pdfspa
dc.relation.referencesYen-Liang Chen, Ching-Cheng Shen, Mining generalized knowledge from ordered data through attribute-oriented induction techniques, 2004, http://ccc.inaoep.mx/~villasen/bib/mining%20generalized%20knowledge.pdfspa
dc.relation.referencesAndrés-Felipe Gil Torres, Aura Liliana Monroy García, Juan Sebastián González Sanabria, Minería de datos espacial en la agriculturaen Latinoamérica-Una aproximación conceptual, 2020, https://revistas.uptc.edu.co/index.php/pensamiento_accion/article/view/10976/9268.spa
dc.relation.referencesCarlos Andrés Herrera Parra, Minería de Datos Espacial, 2006, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.5194&rep=rep1&type=pdf.spa
dc.relation.referencesDenisse Cangrejo Aljure, Juan G. Agudelo, Spatial data mining – An overview, 2011, https://www.redalyc.org/pdf/1331/133122679009.pdf.spa
dc.relation.referencesE.W.T Ngai, Li Xiu, D.C.K. Chau, Application of data mining techniques in customer relationship management: A literature review and classification, 2008, https://cmapspublic3.ihmc.us/rid=1MSYC3Z3W-1B2W04K-15MY/DM-usage.pdf.spa
dc.relation.referencesJ. M Kraak. and F. Oberling, 1996. Cartography: Visualization of Spatial Data, Longman, Essex, U.K.spa
dc.relation.referencesDikes, M. Kraak and M. Maceachren, 2007. Exploring Geovisualization, International Cartographic Association, Elsevier, https://www.elsevier.com/books/exploring-geovisualization/dykes/978-0-08-044531-1.spa
dc.relation.referencesMeisel, Stephan & Mattfeld, Dirk. (2007). Synergies of Data Mining and Operations Research. European Journal of Operational Research - EJOR. 206. 56 - 56. 10.1109/HICSS.2007.510. https://www.researchgate.net/publication/224686819_Synergies_of_Data_Mining_and_Operations_Research.spa
dc.relation.referencesQGIS Team, QGIS - El SIG Líder de Código Abierto para Escritorio, https://www.qgis.org/es/site/about/index.html.spa
dc.relation.referencesGoogle Support, Cómo funciona Waze, 2020, https://support.google.com/waze/answer/6078702?hl=es.spa
dc.relation.referencesAndrew Renninger, Dhruvi Kothari, Lufeng Lin, Sagari Datta, WAZE: Congestion Predictive Study, WAZE: Congestion Predictive Study (pennmusa.github.io).spa
dc.relation.referencesMapTiler, Tiles à la Google Maps Coordinates, Tile Bounds and Projection, https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection.spa
dc.relation.referencesgeduldig, TwitterAPI, https://github.com/geduldig/TwitterAPI.spa
dc.relation.referencesTwitter Developer Platform, Authentication, https://developer.twitter.com/en/docs/authentication/oauth-1-0a/obtaining-user-access-tokens.spa
dc.relation.referencesMicrosoft, Azure Functions documentation, https://docs.microsoft.com/en-us/azure/azure-functions/.spa
dc.relation.referencesMd Kamaruzzaman, Top 10 Databases to Use in 2021, https://towardsdatascience.com/top-10-databases-to-use-in-2021-d7e6a85402baspa
dc.relation.referencesSarthak Agarwal, KS Rajan. Performance Analysis of MongoDB Vs. PostGIS/ PostGreSQL Databases For Line Intersection and Point Containment Spatial Queries, 2015. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1088&context=foss4gspa
dc.relation.referencesArcGIS, Análisis estadístico. https://desktop.arcgis.com/es/arcmap/10.3/analyze/commonly-used-tools/statistical-analysis.htmspa
dc.relation.referencesLaboratorio Urbano de Bogotá,Polígonos Localidades .https://bogota-laburbano.opendatasoft.com/explore/dataset/poligonos-localidades/export/?flg=es&location=9,4.2841,-74.21816&basemap=jawg.streets&dataChart=eyJxdWVyaWVzIjpbeyJjb25maWciOnsiZGF0YXNldCI6InBvbGlnb25vcy1sb2NhbGlkYWRlcyIsIm9wdGlvbnMiOnsiZmxnIjoiZXMifX0sImNoYXJ0cyI6W3siYWxpZ25Nb250aCI6dHJ1ZSwidHlwZSI6ImNvbHVtbiIsImZ1bmMiOiJDT1VOVCIsInNjaWVudGlmaWNEaXNwbGF5Ijp0cnVlLCJjb2xvciI6IiMwMDczN0MifV0sInhBeGlzIjoiTm9tYnJlIGRlIGxhIGxvY2FsaWRhZCIsIm1heHBvaW50cyI6NTAsInNvcnQiOiIifV0sInRpbWVzY2FsZSI6IiIsImRpc3BsYXlMZWdlbmQiOnRydWUsImFsaWduTW9udGgiOnRydWV9spa
dc.relation.referencesDINAS, Simena and BANON, José M. A literature review of bounding volumes hierarchy focused on collision detection. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123-30332015000100005spa
dc.relation.referencesSecretaria Distrital de Movilidad, Anuario de Siniestralidad Vial de Bogotá 2020. https://datos.movilidadbogota.gov.co/documents/movilidadbogota::anuario-de-siniestralidad-vial-de-bogota-2020/about?appid=62a37554ad1042e2ba86d47cb62a4a1b&edit=truespa
dc.relation.referencesPortafolio, Siniestros viales le cuestan al país 23,9 billones de pesos al año. https://www.portafolio.co/economia/a-octubre-en-colombia-fallecieron-4-156-personas-en-siniestros-viales-546657spa
dc.relation.referencesAlcaldía Mayor de Bogotá, DECRETO No. 169 DE (JULIO 12 DE 2020). https://secretariageneral.gov.co/sites/default/files/archivos-adjuntos/decreto-169-unificado-aislamiento-y-medidas-adicionales.pdfspa
dc.relation.referencesSecretaria de Movilidad de Bogotá, https://www.movilidadbogota.gov.co/web/pico_y_placa_2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembData miningeng
dc.subject.lembMinería de datosspa
dc.subject.lembSocial Networkseng
dc.subject.lembRedes socialesspa
dc.subject.lembTraffic accidentseng
dc.subject.lembAccidentes de tránsitospa
dc.subject.proposalAnálisis espacialspa
dc.subject.proposalMinería de datos espacialesspa
dc.subject.proposalTráficospa
dc.subject.proposalAccidentesspa
dc.subject.proposalGeoestadísticaspa
dc.subject.proposalSpatial analysiseng
dc.subject.proposalGeostatisticseng
dc.subject.proposalWazeeng
dc.subject.proposalTwittereng
dc.subject.proposalSpatial data miningeng
dc.subject.proposalTrafficeng
dc.subject.proposalAccidentseng
dc.titleAnálisis de datos de accidentalidad vial de la ciudad de Bogotá a partir de datos abiertos y datos obtenidos desde redes socialesspa
dc.title.translatedAnalysis of road accident data in Bogotá city from open data and data on social networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032474552.2022.pdf
Tamaño:
4.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: