Evaluación de la incidencia del factor emocional en el Customer Engagement Digital (CED): Un análisis con datos textuales de X, en seguidores de marcas de medios masivos de comunicación
dc.contributor.advisor | Rojas Berrio, Sandra Patricia | spa |
dc.contributor.advisor | Camargo Mendoza, Jorge Eliecer | spa |
dc.contributor.author | Bermúdez Sosa, Herbert Jair | spa |
dc.contributor.researchgroup | Management And Marketing (M&M) | spa |
dc.date.accessioned | 2025-09-18T19:01:04Z | |
dc.date.available | 2025-09-18T19:01:04Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El objetivo de esta investigación consistió en evaluar la influencia de la dimensión emocional en el DCE mediante el análisis de datos textuales obtenidos de X (Twitter), enfocado en seguidores de marcas del sector de medios masivos de comunicación. La metodología empleada se basó en un enfoque mixto, combinando técnicas cualitativas y cuantitativas para garantizar un análisis robusto y detallado. Inicialmente, se realizó una Revisión Sistemática de la Literatura (RSL) para identificar herramientas y métodos analíticos relevantes, sobresaliendo modelos como Random Forest y BERT. Posteriormente, se extrajeron más de 50,000 publicaciones de X relacionadas con marcas seleccionadas, las cuales se analizaron utilizando algoritmos de Procesamiento de Lenguaje Natural (NLP) para clasificar las emociones en categorías específicas (alegría, miedo, tristeza, sorpresa). Finalmente, se aplicó un Modelo de Ecuaciones Estructurales (SEM), que permitió cuantificar la influencia de la dimensión emocional en el digital engagement, obteniendo un coeficiente R² del 0.67, lo que indica que el 67% de la variabilidad en el engagement se explica por factores emocionales. El análisis reveló que la dimensión emocional tiene un impacto significativo en el DCE; específicamente, emociones como la alegría mostraron coeficientes altos (coeficiente estandarizado = 0.63, p < 0.01). Para concluir, la dimensión emocional es un factor determinante del DCE, explicando el 67% de su variabilidad según los resultados del SEM. Las emociones específicas, como la alegría, tienen un impacto directo y significativo en las interacciones digitales, mientras que emociones como la tristeza o el miedo ejercen roles más contextuales. (Texto tomado de la fuente). | spa |
dc.description.abstract | The purpose of this research was to evaluate the influence of the emotional dimension on DCE by analyzing textual data obtained from X (Twitter), focused on followers of brands in the mass media sector. The methodology employed was based on a mixed approach, combining qualitative and quantitative techniques to ensure a robust and detailed analysis. Initially, a Systematic Literature Review was conducted to identify relevant analytical tools and methods, highlighting models such as Random Forest and BERT. Subsequently, more than 50,000 X publications related to selected brands were extracted and analyzed using Natural Language Processing (NLP) algorithms to classify emotions into specific categories (joy, fear, sadness, surprise). Finally, a Structural Equation Model (SEM) was applied, which allowed quantifying the influence of the emotional dimension on digital engagement, obtaining an R² coefficient of 0.67, indicating that 67% of the variability in engagement is explained by emotional factors. The analysis revealed that the emotional dimension has a significant impact on DCE; specifically, emotions such as joy showed high coefficients (standardized coefficient = 0.63, p < 0.01). To conclude, the emotional dimension is a determinant of DCE, explaining 67% of its variability according to the SEM results. Specific emotions, such as joy, have a direct and significant impact on digital interactions, while emotions such as sadness or fear exert more contextual roles. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Administración | spa |
dc.description.researcharea | Mercadeo | spa |
dc.format.extent | xvi, 248 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88916 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Económicas | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Económicas - Doctorado en Administración | spa |
dc.relation.references | Abeele, P. Vanden, & MacLachlan, D. L. (1994). Process tracing of emotional responses to TV ads: Revisiting the Warmth Monitor. Journal of Consumer Research, 20(4), 586–600. https://doi.org/10.1086/209372 | |
dc.relation.references | Ai, Z., Chiu, D. K. W., & Ho, K. K. W. (2024). Social Media Analytics of User Evaluation for Innovative Digital Cultural and Creative Products: Experiences regarding Dunhuang Cultural Heritage. Journal on Computing and Cultural Heritage, 17(3), 1–25. https://doi.org/10.1145/3653307 | |
dc.relation.references | Alanezi, M., & Almutairy, M. (2021). Influencer engagement rate under scalable machine learning approaches. Lecture Notes in Computer Science, 12775, 3–14. https://doi.org/10.1007/978-3-030-77685-5_1 | |
dc.relation.references | Albladi, A., Islam, M., & Seals, C. (2025). Sentiment Analysis of Twitter data using NLP Models: A Comprehensive Review. IEEE Access, 1–1. https://doi.org/10.1109/ACCESS.2025.3541494 | |
dc.relation.references | Andreu, L. (2003). Emociones del consumidor: componentes y consecuencias de marketing. Estudios Sobre Consumo, 64, 9–26. https://www.researchgate.net/publication/28243564 | |
dc.relation.references | Angulo-Armenta, J., Sandoval-Mariscal, P. A., Torres-Gastelú, C. A., García-López, R. I., Angulo-Armenta, J., Sandoval-Mariscal, P. A., Torres-Gastelú, C. A., & García-López, R. I. (2021). Usabilidad de redes sociales con propósitos académicos en educación superior. Formación Universitaria, 14(6), 25–32. https://doi.org/10.4067/S0718-50062021000600025 | |
dc.relation.references | Balaguer, P., Teixidó, I., Vilaplana, J., Mateo, J., Rius, J., & Solsona, F. (2019). CatSent: a Catalan sentiment analysis website. Multimedia Tools and Applications, 78(19). https://doi.org/10.1007/s11042-019-07877-7 | |
dc.relation.references | Baldus, B. J., Voorhees, C., & Calantone, R. (2015). Online brand community engagement: Scale development and validation. Journal of Business Research, 68(5), 978–985. https://doi.org/10.1016/J.JBUSRES.2014.09.035 | |
dc.relation.references | Ballesteros H, Carlos. A. (2019). La representación digital del engagement: hacia una percepción del compromiso a través de acciones simbólicas. Revista de Comunicación, 18(1), 215–233. https://doi.org/10.26441/RC18.1-2019-A11 | |
dc.relation.references | Basis, L. (2020). Reporte sobre el estado de las redes sociales: El impacto de COVID-19. Social Bakers Report, 2–4. | |
dc.relation.references | Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? Journal of Marketing Research, 49(2), 192–205. https://doi.org/10.1509/JMR.10.0353 | |
dc.relation.references | Bermudez Sosa, H. J., & Duque-Oliva, E. J. (2022). Influencia de los marcos promocionales de ganancia en las decisiones de compra de consumidores de detergente en tienda online: un aporte experimental en el canal de la COVID-19. Innovar, 33(87), 139–156. https://doi.org/10.15446/innovar.v33n87.105514 | |
dc.relation.references | Blei, D. M., Ng, A. Y., & Edu, J. B. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022. | |
dc.relation.references | Bollapragada, R., Menickelly, M., Nazarewicz, W., O’Neal, J., Reinhard, P. G., & Wild, S. M. (2020). Optimization and supervised machine learning methods for fitting numerical physics models without derivatives. Journal of Physics G: Nuclear and Particle Physics, 48(2). https://doi.org/10.1088/1361-6471/abd009 | |
dc.relation.references | Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/J.JOCS.2010.12.007 | |
dc.relation.references | Bonometti, V., Ringer, C., Ruiz, M., Wade, A., & Drachen, A. (2020). From Theory to Behaviour: Towards a General Model of Engagement. http://arxiv.org/abs/2004.12644 | |
dc.relation.references | Bose, R., Dey, R. K., Roy, S., & Sarddar, D. (2020). Sentiment Analysis on Online Product Reviews. In Advances in Intelligent Systems and Computing (Vol. 933, pp. 559–569). Springer Verlag. https://doi.org/10.1007/978-981-13-7166-0_56 | |
dc.relation.references | Bowden, J. (2014). The Process of Customer Engagement: A Conceptual Framework. Journal of Marketing Theory and Practice, 17(1), 63–74. https://doi.org/10.2753/MTP1069-6679170105 | |
dc.relation.references | Branch Group. (2021). Estadísticas de la situación digital de Colombia en el 2020-2021. Publicación de Interés. https://branch.com.co/marketing-digital/estadisticas-de-la-situacion-digital-de-colombia-en-el-2020-2021/ | |
dc.relation.references | Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252–271. https://doi.org/10.1177/1094670511411703 | |
dc.relation.references | Brodie, R. J., Ilic, A., Juric, B., & Hollebeek, L. (2013). Consumer engagement in a virtual brand community: An exploratory analysis. Journal of Business Research, 66(1), 105–114. https://doi.org/10.1016/j.jbusres.2011.07.029 | |
dc.relation.references | Bruno, G. (2016). Text mining and sentiment extraction in central bank documents. Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016, 1700–1708. https://doi.org/10.1109/BigData.2016.7840784 | |
dc.relation.references | Buckley, S., Ettl, M., Jain, P., Luss, R., Petrik, M., Ravi, R. K., & Venkatramani, C. (2014). Social media and customer behavior analytics for personalized customer engagements. IBM Journal of Research and Development, 58(5–6). https://doi.org/10.1147/JRD.2014.2344515 | |
dc.relation.references | Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage (2nd ed.). Appleton. | |
dc.relation.references | Castells, M. (2009). Comunicación y poder. Siglo XXI Editores. | |
dc.relation.references | Chatzakou, D., & Vakali, A. (2015). Harvesting Opinions and Emotions from Social Media Textual Resources. IEEE Internet Computing, 19(4), 46–50. https://doi.org/10.1109/MIC.2015.28 | |
dc.relation.references | Chen, J. V., Yen, D. C., Kuo, W. R., & Capistrano, E. P. S. (2016). The antecedents of purchase and re-purchase intentions of online auction consumers. Computers in Human Behavior, 54, 186–196. https://doi.org/10.1016/j.chb.2015.07.048 | |
dc.relation.references | Cheng, C. H., & Chen, H. H. (2019). Sentimental text mining based on an additional features method for text classification. PLoS ONE, 14(6), 1–17. https://doi.org/10.1371/journal.pone.0217591 | |
dc.relation.references | Chun, H., Leem, B. H., & Suh, H. (2021). Using text analytics to measure an effect of topics and sentiments on social-media engagement: Focusing on Facebook fan page of Toyota. International Journal of Engineering Business Management, 13. https://doi.org/10.1177/18479790211016268 | |
dc.relation.references | Cool Tabs. (2022). Guía definitiva de Social Media Analytics: KPIs y Social Media ROI. https://blog.cool-tabs.com/social-media-analytics/ | |
dc.relation.references | Cui, H. , M. V. , & D. M. (2006). Comparative Experiments on Sentiment Classification for Online Product Reviews. Proceedings of the AAAI Conference on Artificial Intelligence, 2(21), 1265–1270. https://cdn.aaai.org/AAAI/2006/AAAI06-198.pdf | |
dc.relation.references | Dai, Y., & Wang, T. (2021). Prediction of customer engagement behaviour response to marketing posts based on machine learning. Connection Science, 33(4), 891–910. https://doi.org/10.1080/09540091.2021.1912710 | |
dc.relation.references | Davenport, T. H., Cohen, D. O. N., & Jacobson, A. L. (2005). On What Basis Do Companies Compete Today? In Harvard Business Review May/June (Issue May, pp. 1–12). | |
dc.relation.references | Departamento Nacional de Planeación. (2020). Protocolo de prevención y atención: Acoso laboral y acoso sexual. https://colaboracion.dnp.gov.co | |
dc.relation.references | Dessart, L., Veloutsou, C., & Morgan-Thomas, A. (2015). Consumer engagement in online brand communities: A social media perspective. Journal of Product and Brand Management, 24(1), 28–42. https://doi.org/10.1108/JPBM-06-2014-0635/FULL/HTML | |
dc.relation.references | Dhiman, A., & Toshniwal, D. (2020). An Unsupervised Misinformation Detection Framework to Analyze the Users using COVID-19 Twitter Data. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, 679–688. https://doi.org/10.1109/BigData50022.2020.9378250 | |
dc.relation.references | Domo. (2021). Domo Releases Ninth Annual “Data Never Sleeps” Infographic. https://www.domo.com/news/press/domo-releases-ninth-annual-data-never-sleeps-infographic | |
dc.relation.references | Eke, C. I., Norman, A. A., Liyana Shuib, & Nweke, H. F. (2020). Sarcasm identification in textual data: systematic review, research challenges and open directions. In Artificial Intelligence Review (Vol. 53, Issue 6). Springer Netherlands. https://doi.org/10.1007/s10462-019-09791-8 | |
dc.relation.references | Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48(4), 384–392. https://doi.org/10.1037/0003-066X.48.4.384 | |
dc.relation.references | European Society for Opinion and Market Research. (2025). The ICC/ESOMAR International Code. https://esomar.org/code-and-guidelines/icc-esomar-code | |
dc.relation.references | Fang, J., Hu, L., Liu, X., & Prybutok, V. R. (2020). Impact of air quality on online restaurant review comprehensiveness. Electronic Commerce Research. https://doi.org/10.1007/s10660-020-09445-w | |
dc.relation.references | Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104. https://doi.org/10.1145/2818717 | |
dc.relation.references | Filipovic, J., & Arslanagic-Kalajdzic, M. (2023). Mirroring digital content marketing framework: capturing providers’ perspectives through stimuli assessment and behavioural engagement response. European Journal of Marketing, 57(9), 2173–2198. https://doi.org/10.1108/EJM-03-2021-0158 | |
dc.relation.references | Fischer, E., & Reuber, A. R. (2011). Social interaction via new social media: (How) can interactions on Twitter affect effectual thinking and behavior? Journal of Business Venturing, 26(1), 1–18. https://doi.org/10.1016/j.jbusvent.2010.09.002 | |
dc.relation.references | Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. In Source: Journal of Marketing Research (Vol. 18, Issue 1). | |
dc.relation.references | Frijda, N. H. (1986). The emotions. Cambridge University Press. | |
dc.relation.references | Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. https://doi.org/10.1093/BIOMET/61.1.101 | |
dc.relation.references | Ghiassi, M., Skinner, J., & Zimbra, D. (2013). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications, 40(16), 6266–6282. https://doi.org/10.1016/j.eswa.2013.05.057 | |
dc.relation.references | Giatsoglou, M., Vozalis, M. G., Diamantaras, K., Vakali, A., Sarigiannidis, G., & Chatzisavvas, K. C. (2017). Sentiment analysis leveraging emotions and word embeddings. Expert Systems with Applications, 69, 214–224. https://doi.org/10.1016/j.eswa.2016.10.043 | |
dc.relation.references | Godey, B., Manthiou, A., Pederzoli, D., Rokka, J., Aiello, G., Donvito, R., & Singh, R. (2016). Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. Journal of Business Research, 69(12), 5833–5841. https://doi.org/10.1016/J.JBUSRES.2016.04.181 | |
dc.relation.references | Goleman, D. (1995). Emotional intelligence. Bantam Books, Inc. | |
dc.relation.references | Graciá, V. B. (2022). Vinculación emocional hacia la marca y marketing digital como estrategia de éxito en tiempos de Covid-19. Revista de Marketing y Publicidad, 35–56. https://doi.org/10.51302/MARKETING.2022.3497 | |
dc.relation.references | Grájeda, A. (2016). Impacto de la utilización de la web 2.0 en el desempeño estudiantil [Universitat Politècnica de València]. https://riunet.upv.es/handle/10251/62314 | |
dc.relation.references | Greco, F., & Polli, A. (2020). Emotional Text Mining: Customer profiling in brand management. International Journal of Information Management, 51(December 2018), 101934. https://doi.org/10.1016/j.ijinfomgt.2019.04.007 | |
dc.relation.references | Guercini, S., & Runfola, A. (2012). Relational paths in business network dynamics: Evidence from the fashion industry. Industrial Marketing Management, 41(5), 807–815. https://doi.org/10.1016/J.INDMARMAN.2012.06.006 | |
dc.relation.references | Guerra, L., Rivero, D., Díaz, E., & Arciniegas, S. (2020). Trends in information models on retention-university dropout | Tendencias en modelos informativos sobre la retención – deserción universitaria. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E26), 55–68. | |
dc.relation.references | Gupta, P., Tiwari, R., & Robert, N. (2016). Sentiment analysis and text summarization of online reviews: A survey. International Conference on Communication and Signal Processing, ICCSP 2016, 241–245. https://doi.org/10.1109/ICCSP.2016.7754131 | |
dc.relation.references | Gutmann, T., Kanbach, D., & Seltman, S. (2019). Exploring the benefits of corporate accelerators: Investigating the SAP Industry 4.0 Startup program. Problems and Perspectives in Management, 17(3), 218–232. https://doi.org/10.21511/ppm.17(3).2019.18 | |
dc.relation.references | Hair, J. F. ., Hult, G. T. M. ., Ringle, C. M. ., & Sarstedt, Marko. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Sage. | |
dc.relation.references | Hanusch, F., & Tandoc E.C., J. (2019). Comments, analytics, and social media: The impact of audience feedback on journalists’ market orientation. Journalism, 20(6), 695–713. https://doi.org/10.1177/1464884917720305 | |
dc.relation.references | Harrigan, P., Evers, U., Miles, M., & Daly, T. (2017). Customer engagement with tourism social media brands. Tourism Management, 59, 597–609. https://doi.org/10.1016/J.TOURMAN.2016.09.015 | |
dc.relation.references | Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–319. https://doi.org/10.1108/S1474-7979(2009)0000020014/FULL/XML | |
dc.relation.references | Higgins, E. T., & Scholer, A. A. (2009). Engaging the consumer: The science and art of the value creation process. Journal of Consumer Psychology, 19(2), 100–114. https://doi.org/10.1016/J.JCPS.2009.02.002 | |
dc.relation.references | Holbrook, M. B. (1995). Consumer Research: Introspective Essays on the Study of Consumption. Sage Publications. | |
dc.relation.references | Hollebeek, L. D., Glynn, M. S., & Brodie, R. J. (2014). Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. Https://Doi.Org/10.1016/j.Intmar.2013.12.002, 28(2), 149–165. https://doi.org/10.1016/J.INTMAR.2013.12.002 | |
dc.relation.references | Hootsuite. (2022). Tendencias en Rdes Sociales 2022. | |
dc.relation.references | Hu, M., & Liu, B. (2004). Mining Opinion Features in Customer Reviews. www.aaai.org | |
dc.relation.references | Huangfu, L., Mao, W., Zeng, D., & Wang, L. (2013). OCC model-based emotion extraction from online reviews. IEEE ISI 2013 - 2013 IEEE International Conference on Intelligence and Security Informatics: Big Data, Emergent Threats, and Decision-Making in Security Informatics, 116–121. https://doi.org/10.1109/ISI.2013.6578799 | |
dc.relation.references | Humphreys, A., & Wang, R. J. H. (2018). Automated text analysis for consumer research. Journal of Consumer Research, 44(6), 1274–1306. https://doi.org/10.1093/jcr/ucx104 | |
dc.relation.references | Ipsos. (2022, December 2). Compras por internet 2022. https://www.ipsos.com/es-pe/compras-por-internet-2022 | |
dc.relation.references | Islam, T., & Goldwasser, D. (2020). Does Yoga Make You Happy? Analyzing Twitter User Happiness using Textual and Temporal Information. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, 4241–4249. https://doi.org/10.1109/BigData50022.2020.9378461 | |
dc.relation.references | Jaakonmäki, R., Müller, O., & vom Brocke, J. (2017). The impact of content, context, and creator on user engagement in social media marketing. Proceedings of the Annual Hawaii International Conference on System Sciences, 2017-Janua, 1152–1160. | |
dc.relation.references | James, W. (1890). The principies of psychology. Holt, Rinehart y Winston. https://doi.org/http://dx.doi.org/10.1037/11059-000 | |
dc.relation.references | Kaila, R. P., & Prasad, A. V. K. (2020). Informational flow on twitter-corona virus outbreak-topic modelling approach. International Journal of Advanced Research in Engineering and Technology, 11(3). https://doi.org/10.34218/IJARET.11.3.2020.011 | |
dc.relation.references | Karmagatri, M., Fezia, C., Aziz, A., Rizki, W., Asih, P., & Jumri, I. A. (2023). Uncovering user perceptions toward digital banks in Indonesia: A naive bayes sentiment analysis of twitter data. Journal of Theoretical and Applied Information Technology, 30(12). www.jatit.org | |
dc.relation.references | Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480–1486. https://doi.org/10.1016/J.JBUSRES.2011.10.014 | |
dc.relation.references | Kitchenham, B. , C. S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. | |
dc.relation.references | Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and Emotion, 5(4), 345–379. https://doi.org/10.1007/BF00992553/METRICS | |
dc.relation.references | Kmet, L. M., Lee, R. C., & Cook, L. S. (2004). | # 13. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. In HTA Initiative (Issue February). | |
dc.relation.references | Kring, A. M., & Sloan, D. M. (2007). The Facial Expression Coding System (FACES): Development, Validation, and Utility. Psychological Assessment, 19(2), 210–224. https://doi.org/10.1037/1040-3590.19.2.210 | |
dc.relation.references | Kumar, V., Rajan, B., Gupta, S., & Pozza, I. D. (2019). Customer engagement in service. Journal of the Academy of Marketing Science, 47(1), 138–160. https://doi.org/10.1007/S11747-017-0565-2 | |
dc.relation.references | Kuo, Y. H., Fu, M. H., Tsai, W. H., Lee, K. R., & Chen, L. Y. (2016). Integrated microblog sentiment analysis from users’ social interaction patterns and textual opinions. Applied Intelligence, 44(2), 399–413. https://doi.org/10.1007/s10489-015-0700-z | |
dc.relation.references | L. Pereira. (2010). Sumario Introducción Comprensión del Enfoque Gerencial en el área de Recursos Humanos ¿ Cómo es entendida la globalización ? Y ¿ Cuál es su impacto en la Gestión de Recursos Humanos ? Disertaciones sobre la Representación del Trabajo , en un contexto de l. Revista de La Facultad de Ciencias Jurídicas y Políticas , Universidad de Carabobo, 297–323. | |
dc.relation.references | Lamrhari, S., Ghazi, H. E., Oubrich, M., & Faker, A. E. (2022). A social CRM analytic framework for improving customer retention, acquisition, and conversion. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121275 | |
dc.relation.references | Lang, P. J. (1968). Fear reduction and fear behavior: Problems in treating a construct. In Research in psychotherapy. (pp. 90–102). American Psychological Association. https://doi.org/10.1037/10546-004 | |
dc.relation.references | Lang, P. J., Rice, D. G., & Sternbach, R. A. (1972). The psychophysiology of emotion. In N. S. Greenfield & R. A. Sternbach (Eds.), The psychophysiology of emotion (pp. 623–643). Holt, Rinehart & Winston. | |
dc.relation.references | Lazarus, R. S. (1991). Cognition and motivation in emotion. American Psychologist, 46(4), 352–367. https://doi.org/10.1037/0003-066X.46.4.352 | |
dc.relation.references | Lazarus, R. S., & Lazarus, B. N. (1994). Passion and reason: Making sense of our emotions. Oxford University Press. https://doi.org/10.1093/oso/9780195087574.001.0001 | |
dc.relation.references | LeDoux, J. E. (1995). Emotion: Clues from the Brain. Annual Review of Psychology, 46(1), 209–235. https://doi.org/10.1146/annurev.ps.46.020195.001233 | |
dc.relation.references | Lee, D., Hosanagar, K., & Nair, H. S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105–5131. https://doi.org/10.1287/mnsc.2017.2902 | |
dc.relation.references | Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Https://Doi.Org/10.1509/Jm.15.0420, 80(6), 69–96. https://doi.org/10.1509/JM.15.0420 | |
dc.relation.references | Lewinski, P., Den Uyl, T. M., & Butler, C. (2014). Automated facial coding: Validation of basic emotions and FACS AUs in facereader. Journal of Neuroscience, Psychology, and Economics, 7(4), 227 – 236. https://doi.org/10.1037/npe0000028 | |
dc.relation.references | Ley 1266 Habeas Data, Pub. L. No. 1266 (2008). | |
dc.relation.references | Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023a). Large Language Models Understand and Can be Enhanced by Emotional Stimuli. https://arxiv.org/abs/2307.11760v7 | |
dc.relation.references | Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023b). Large Language Models Understand and Can be Enhanced by Emotional Stimuli. https://arxiv.org/abs/2307.11760v7 | |
dc.relation.references | Li, D., Li, Y., & Wang, S. (2020). Interactive double states emotion cell model for textual dialogue emotion prediction. Knowledge-Based Systems, 189, 105084. https://doi.org/10.1016/j.knosys.2019.105084 | |
dc.relation.references | Li, W., & Xu, H. (2014). Text-based emotion classification using emotion cause extraction. Expert Systems with Applications, 41(4 PART 2), 1742–1749. https://doi.org/10.1016/j.eswa.2013.08.073 | |
dc.relation.references | Liu, L., Dzyabura, D., & Mizik, N. (2012). Visual Listening In: Extracting Brand Image Portrayed on Social Media. www.aaai.org | |
dc.relation.references | Liu, X. (2019). A big data approach to examining social bots on Twitter. Journal of Services Marketing, 33(4), 369–379. https://doi.org/10.1108/JSM-02-2018-0049 | |
dc.relation.references | Lo, S. L., Cornforth, D., & Chiong, R. (2015). Use of a High-Value Social Audience index for target audience identification on Twitter. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8955). https://doi.org/10.1007/978-3-319-14803-8_25 | |
dc.relation.references | Lutkenhaus, R. O., Wang, H., Singhal, A., Jansz, J., & Bouman, M. P. A. (2022). Using markers for digital engagement and social change: Tracking meaningful narrative exchange in transmedia edutainment with text analytics techniques. Digital Health, 8. https://doi.org/10.1177/20552076221107892 | |
dc.relation.references | Madlberger, M., & Makoto, N. (2013). On top of the world, down in the dumps: Text mining the emotionality of online consumer reviews. ECIS 2013 Completed Research, 68. http://aisel.aisnet.org/ecis2013_cr/68 | |
dc.relation.references | Maguire, B. J., O’Neill, B. J., O’Meara, P., Browne, M., & Dealy, M. T. (2018). Preventing EMS workplace violence: A mixed-methods analysis of insights from assaulted medics. Injury, 49(7), 1258–1265. https://doi.org/10.1016/j.injury.2018.05.007 | |
dc.relation.references | Malik, M. S. I., & Hussain, A. (2017). Helpfulness of product reviews as a function of discrete positive and negative emotions. Computers in Human Behavior, 73(2010), 290–302. https://doi.org/10.1016/j.chb.2017.03.053 | |
dc.relation.references | Mangold, W., horizons, D. F.-B., & 2009, undefined. (2009). Social media: The new hybrid element of the promotion mix. ElsevierWG Mangold, DJ FauldsBusiness Horizons, 2009•Elsevier, 52, 357–365. https://www.sciencedirect.com/science/article/pii/S0007681309000329 | |
dc.relation.references | Mariani, M. M., Borghi, M., & Laker, B. (2023). Do submission devices influence online review ratings differently across different types of platforms? A big data analysis. Technological Forecasting and Social Change, 189. https://doi.org/10.1016/j.techfore.2022.122296 | |
dc.relation.references | Marketing Science Institute. (2020). Research priorities 2020-2022. https://www.msi.org/ | |
dc.relation.references | Martín de Diego, I., Fernández-Isabel, A., Ortega, F., & M. Moguerza, J. (2018). A visual framework for dynamic emotional web analysis. Knowledge-Based Systems, 145, 264–273. https://doi.org/10.1016/j.knosys.2018.01.023 | |
dc.relation.references | Mohandas, N., Nair, J. P. S., & Govindaru, V. (2012). Domain specific sentence level mood extraction from Malayalam text. Proceedings - 2012 International Conference on Advances in Computing and Communications, ICACC 2012, 78–81. https://doi.org/10.1109/ICACC.2012.16 | |
dc.relation.references | Molina Beltrán, C., Segura Navarrete, A. A., Vidal-Castro, C., Rubio-Manzano, C., & Martínez-Araneda, C. (2019). Improving the affective analysis in texts: Automatic method to detect affective intensity in lexicons based on Plutchik’s wheel of emotions. Electronic Library, 37(6), 984–1006. https://doi.org/10.1108/EL-11-2018-0219 | |
dc.relation.references | Mollen, A., & Wilson, H. (2010). Engagement, telepresence and interactivity in online consumer experience: Reconciling scholastic and managerial perspectives. Journal of Business Research, 63(9–10), 919–925. https://doi.org/10.1016/J.JBUSRES.2009.05.014 | |
dc.relation.references | Mouthami, K., Devi, K. N., & Bhaskaran, V. M. (2013). Sentiment analysis and classification based on textual reviews. 2013 International Conference on Information Communication and Embedded Systems, ICICES 2013, 271–276. https://doi.org/10.1109/ICICES.2013.6508366 | |
dc.relation.references | Mukhopadhyay, S. (2018). Opinion mining in management research: the state of the art and the way forward. Opsearch, 55(2), 221–250. https://doi.org/10.1007/s12597-017-0328-3 | |
dc.relation.references | Munaro, A. C., Barcelos, R. H., Francisco Maffezzolli, E. C., Rodrigues, J. P. S., & Paraiso, E. C. (2024). Does your style engage? Linguistic styles of influencers and digital consumer engagement on YouTube. Computers in Human Behavior, 156. https://doi.org/10.1016/j.chb.2024.108217 | |
dc.relation.references | Muscolino, H., Buttita, M., & Leary, R. O. (2020). IDC FutureScape IDC FutureScape : Worldwide Future of Work 2020 Predictions. IDC Report, October 2019, 1–22. https://www.idc.com/getdoc.jsp?containerId=US44752319 | |
dc.relation.references | Nabi, R. L. (2003). Exploring the framing effects of emotion: Do discrete emotions differentially influence information accessibility, information seeking, and policy preference? Communication Research, 30(2), 224–247. https://doi.org/10.1177/0093650202250881 | |
dc.relation.references | Nazir, S., Khadim, S., Ali Asadullah, M., & Syed, N. (2023). Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technology in Society, 72. https://doi.org/10.1016/j.techsoc.2022.102190 | |
dc.relation.references | Palmatier, R., Kumar, V., & Harmeling, C. (2017). Customer Engagement Marketing (SPRINGER, Ed.). https://books.google.es/books?hl=es&lr=&id=-EszDwAAQBAJ&oi=fnd&pg=PR7&dq=define:+customer+engagement&ots=DesZl4Ni7x&sig=BivybeY3IsKtd4OlHRps3Ma9dks#v=onepage&q&f=false | |
dc.relation.references | Pansari, A., & Kumar, V. (2017). Customer engagement: the construct, antecedents, and consequences. Journal of the Academy of Marketing Science, 45(3), 294–311. https://doi.org/10.1007/S11747-016-0485-6/METRICS | |
dc.relation.references | Patacsil, F. F. (2020). Emotion recognition from blog comments based automatically generated datasets and ensemble models. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 5979–5986. https://doi.org/10.30534/ijatcse/2020/264942020 | |
dc.relation.references | Pereira, M. H. R., Pádua, F. L. C., Dalip, D. H., Benevenuto, F., Pereira, A. C. M., & Lacerda, A. M. (2019). Multimodal approach for tension levels estimation in news videos. Multimedia Tools and Applications, 78(16), 23783–23808. https://doi.org/10.1007/s11042-019-7691-4 | |
dc.relation.references | Peters, K., Chen, Y., Kaplan, A. M., Ognibeni, B., & Pauwels, K. (2013). Social Media Metrics — A Framework and Guidelines for Managing Social Media. Journal of Interactive Marketing, 27(4), 281–298. https://doi.org/10.1016/J.INTMAR.2013.09.007 | |
dc.relation.references | Pletikosa Cvijikj, I., & Michahelles, F. (2013). Online engagement factors on Facebook brand pages. Social Network Analysis and Mining, 3(4), 843–861. https://doi.org/10.1007/S13278-013-0098-8/TABLES/7 | |
dc.relation.references | Polo, F., & Polo, J. (2020). 5a oleada I Barómetro COVID-19 y Marketing en España. Good Rebels. https://www.goodrebels.com/wp-content/uploads/2023/01/5a-oleada-barometro-covid-y-marketing-_good-rebels_vf-1.pdf | |
dc.relation.references | Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125. https://doi.org/10.1016/J.INFFUS.2017.02.003 | |
dc.relation.references | Rafia, T., Hasan, T. M., Zubair, K. M., Mahmood, H. T., & Syed Mashkur, B. (2021). E-commerce Data Analysis and Visualization using Random Forest Regression and Prophet model E-commerce data analysis and visualization Using Random Forest Regression and Prophet model E-commerce sales prediction. https://doi.org/10.13140/RG.2.2.18694.45126 | |
dc.relation.references | Rakshit, S., Islam, N., Mondal, S., & Paul, T. (2022). An integrated social network marketing metric for business-to-business SMEs. Journal of Business Research, 150, 73–88. https://doi.org/10.1016/J.JBUSRES.2022.06.006 | |
dc.relation.references | Rashid, U., Iqbal, M. W., Skiandar, M. A., Raiz, M. Q., Naqvi, M. R., & Shahzad, S. K. (2020). Emotion Detection of Contextual Text using Deep learning. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 - Proceedings, 0–4. https://doi.org/10.1109/ISMSIT50672.2020.9255279 | |
dc.relation.references | Rata, A., Orduña, E., & Julián, C. (2019). Estrategias de comunicación en Redes sociales en el sector de la moda: Análisis del uso de imágenes en Instagram. Universitat Politècnica de València. | |
dc.relation.references | Reyes, I. (1993). Las Redes Semánticas Naturales - Su Conceptualización y Su Utilización | PDF | Memoria | Sicología. Revista de Psicología Social y Personalidad, 83–99. https://es.scribd.com/document/458194143/Las-Redes-Semanticas-Naturales-su-Conceptualizacion-y-su-Utilizacion | |
dc.relation.references | Roseman, I. J., Antoniou, A. A., & Jose, P. E. (2010). Appraisal Determinants of Emotions: Constructing a More Accurate and Comprehensive Theory. Cognition and Emotion, 10(3), 241–278. https://doi.org/10.1080/026999396380240 | |
dc.relation.references | Ruz, G. A., Henríquez, P. A., & Mascareño, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Future Generation Computer Systems, 106, 92–104. https://doi.org/10.1016/J.FUTURE.2020.01.005 | |
dc.relation.references | Sarstedt, M., Hair, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/J.AUSMJ.2019.05.003 | |
dc.relation.references | Saunders, M. N. K., Lewis, P., & Thornhill, A. (2009). Research methods for business students. Prentice Hall. | |
dc.relation.references | Schachter, S. (1964). The Interaction of Cognitive and Physiological Determinants of Emotional State. Advances in Experimental Social Psychology, 1(C), 49–80. https://doi.org/10.1016/S0065-2601(08)60048-9 | |
dc.relation.references | Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69(5), 379–399. https://doi.org/10.1037/h0046234 | |
dc.relation.references | Scherer, K. R. (1982). The nature and function of emotion. Social Science Information, 21(4–5), 507–509. https://doi.org/10.1177/053901882021004001 | |
dc.relation.references | Scherer, K. R. (1997). Emotion. 293–330. https://doi.org/10.1007/978-3-662-09956-8_10 | |
dc.relation.references | Shaheen, S., El-Hajj, W., Hajj, H., & Elbassuoni, S. (2015). Emotion recognition from text based on automatically generated rules. IEEE International Conference on Data Mining Workshops, ICDMW, 2015-Janua(January), 383–392. https://doi.org/10.1109/ICDMW.2014.80 | |
dc.relation.references | Shams, M., Shakery, A., & Faili, H. (2012). A non-parametric LDA-based induction method for sentiment analysis. AISP 2012 - 16th CSI International Symposium on Artificial Intelligence and Signal Processing, Aisp, 216–221. https://doi.org/10.1109/AISP.2012.6313747 | |
dc.relation.references | Sharma, E., & De Choudhury, M. (2018). Mental health support and its relationship to linguistic accommodation in online communities. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3174215 | |
dc.relation.references | Sharma, S., & Crossler, R. E. (2014). Intention to Engage in Social Commerce: Uses and Gratifications Approach. | |
dc.relation.references | Shearer, C. (2000). The crisp-dm model the new blueprint for data mining shearer 2000 - Brainly.in. Journal of Data Warehousing, 5(4), 13–22. https://brainly.in/question/11419567 | |
dc.relation.references | Simó, L. A. (2001). Emociones y satisfacción del consumidor: Propuesta de un modelo cognitivo-afectivo en servicios de ocio y turismo. Universitat de València. | |
dc.relation.references | Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/MIS0742-1222290408 | |
dc.relation.references | Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111–133. https://doi.org/10.1111/J.2517-6161.1974.TB00994.X | |
dc.relation.references | Tam, S., Said, R. Ben, & Tanriöver, Ö. (2021). A ConvBiLSTM Deep Learning Model-Based Approach for Twitter Sentiment Classification. IEEE Access, 9, 41283–41293. https://doi.org/10.1109/ACCESS.2021.3064830 | |
dc.relation.references | Tebes, G., Peppino, D., Becker, P., & Olsina, L. (2019). Especificación del modelo de proceso para una revisión sistemática de literatura. XXII Ibero-American Conference on Software Engineering, CIbSE 2019. | |
dc.relation.references | Thakur, P., & Shrivastava, R. (2018). A review on text based emotion recognition system. International Journal of Advanced Trends in Computer Science and Engineering, 7(5), 67–71. https://doi.org/10.30534/ijatcse/2018/01752018 | |
dc.relation.references | Thakur, R. (2018). Customer engagement and online reviews. Journal of Retailing and Consumer Services, 41, 48–59. https://doi.org/10.1016/j.jretconser.2017.11.002 | |
dc.relation.references | Townsend, L., Wallace, C., & Harte, D. (2016). Social Media Research: A Guide to Ethics. | |
dc.relation.references | Troussas, C., Virvou, M., Espinosa, K. J., Llaguno, K., & Caro, J. (2013). Sentiment analysis of Facebook statuses using Naive Bayes Classifier for language learning. IISA 2013 - 4th International Conference on Information, Intelligence, Systems and Applications, 198–205. https://doi.org/10.1109/IISA.2013.6623713 | |
dc.relation.references | Tweet Binder. (2024). Twitter analytics reports. Audiense. https://www.tweetbinder.com/reports/ | |
dc.relation.references | Usman Hadi, M., al tashi, qasem, Qureshi, R., Shah, A., muneer, amgad, Irfan, M., Zafar, A., Bilal Shaikh, M., Akhtar, N., Wu, J., Mirjalili, S., Al-Tashi, Q., & Muneer, A. (2023). A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage. Authorea Preprints. https://doi.org/10.36227/TECHRXIV.23589741.V1 | |
dc.relation.references | Vaičiukynaitė, E., Žičkutė, I., Varaniūtė, V., & Šalkevičius, J. (2021). Predicting Customer Engagement Behaviour with Pharmacy Brands on Facebook Using Decision Tree. In Smart Innovation, Systems and Technologies (Vol. 205). https://doi.org/10.1007/978-981-33-4183-8_22 | |
dc.relation.references | Van Doorn, J., Lemon, K. N., Mittal, V., Nass, S., Pick, D., Pirner, P., & Verhoef, P. C. (2010). Customer Engagement Behavior: Theoretical Foundations and Research Directions. Journal of Service Research, 13(3), 253–266. https://doi.org/10.1177/1094670510375599 | |
dc.relation.references | Vargas Rodríguez, I. A. (2017). Implementación de un análisis de sentimientos (minería de opinión) en las redes sociales Facebook y Twitter de un club de fútbol colombiano con objetivo de mejorar sus comunicaciones en dichas redes. Working Papers. Maestría En Gerencia Estratégica de Mercadeo, 1(2). https://doi.org/10.15765/wpmgem.v1i2.853 | |
dc.relation.references | Venkatesan, R., Farris, P., & Wilcox, R. T. (2014). Cutting-edge Marketing Analytics: Real World Cases and Data Sets for Hands on Learning (pp. 6–17). | |
dc.relation.references | Venugopal, J. P., Subramanian, A. A. V., Sundaram, G., Rivera, M., & Wheeler, P. (2024). A Comprehensive Approach to Bias Mitigation for Sentiment Analysis of Social Media Data. Applied Sciences, 14(23), 11471. https://doi.org/10.3390/APP142311471 | |
dc.relation.references | Vera-Martínez, J., & Ornelas-Sánchez, S. (2021). Engagement hacia un producto vs. hacia una marca: Una escala para el contexto mexicano. Contaduria y Administracion, 66(3). https://doi.org/10.22201/fca.24488410e.2021.1898 | |
dc.relation.references | Vivek, S. D., Beatty, S. E., & Morgan, R. M. (2012). Customer engagement: Exploring customer relationships beyond purchase. Journal of Marketing Theory and Practice, 20(2). https://doi.org/10.2753/MTP1069-6679200201 | |
dc.relation.references | Wang, H., & Cui, R. (2018). Research on the price of online short-term rental rooms based on fusion of user reviews. Journal of Advanced Computational Intelligence and Intelligent Informatics, 22(6), 978–988. https://doi.org/10.20965/jaciii.2018.p0978 | |
dc.relation.references | Wang, W. M., Li, Z., Liu, L., Tian, Z. G., & Tsui, E. (2018a). Mining of affective responses and affective intentions of products from unstructured text. Journal of Engineering Design, 29(7), 404–429. https://doi.org/10.1080/09544828.2018.1448054 | |
dc.relation.references | Wang, W. M., Li, Z., Liu, L., Tian, Z. G., & Tsui, E. (2018b). Mining of affective responses and affective intentions of products from unstructured text. Journal of Engineering Design, 29(7). https://doi.org/10.1080/09544828.2018.1448054 | |
dc.relation.references | Watanabe, N. M., Yan, G., & Soebbing, B. P. (2016). Consumer interest in major league baseball: An analytical modeling of twitter. Journal of Sport Management, 30(2), 207–220. https://doi.org/10.1123/jsm.2015-0121 | |
dc.relation.references | Williams, E. A., Zwolak, J. P., Dou, R., & Brewe, E. (2019). Linking engagement and performance: The social network analysis perspective. Physical Review Physics Education Research, 15(2). https://doi.org/10.1103/PhysRevPhysEducRes.15.020150 | |
dc.relation.references | Wu, R., Yang, C., Hyde, D., Bertozzi, A. L., & Jeffrey Brantingham, P. (2020). Emotion Classification and Textual Clustering Techniques for Gang Intervention Data. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, 3246–3254. https://doi.org/10.1109/BigData50022.2020.9378260 | |
dc.relation.references | Xia, H., Yang, Y., Pan, X., Zhang, Z., & An, W. (2019). Sentiment analysis for online reviews using conditional random fields and support vector machines. Electronic Commerce Research 2019 20:2, 20(2), 343–360. https://doi.org/10.1007/S10660-019-09354-7 | |
dc.relation.references | Yasmina, D., Hajar, M., & Hassan, A. M. (2016). Using YouTube Comments for Text-based Emotion Recognition. Procedia Computer Science, 83(Ant), 292–299. https://doi.org/10.1016/j.procs.2016.04.128 | |
dc.relation.references | Yuan, C. (2020). Agenda legislativa. Portafolio, 64(586), 1–84. | |
dc.relation.references | Zappavigna, M. (2011). Ambient affiliation: A linguistic perspective on Twitter. New Media & Society, 13(5), 788–806. https://doi.org/10.1177/1461444810385097 | |
dc.relation.references | Zhang, H., Zang, Z., Zhu, H., Uddin, M. I., & Amin, M. A. (2022). Big data-assisted social media analytics for business model for business decision making system competitive analysis. Information Processing & Management, 59(1), 102762. https://doi.org/10.1016/J.IPM.2021.102762 | |
dc.relation.references | Zhang, K., Zhu, Y., Zhang, W., & Zhu, Y. (2021). Cross-modal image sentiment analysis via deep correlation of textual semantic. Knowledge-Based Systems, 216, 106803. https://doi.org/10.1016/j.knosys.2021.106803 | |
dc.relation.references | Zhou, Q., Xu, Z., & Yen, N. Y. (2019). User sentiment analysis based on social network information and its application in consumer reconstruction intention. Computers in Human Behavior, 100(July 2018), 177–183. https://doi.org/10.1016/j.chb.2018.07.006 | |
dc.relation.references | Zimbra, D., Abbasi, A., Zeng, D., & Chen, H. (2018). The State-of-the-Art in Twitter Sentiment Analysis. ACM Transactions on Management Information Systems, 9(2). https://doi.org/10.1145/3185045 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 380 - Comercio , comunicaciones, transporte::384 - Comunicaciones | spa |
dc.subject.ddc | 650 - Gerencia y servicios auxiliares::658 - Gerencia general | spa |
dc.subject.proposal | Análisis textual | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Compromiso del cliente | spa |
dc.subject.proposal | Emoción | spa |
dc.subject.proposal | Redes sociales | spa |
dc.subject.proposal | Customer engagement | eng |
dc.subject.proposal | Emotion | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Social media | eng |
dc.subject.proposal | Textual analysis | eng |
dc.subject.wikidata | servicio de red social | spa |
dc.subject.wikidata | social networking service | eng |
dc.subject.wikidata | análisis de sentimiento | spa |
dc.subject.wikidata | sentiment analysis | eng |
dc.subject.wikidata | Fidelización | spa |
dc.subject.wikidata | loyalty marketing | eng |
dc.title | Evaluación de la incidencia del factor emocional en el Customer Engagement Digital (CED): Un análisis con datos textuales de X, en seguidores de marcas de medios masivos de comunicación | spa |
dc.title.translated | Evaluation of the incidence of the emotional factor in Digital Customer Engagement (CED): An analysis with textual data of X, in followers of mass media brands | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Evaluación de la incidencia del factor emocional en el Customer Engagement Digital (CED) Un análisis con datos textuales de X, en seguidore VFturn.pdf
- Tamaño:
- 7 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Administración
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: