Modelo integrado del comportamiento de asfaltenos en condiciones de flujo

dc.contributor.advisorBenjumea, Pedro Nel
dc.contributor.authorCundar Paredes, Cristiam David
dc.contributor.orcidCundar Paredes, Cristiam David [0000-0002-3409-7862]spa
dc.date.accessioned2024-05-20T16:13:15Z
dc.date.available2024-05-20T16:13:15Z
dc.date.issued2024-05-20
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLos asfaltenos se consideran como la fracción más polar del petróleo y su estructura química es desconocida. En general se acepta que los asfaltenos poseen una estructura poli-aromática, incluidos algunos metales, oxígeno, sulfuro y nitrógeno. Este compuesto se define como la fracción de crudo insoluble en alcanos (n-pentano, heptano) y soluble en aromáticos (benceno, tolueno).(Firoozabadi, 1999) A nivel yacimiento, este fenómeno implica una reducción de la transmisibilidad y alteración de la humectabilidad en la roca afectando la productividad de pozos. La desestabilización del componente asfalteno en el fluido de yacimiento se debe a cambios en presión, temperatura, composición y/o solventes o gases externos inyectados en el yacimiento en procesos de recobro mejorado (Firoozabadi, 1999). Los asfaltenos se precipitan y pueden depositarse en el yacimiento cerca a la cara del pozo productor. Lo anterior conlleva a una reducción del flujo de fluidos en el medio poroso a través de la reducción de permeabilidad y alteración de la humectabilidad de la roca. Además, los asfaltenos pueden fluir estables en el medio poroso y desestabilizarse en la línea de producción fondo de pozo superficie, ocasionado obstrucción del flujo por depositación de asfaltenos en las paredes de la tubería de producción; e incluso causando problemas en las líneas de trasporte de crudo en superficie. El modelamiento de la precipitación y depositación de asfaltenos se establece como una herramienta primordial para entender el comportamiento termodinámico del sistema de fluidos presentes en el yacimiento, y permite la predicción de este fenómeno indeseable a diferentes condiciones de presión, temperatura y composición. Dicho modelamiento, a pesar de que ha sido objeto de estudio en las últimas décadas, aún se considera un reto en la industria debido a la naturaleza del asfalteno, el cual es diferente en cada crudo, sus diferentes afinidades asociativas y su estructura (coloidal o macromolecular) desconocida. Por dicha razón, la predicción de la precipitación y posterior depositación hace necesario el entendimiento del modelamiento termodinámico y de flujo de los fluidos presentes en la formación, y las bases de cada modelo con sus limitaciones a la hora de predecir el comportamiento de los asfaltenos en un yacimiento en particular. En el presente proyecto se plantea estudiar el comportamiento de los asfaltenos a condiciones de flujo de fluidos. Para desarrollar este estudio se considera necesario profundizar en 4 ítems: ecuaciones de estado avanzadas, cinéticas de agregación de asfaltenos, diagnóstico del daño de formación y finalmente integración de los fenómenos anteriores en una simulación numérica de yacimientos. (Tomado de la fuente)spa
dc.description.abstractAsphaltenes are considered the most polar fraction of petroleum and their chemical structure is unknown. It is generally accepted that asphaltenes have a polyaromatic structure, including some metals, oxygen, sulfur, and nitrogen. This compound is defined as the fraction of crude oil that is insoluble in alkanes (n-pentane, heptane) and soluble in aromatics (benzene, toluene). Firoozabadi, 1999) At the reservoir level, this phenomenon implies a reduction in transmissibility and alteration of the rock wettability affecting its productivity. The destabilization of the asphaltene component in the reservoir fluid is due to changes in pressure, temperature, composition and/or solvents or external gases injected into the reservoir in enhanced recovery processes (Firoozabadi, 1999). Asphaltenes precipitate and may be deposited in the reservoir near the face of the producing well. This leads to a reduction in the flow of fluids in the porous medium through the reduction of permeability and alteration of the wettability of the rock. In addition, asphaltenes can flow stable in the porous medium and become destabilized in the production line downhole surface, causing flow obstruction by depositing asphaltenes on the walls of the production tubing; and even causing problems in the crude oil transport lines on the surface. The modeling of the precipitation and deposition of asphaltenes is established as a fundamental tool to understand the thermodynamic behavior of the fluid system present in the reservoir and allows the prediction of this undesirable phenomenon at different conditions of pressure, temperature and composition. Said modeling, despite the fact that it has been the object of study in the last decades, is still considered a challenge in the industry due to the nature of asphaltene, which is different in each crude, its different associative affinities and its structure (colloidal or macromolecular) unknown. For this reason, the prediction of precipitation and subsequent deposition makes it necessary to understand the thermodynamic and flow modeling of the fluids present in the formation, and the bases of each model with its limitations when predicting the behavior of asphaltenes in a particular deposit. In the present project it is proposed to study the behavior of asphaltenes under fluid flow conditions. To develop this study, it is considered necessary to delve into 4 items: advanced equations of state, asphaltene aggregation kinetics, formation damage diagnosis and finally integration of the above phenomena in a numerical simulation of reservoirs.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaHidrocarburosspa
dc.format.extent155 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86119
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlhammadi, A. A., Vargas, F. M., & Chapman, W. G. (2015). Comparison of cubic-plus-association and perturbed-chain statistical associating fluid theory methods for modeling asphaltene phase behavior and pressure-volume-temperature properties. Energy and Fuels, 29(5), 2864–2875. https://doi.org/10.1021/ef502129pspa
dc.relation.referencesAli, M. A., & Islam, M. R. (1998). The Effect of Asphaltene Precipitation on Carbonate-Rock Permeability: An Experimental and Numerical Approach. SPE.spa
dc.relation.referencesAl-Noor, N. H., & Assi, N. K. (2020). Rayleigh-Rayleigh Distribution: Properties and Applications. Journal of Physics: Conference Series, 1591(1). https://doi.org/10.1088/1742-6596/1591/1/012038spa
dc.relation.referencesArya, A. (2016). Modeling of Asphaltene Systems with Association Models. In Citation. Technical University of Denmark.spa
dc.relation.referencesArya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 400, 8–19. https://doi.org/10.1016/j.fluid.2015.04.032spa
dc.relation.referencesBenesty, J., Chen, J., Huang, Y., & Cohen, israel. (2009). Pearson Correlation Coefficient. In Noise Reduction in Speech Processing .spa
dc.relation.referencesBikmukhametov, T., & Jäschke, J. (2020). Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers and Chemical Engineering, 138. https://doi.org/10.1016/j.compchemeng.2020.106834spa
dc.relation.referencesBoek, E., Fadili, A., Michael, F., & Williams, J. (2011). Prediction of Asphaltene Deposition in Porous Media by Systematic Upscaling from a Colloidal Pore Scale Model to a Deep Bed Filtration Model. SPE.spa
dc.relation.referencesBoek, E. S., Ladva, H. K., Crawshaw, J. P., & Padding, J. T. (2008). Deposition of colloidal asphaltene in capillary flow: Experiments and mesoscopic simulation. Energy and Fuels, 22(2), 805–813. https://doi.org/10.1021/ef700670fspa
dc.relation.referencesBuenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AIChE Journal, 50(10), 2552–2570. https://doi.org/10.1002/aic.10243spa
dc.relation.referencesCastellanos Díaz, O., Sánchez-Lemus, M. C., Schoeggl, F. F., Satyro, M. A., Taylor, S. D., & Yarranton, H. W. (2014). Deep-vacuum fractionation of heavy oil and bitumen, part I: Apparatus and standardized procedure.spa
dc.relation.referencesCivan, F. (2006). Reservoir Formation Damage.spa
dc.relation.referencesCivan, F. (2007). FORMATION DAMAGE BY ORGANIC DEPOSITION. In Reservoir Formation Damage. https://doi.org/10.1016/B978-0-7506-7738-7.50015-4spa
dc.relation.referencesCivan, F. (2016). Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media. In Transport in Porous Media (Vol. 111, Issue 2, pp. 381–410). Springer Netherlands. https://doi.org/10.1007/s11242-015-0600-zspa
dc.relation.referencesDaigle, H. (2016). Application of critical path analysis for permeability prediction in natural porous media. Advances in Water Resources, 96, 43–54. https://doi.org/10.1016/j.advwatres.2016.06.016spa
dc.relation.referencesDavudov, D., & Moghanloo, R. G. (2019). A new model for permeability impairment due to asphaltene deposition. Fuel, 235, 239–248. https://doi.org/10.1016/j.fuel.2018.07.079spa
dc.relation.referencesEskandari, N. (2020). Asphaltene deposition simulation in porous media during CO 2 injection using Lattice Boltzmann Method. University of Newfoundlandspa
dc.relation.referencesFiroozabadi, A. (1999). Thermodynamics of Hydrocarbon Reservoir - Firoozabadi. In McGraw-Hill.spa
dc.relation.referencesForte, E., & Taylor, S. E. (2015). Thermodynamic modelling of asphaltene precipitation and related phenomena. In Advances in Colloid and Interface Science (Vol. 217, pp. 1–12). Elsevier. https://doi.org/10.1016/j.cis.2014.12.002spa
dc.relation.referencesGhanbarian, B., Hunt, A. G., Ewing, R. P., & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 41(11), 3884–3890. https://doi.org/10.1002/2014GL060180spa
dc.relation.referencesGonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21(3), 1231–1242. https://doi.org/10.1021/ef060453aspa
dc.relation.referencesGostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Forschungszentrum, |, Day, J. H., Spellacy, B., Sharqawy, M. H., Burns, A., Lehnert, W., Jülich, F., Aachen, R., & Putz, A. (2016). Section title Software engineering track OpenPNM: A Pore Network Modeling Package. www.scipy.orgspa
dc.relation.referencesGottschalk, M. (2007). Equations of state for complex fluids. Reviews in Mineralogy and Geochemistry, 65, 49–97. https://doi.org/10.2138/rmg.2007.65.3spa
dc.relation.referencesGruesbeck, C., & Collins, R. E. (1982). Entrainment and Deposition of Fine Particles in Porous Media. SPEspa
dc.relation.referencesHaji-Akbari, N. (2014). Destabilization and Aggregation Kinetics of Asphaltenes. University of Michiganspa
dc.relation.referencesHuang, S. H., & Radosz, M. (1990). Equation of State for Small, Large, Polydisperse, and Associating Molecules. In 2284 I n d. Eng. Cheni. Res (Vol. 29).spa
dc.relation.referencesIdris, M., & Okoro, L. N. (2013). A review on the effects of asphaltenes on petroleum processing. Chem. Bull, 6, 393–396. https://doi.org/10.17628/ECB.2013.2.393spa
dc.relation.referencesJafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: Theoretical and experimental investigation. Energy and Fuels, 27(2), 622–639. https://doi.org/10.1021/ef3017255spa
dc.relation.referencesJamaluddin, A. K. M. (2002). An Investigation of Asphaltene Instability Under Nitrogen Injection. SPE Journal .spa
dc.relation.referencesJamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002a). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability.spa
dc.relation.referencesJamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002b). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability. SPE.spa
dc.relation.referencesJeldres, R. I., Fawell, P. D., & Florio, B. J. (2018). Population balance modelling to describe the particle aggregation process: A review. In Powder Technology (Vol. 326, pp. 190–207). Elsevier B.V. https://doi.org/10.1016/j.powtec.2017.12.033spa
dc.relation.referencesJiang, H., & Adidharma, H. (2014). Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions. Journal of Chemical Physics, 141(17). https://doi.org/10.1063/1.4900985spa
dc.relation.referencesKesler M. (1976). Improve Prediction of Enthalpy of Fractions. Hydrocarbon Processingspa
dc.relation.referencesKhelfaoui, F., & Babahani, O. (2019). How to Use the Monte Carlo Simulation Technique? Application: A Study of the Gas Phase during Thin Film Deposition. In Theory, Application, and Implementation of Monte Carlo Method in Science and Technology.spa
dc.relation.referencesKikuchi, N., Pooley, C. M., Ryder, J. F., & Yeomans, J. M. (2003). Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 119(12), 6388–6395. https://doi.org/10.1063/1.1603721spa
dc.relation.referencesKocabas, I. (2003). Characterization of Asphaltene Precipitation Effect on Reducing Carbonate Rock Permeability. SPE.spa
dc.relation.referencesKontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V, & Tassios, D. P. (1996). An Equation of State for Associating Fluids.spa
dc.relation.referencesKord, S., Miri, R., Ayatollahi, S., & Escrochi, M. (2012). Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation. Energy and Fuels, 26(10), 6186–6199. https://doi.org/10.1021/ef300692espa
dc.relation.referencesKord, S., Mohammadzadeh, O., Miri, R., & Soulgani, B. S. (2014). Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel, 117(PART A), 259–268. https://doi.org/10.1016/j.fuel.2013.09.038spa
dc.relation.referencesLai, C.-D., Murthy, D. N. ;, & Xie, Min. (2006). Weibull Distributions and Their Applications (Springer Handbooks).spa
dc.relation.referencesLeontaritis, K. J. (1998). Asphaltene Near-wellbore Formation Damage Modeling. SPE.spa
dc.relation.referencesLeontaritis, K. J., & Mansoori, G. A. (1988). ASPHALTENE DEPOSITION: A SURVEY OF FIELD EXPERIENCES AND RESEARCH APPROACHES. In Journal of Petroleum Science and Engineering (Vol. 1).spa
dc.relation.referencesLi, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24(5), 2956–2963. https://doi.org/10.1021/ef9014263spa
dc.relation.referencesLin, Y. J., He, P., Tavakkoli, M., Mathew, N. T., Fatt, Y. Y., Chai, J. C., Goharzadeh, A., Vargas, F. M., & Biswal, S. L. (2016). Examining Asphaltene Solubility on Deposition in Model Porous Media. Langmuir, 32(34), 8729–8734. https://doi.org/10.1021/acs.langmuir.6b02376spa
dc.relation.referencesMahdavi Far, M., Roozshenas, A. A., & Miri, R. (2023). Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities. Energy, 283. https://doi.org/10.1016/j.energy.2023.129210spa
dc.relation.referencesMaqbool, T. (2011). Understanding the kinetic of asphaltene precipitation from crude oils.spa
dc.relation.referencesMendoza de La Cruz, J. L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. D. L. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous Medium: An experimental investigation and modeling approach. Energy and Fuels, 23(11), 5611–5625. https://doi.org/10.1021/ef9006142spa
dc.relation.referencesMinssieux, L. (1997). Core damage from asphaltene deposition. SPE.spa
dc.relation.referencesMohammadi, S., Rashidi, F., Ghazanfari, M. H., & Mousavi-Dehghani, S. A. (2016). Kinetics of asphaltene aggregation phenomena in live oils. Journal of Molecular Liquids, 222, 359–369. https://doi.org/10.1016/j.molliq.2016.07.062spa
dc.relation.referencesMohammadi, S., Rashidi, F., Mousavi-Dehghani, S. A., & Ghazanfari, M. H. (2016). On the effect of temperature on precipitation and aggregation of asphaltenes in light live oils. Canadian Journal of Chemical Engineering, 94(9), 1820–1829. https://doi.org/10.1002/cjce.22555spa
dc.relation.referencesMoncayo-Riascos, I., Rojas-Ruiz, F. A., Orrego-Ruiz, J. A., Cundar, C., Torres, R. G., & Cañas-Marín, W. (2022). Reconstruction of a Synthetic Crude Oil Using Petroleomics and Molecular Dynamics Simulations: A Multistructural Approach to Understanding Asphaltene Aggregation Behavior. Energy and Fuels, 36(2), 837–850. https://doi.org/10.1021/acs.energyfuels.1c03497spa
dc.relation.referencesMoukalled, F., Mangani, L., & Darwish, M. (2016). Fluid Mechanics and Its Applications The Finite Volume Method in Computational Fluid Dynamics. http://www.springer.com/series/5980spa
dc.relation.referencesMousavi, S. M. R., Jafari, S., Schaffie, M., & Norouzi-Apourvari, S. (2020). Experimental study and modeling permeability damage in porous media due to asphaltene deposition. Journal of Petroleum Science and Engineering, 193. https://doi.org/10.1016/j.petrol.2020.107396spa
dc.relation.referencesMozo, I. D. (2017). Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad Iván Darío. Universidad Nacional de Colombia.spa
dc.relation.referencesMullins, O. C., Sheu Eric Y., Hammami, A., & Marshall, A. G. (2007). Asphaltenes, Heavy Oils, and Petroleomicsspa
dc.relation.referencesNascimento, F. P., Costa, G. M. N., & Vieira de Melo, S. A. B. (2019). A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope. Fluid Phase Equilibria, 494, 74–92. https://doi.org/10.1016/j.fluid.2019.04.027spa
dc.relation.referencesNasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016a). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944spa
dc.relation.referencesNasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016b). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944spa
dc.relation.referencesNghiem, L. X., Kohse, B. F., Ali, F., & Doan, Q. (2000). Asphaltene Precipitation: Phase Behaviour Modelling and Compositional Simulation. SPE.spa
dc.relation.referencesNield, D. A., & Bejan, A. (2017). Convection in porous media. In Convection in Porous Media. Springer International Publishing. https://doi.org/10.1007/978-3-319-49562-0spa
dc.relation.referencesPadding, J. T., & Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3). https://doi.org/10.1103/PhysRevE.74.031402spa
dc.relation.referencesPautz, J. F., & Crocker, M. E. (1989). Relating Water Quality and Formation Permeability to Loss of lnjectivity. SPE.spa
dc.relation.referencesRahmani, N. H. G., Dabros, T., & Masliyah, J. H. (2004). Evolution of asphaltene floc size distribution in organic solvents under shear. Chemical Engineering Science, 59(3), 685–697. https://doi.org/10.1016/j.ces.2003.10.017spa
dc.relation.referencesRaoof, A., & Majid Hassanizadeh, S. (2010). A new method for generating pore-network models of porous media. Transport in Porous Media, 81(3), 391–407. https://doi.org/10.1007/s11242-009-9412-3spa
dc.relation.referencesSeifried, C. M. (2016). Asphaltene Precipitation and Deposition from Crude Oil with CO 2 and Hydrocarbons: Experimental Investigation and Numerical Simulation. Imperial College London.spa
dc.relation.referencesShirani, B., Nikazar, M., & Mousavi-Dehghani, S. A. (2012). Prediction of asphaltene phase behavior in live oil with CPA equation of state. Fuel, 97, 89–96. https://doi.org/10.1016/j.fuel.2012.02.016spa
dc.relation.referencesSim, S., Research Council, A., Takabayashi, K., Okatsu, K., Oil, J., Natl Corp, M., & Fisher, D. (2005). Asphaltene-Induced Formation Damage: Effect of Asphaltene Particle Size and Core Permeability. SPE, 9–12.spa
dc.relation.referencesSu, P., Xia, Z., Wang, P., Ding, W., Hu, Y., Zhang, W., & Peng, Y. (2019). Fractal and multifractal analysis of pore size distribution in low permeability reservoirs based on mercury intrusion porosimetry. Energies, 12(7). https://doi.org/10.3390/en12071337spa
dc.relation.referencesTabzar, A., Fathinasab, M., Salehi, A., Bahrami, B., Mohammadi, A. H., & Mohammadi Multi, A. H. (2018). Multiphase flow modeling of asphaltene precipitation and deposition. Oil & Gas Science and Technology. https://doi.org/10.2516/ogst/2018039ïspa
dc.relation.referencesTing, P. D., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21(3–4), 647–661. https://doi.org/10.1081/lft-120018544spa
dc.relation.referencesTsakiroglou, C. D., & Payatakes, A. C. (1990). A New Simulator of Mercury Porosimetry for the Characterization of Porous Materials. Journal of Colloid and Interface Science.spa
dc.relation.referencesTsirikolias, K. (2016). Low level image processing and analysis using radius filters. Digital Signal Processing: A Review Journal, 50, 72–83. https://doi.org/10.1016/j.dsp.2015.12.001spa
dc.relation.referencesUetani, T. (2014). Wettability Alteration by Asphaltene Deposition: A Field Example. SPE.spa
dc.relation.referencesValderrama, J. O. (2003). The state of the cubic equations of state. In Industrial and Engineering Chemistry Research (Vol. 42, Issue 8, pp. 1603–1618). American Chemical Society. https://doi.org/10.1021/ie020447bspa
dc.relation.referencesWang, J., & Ferguson, A. L. (2016). Mesoscale Simulation of Asphaltene Aggregation. Journal of Physical Chemistry B, 120(32), 8016–8035. https://doi.org/10.1021/acs.jpcb.6b05925spa
dc.relation.referencesWang, J., Gayatri, M., & Ferguson, A. L. (2018). Coarse-Grained Molecular Simulation and Nonlinear Manifold Learning of Archipelago Asphaltene Aggregation and Folding. Journal of Physical Chemistry B, 122(25), 6627–6647. https://doi.org/10.1021/acs.jpcb.8b01634spa
dc.relation.referencesWang, J. X., Brower, K. R., & Buckley, J. S. (2000). Observation of Asphaltene Destabilization at Elevated Temperature and Pressure. SPE.spa
dc.relation.referencesWang, J. X., & Buckley, J. S. (2001). An Experimental Approach to Prediction of Asphaltene Flocculation. SPE.spa
dc.relation.referencesWang, S., & Civan, F. (2005). Modeling formation damage by asphaltene deposition during primary oil recovery. Journal of Energy Resources Technology, Transactions of the ASME, 127(4), 310–317. https://doi.org/10.1115/1.1924465spa
dc.relation.referencesYonebayashi, H., Masuzawa, T., Dabbouk, C., & Urasaki, D. (2009). Reservoir Characterization and Simulation Conference. SPE/EAGEspa
dc.relation.referencesYonebayashi, H., Miyagawa, Y., Ikarashi, M., Watanabe, T., Maeda, H., & Yazawa, N. (2018). Determination of asphaltene-onset pressure using multiple techniques in parallel. SPE Production and Operations, 33(3), 486–497. https://doi.org/10.2118/181278-PAspa
dc.relation.referencesZendehboudi, S., Shafiei, A., Bahadori, A., James, L. A., Elkamel, A., & Lohi, A. (2014). Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools. Chemical Engineering Research and Design, 92(5), 857–875. https://doi.org/10.1016/j.cherd.2013.08.001spa
dc.relation.referencesZhang, X. and P. N. and M. T. (2012). Modeling asphaltene phase behavior: comparison of methods for flow assurance studies. Energy & Fuelsspa
dc.relation.referencesZhang, Y., Lin, Q., Raeini, A. Q., Onaka, Y., Iwama, H., Takabayashi, K., Blunt, M. J., & Bijeljic, B. (2022). Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123202spa
dc.relation.referencesZidane, A., & Firoozabadi, A. (2022). Higher-order compositional simulation of asphaltene damage and removal in the wellbore by the CPA-EOS. Fuel, 307. https://doi.org/10.1016/j.fuel.2021.121776spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembAsfaltenos
dc.subject.lembPermeabilidad
dc.subject.lembDinámica de fluidos
dc.subject.lembIndustria energética
dc.subject.lembTermodinámica
dc.subject.lembFormación de daños (Ingeniería de petróleos)
dc.subject.lembSimulación por computadores
dc.subject.lembPozos petroleros
dc.subject.lembCampos petrolíferos
dc.subject.proposalAsfaltenosspa
dc.subject.proposalEcuación de estadospa
dc.subject.proposalCinética de agregaciónspa
dc.subject.proposalDaño de formaciónspa
dc.subject.proposalSimulación numéricaspa
dc.subject.proposalAsphalteneseng
dc.subject.proposalEquation of stateeng
dc.subject.proposalAggregation kineticseng
dc.subject.proposalFormation damageeng
dc.subject.proposalNumerical simulationeng
dc.titleModelo integrado del comportamiento de asfaltenos en condiciones de flujo
dc.title.translatedIntegrated model of asphaltene behavior in flow conditionseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152186356.2024.pdf
Tamaño:
4.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: