Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
dc.contributor.advisor | Benjumea, Pedro Nel | |
dc.contributor.author | Cundar Paredes, Cristiam David | |
dc.contributor.orcid | Cundar Paredes, Cristiam David [0000-0002-3409-7862] | spa |
dc.date.accessioned | 2024-05-20T16:13:15Z | |
dc.date.available | 2024-05-20T16:13:15Z | |
dc.date.issued | 2024-05-20 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | Los asfaltenos se consideran como la fracción más polar del petróleo y su estructura química es desconocida. En general se acepta que los asfaltenos poseen una estructura poli-aromática, incluidos algunos metales, oxígeno, sulfuro y nitrógeno. Este compuesto se define como la fracción de crudo insoluble en alcanos (n-pentano, heptano) y soluble en aromáticos (benceno, tolueno).(Firoozabadi, 1999) A nivel yacimiento, este fenómeno implica una reducción de la transmisibilidad y alteración de la humectabilidad en la roca afectando la productividad de pozos. La desestabilización del componente asfalteno en el fluido de yacimiento se debe a cambios en presión, temperatura, composición y/o solventes o gases externos inyectados en el yacimiento en procesos de recobro mejorado (Firoozabadi, 1999). Los asfaltenos se precipitan y pueden depositarse en el yacimiento cerca a la cara del pozo productor. Lo anterior conlleva a una reducción del flujo de fluidos en el medio poroso a través de la reducción de permeabilidad y alteración de la humectabilidad de la roca. Además, los asfaltenos pueden fluir estables en el medio poroso y desestabilizarse en la línea de producción fondo de pozo superficie, ocasionado obstrucción del flujo por depositación de asfaltenos en las paredes de la tubería de producción; e incluso causando problemas en las líneas de trasporte de crudo en superficie. El modelamiento de la precipitación y depositación de asfaltenos se establece como una herramienta primordial para entender el comportamiento termodinámico del sistema de fluidos presentes en el yacimiento, y permite la predicción de este fenómeno indeseable a diferentes condiciones de presión, temperatura y composición. Dicho modelamiento, a pesar de que ha sido objeto de estudio en las últimas décadas, aún se considera un reto en la industria debido a la naturaleza del asfalteno, el cual es diferente en cada crudo, sus diferentes afinidades asociativas y su estructura (coloidal o macromolecular) desconocida. Por dicha razón, la predicción de la precipitación y posterior depositación hace necesario el entendimiento del modelamiento termodinámico y de flujo de los fluidos presentes en la formación, y las bases de cada modelo con sus limitaciones a la hora de predecir el comportamiento de los asfaltenos en un yacimiento en particular. En el presente proyecto se plantea estudiar el comportamiento de los asfaltenos a condiciones de flujo de fluidos. Para desarrollar este estudio se considera necesario profundizar en 4 ítems: ecuaciones de estado avanzadas, cinéticas de agregación de asfaltenos, diagnóstico del daño de formación y finalmente integración de los fenómenos anteriores en una simulación numérica de yacimientos. (Tomado de la fuente) | spa |
dc.description.abstract | Asphaltenes are considered the most polar fraction of petroleum and their chemical structure is unknown. It is generally accepted that asphaltenes have a polyaromatic structure, including some metals, oxygen, sulfur, and nitrogen. This compound is defined as the fraction of crude oil that is insoluble in alkanes (n-pentane, heptane) and soluble in aromatics (benzene, toluene). Firoozabadi, 1999) At the reservoir level, this phenomenon implies a reduction in transmissibility and alteration of the rock wettability affecting its productivity. The destabilization of the asphaltene component in the reservoir fluid is due to changes in pressure, temperature, composition and/or solvents or external gases injected into the reservoir in enhanced recovery processes (Firoozabadi, 1999). Asphaltenes precipitate and may be deposited in the reservoir near the face of the producing well. This leads to a reduction in the flow of fluids in the porous medium through the reduction of permeability and alteration of the wettability of the rock. In addition, asphaltenes can flow stable in the porous medium and become destabilized in the production line downhole surface, causing flow obstruction by depositing asphaltenes on the walls of the production tubing; and even causing problems in the crude oil transport lines on the surface. The modeling of the precipitation and deposition of asphaltenes is established as a fundamental tool to understand the thermodynamic behavior of the fluid system present in the reservoir and allows the prediction of this undesirable phenomenon at different conditions of pressure, temperature and composition. Said modeling, despite the fact that it has been the object of study in the last decades, is still considered a challenge in the industry due to the nature of asphaltene, which is different in each crude, its different associative affinities and its structure (colloidal or macromolecular) unknown. For this reason, the prediction of precipitation and subsequent deposition makes it necessary to understand the thermodynamic and flow modeling of the fluids present in the formation, and the bases of each model with its limitations when predicting the behavior of asphaltenes in a particular deposit. In the present project it is proposed to study the behavior of asphaltenes under fluid flow conditions. To develop this study, it is considered necessary to delve into 4 items: advanced equations of state, asphaltene aggregation kinetics, formation damage diagnosis and finally integration of the above phenomena in a numerical simulation of reservoirs. | eng |
dc.description.curriculararea | Ingeniería Química E Ingeniería De Petróleos.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Hidrocarburos | spa |
dc.format.extent | 155 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86119 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Alhammadi, A. A., Vargas, F. M., & Chapman, W. G. (2015). Comparison of cubic-plus-association and perturbed-chain statistical associating fluid theory methods for modeling asphaltene phase behavior and pressure-volume-temperature properties. Energy and Fuels, 29(5), 2864–2875. https://doi.org/10.1021/ef502129p | spa |
dc.relation.references | Ali, M. A., & Islam, M. R. (1998). The Effect of Asphaltene Precipitation on Carbonate-Rock Permeability: An Experimental and Numerical Approach. SPE. | spa |
dc.relation.references | Al-Noor, N. H., & Assi, N. K. (2020). Rayleigh-Rayleigh Distribution: Properties and Applications. Journal of Physics: Conference Series, 1591(1). https://doi.org/10.1088/1742-6596/1591/1/012038 | spa |
dc.relation.references | Arya, A. (2016). Modeling of Asphaltene Systems with Association Models. In Citation. Technical University of Denmark. | spa |
dc.relation.references | Arya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 400, 8–19. https://doi.org/10.1016/j.fluid.2015.04.032 | spa |
dc.relation.references | Benesty, J., Chen, J., Huang, Y., & Cohen, israel. (2009). Pearson Correlation Coefficient. In Noise Reduction in Speech Processing . | spa |
dc.relation.references | Bikmukhametov, T., & Jäschke, J. (2020). Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers and Chemical Engineering, 138. https://doi.org/10.1016/j.compchemeng.2020.106834 | spa |
dc.relation.references | Boek, E., Fadili, A., Michael, F., & Williams, J. (2011). Prediction of Asphaltene Deposition in Porous Media by Systematic Upscaling from a Colloidal Pore Scale Model to a Deep Bed Filtration Model. SPE. | spa |
dc.relation.references | Boek, E. S., Ladva, H. K., Crawshaw, J. P., & Padding, J. T. (2008). Deposition of colloidal asphaltene in capillary flow: Experiments and mesoscopic simulation. Energy and Fuels, 22(2), 805–813. https://doi.org/10.1021/ef700670f | spa |
dc.relation.references | Buenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AIChE Journal, 50(10), 2552–2570. https://doi.org/10.1002/aic.10243 | spa |
dc.relation.references | Castellanos Díaz, O., Sánchez-Lemus, M. C., Schoeggl, F. F., Satyro, M. A., Taylor, S. D., & Yarranton, H. W. (2014). Deep-vacuum fractionation of heavy oil and bitumen, part I: Apparatus and standardized procedure. | spa |
dc.relation.references | Civan, F. (2006). Reservoir Formation Damage. | spa |
dc.relation.references | Civan, F. (2007). FORMATION DAMAGE BY ORGANIC DEPOSITION. In Reservoir Formation Damage. https://doi.org/10.1016/B978-0-7506-7738-7.50015-4 | spa |
dc.relation.references | Civan, F. (2016). Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media. In Transport in Porous Media (Vol. 111, Issue 2, pp. 381–410). Springer Netherlands. https://doi.org/10.1007/s11242-015-0600-z | spa |
dc.relation.references | Daigle, H. (2016). Application of critical path analysis for permeability prediction in natural porous media. Advances in Water Resources, 96, 43–54. https://doi.org/10.1016/j.advwatres.2016.06.016 | spa |
dc.relation.references | Davudov, D., & Moghanloo, R. G. (2019). A new model for permeability impairment due to asphaltene deposition. Fuel, 235, 239–248. https://doi.org/10.1016/j.fuel.2018.07.079 | spa |
dc.relation.references | Eskandari, N. (2020). Asphaltene deposition simulation in porous media during CO 2 injection using Lattice Boltzmann Method. University of Newfoundland | spa |
dc.relation.references | Firoozabadi, A. (1999). Thermodynamics of Hydrocarbon Reservoir - Firoozabadi. In McGraw-Hill. | spa |
dc.relation.references | Forte, E., & Taylor, S. E. (2015). Thermodynamic modelling of asphaltene precipitation and related phenomena. In Advances in Colloid and Interface Science (Vol. 217, pp. 1–12). Elsevier. https://doi.org/10.1016/j.cis.2014.12.002 | spa |
dc.relation.references | Ghanbarian, B., Hunt, A. G., Ewing, R. P., & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 41(11), 3884–3890. https://doi.org/10.1002/2014GL060180 | spa |
dc.relation.references | Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21(3), 1231–1242. https://doi.org/10.1021/ef060453a | spa |
dc.relation.references | Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Forschungszentrum, |, Day, J. H., Spellacy, B., Sharqawy, M. H., Burns, A., Lehnert, W., Jülich, F., Aachen, R., & Putz, A. (2016). Section title Software engineering track OpenPNM: A Pore Network Modeling Package. www.scipy.org | spa |
dc.relation.references | Gottschalk, M. (2007). Equations of state for complex fluids. Reviews in Mineralogy and Geochemistry, 65, 49–97. https://doi.org/10.2138/rmg.2007.65.3 | spa |
dc.relation.references | Gruesbeck, C., & Collins, R. E. (1982). Entrainment and Deposition of Fine Particles in Porous Media. SPE | spa |
dc.relation.references | Haji-Akbari, N. (2014). Destabilization and Aggregation Kinetics of Asphaltenes. University of Michigan | spa |
dc.relation.references | Huang, S. H., & Radosz, M. (1990). Equation of State for Small, Large, Polydisperse, and Associating Molecules. In 2284 I n d. Eng. Cheni. Res (Vol. 29). | spa |
dc.relation.references | Idris, M., & Okoro, L. N. (2013). A review on the effects of asphaltenes on petroleum processing. Chem. Bull, 6, 393–396. https://doi.org/10.17628/ECB.2013.2.393 | spa |
dc.relation.references | Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: Theoretical and experimental investigation. Energy and Fuels, 27(2), 622–639. https://doi.org/10.1021/ef3017255 | spa |
dc.relation.references | Jamaluddin, A. K. M. (2002). An Investigation of Asphaltene Instability Under Nitrogen Injection. SPE Journal . | spa |
dc.relation.references | Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002a). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability. | spa |
dc.relation.references | Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002b). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability. SPE. | spa |
dc.relation.references | Jeldres, R. I., Fawell, P. D., & Florio, B. J. (2018). Population balance modelling to describe the particle aggregation process: A review. In Powder Technology (Vol. 326, pp. 190–207). Elsevier B.V. https://doi.org/10.1016/j.powtec.2017.12.033 | spa |
dc.relation.references | Jiang, H., & Adidharma, H. (2014). Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions. Journal of Chemical Physics, 141(17). https://doi.org/10.1063/1.4900985 | spa |
dc.relation.references | Kesler M. (1976). Improve Prediction of Enthalpy of Fractions. Hydrocarbon Processing | spa |
dc.relation.references | Khelfaoui, F., & Babahani, O. (2019). How to Use the Monte Carlo Simulation Technique? Application: A Study of the Gas Phase during Thin Film Deposition. In Theory, Application, and Implementation of Monte Carlo Method in Science and Technology. | spa |
dc.relation.references | Kikuchi, N., Pooley, C. M., Ryder, J. F., & Yeomans, J. M. (2003). Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 119(12), 6388–6395. https://doi.org/10.1063/1.1603721 | spa |
dc.relation.references | Kocabas, I. (2003). Characterization of Asphaltene Precipitation Effect on Reducing Carbonate Rock Permeability. SPE. | spa |
dc.relation.references | Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V, & Tassios, D. P. (1996). An Equation of State for Associating Fluids. | spa |
dc.relation.references | Kord, S., Miri, R., Ayatollahi, S., & Escrochi, M. (2012). Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation. Energy and Fuels, 26(10), 6186–6199. https://doi.org/10.1021/ef300692e | spa |
dc.relation.references | Kord, S., Mohammadzadeh, O., Miri, R., & Soulgani, B. S. (2014). Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel, 117(PART A), 259–268. https://doi.org/10.1016/j.fuel.2013.09.038 | spa |
dc.relation.references | Lai, C.-D., Murthy, D. N. ;, & Xie, Min. (2006). Weibull Distributions and Their Applications (Springer Handbooks). | spa |
dc.relation.references | Leontaritis, K. J. (1998). Asphaltene Near-wellbore Formation Damage Modeling. SPE. | spa |
dc.relation.references | Leontaritis, K. J., & Mansoori, G. A. (1988). ASPHALTENE DEPOSITION: A SURVEY OF FIELD EXPERIENCES AND RESEARCH APPROACHES. In Journal of Petroleum Science and Engineering (Vol. 1). | spa |
dc.relation.references | Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24(5), 2956–2963. https://doi.org/10.1021/ef9014263 | spa |
dc.relation.references | Lin, Y. J., He, P., Tavakkoli, M., Mathew, N. T., Fatt, Y. Y., Chai, J. C., Goharzadeh, A., Vargas, F. M., & Biswal, S. L. (2016). Examining Asphaltene Solubility on Deposition in Model Porous Media. Langmuir, 32(34), 8729–8734. https://doi.org/10.1021/acs.langmuir.6b02376 | spa |
dc.relation.references | Mahdavi Far, M., Roozshenas, A. A., & Miri, R. (2023). Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities. Energy, 283. https://doi.org/10.1016/j.energy.2023.129210 | spa |
dc.relation.references | Maqbool, T. (2011). Understanding the kinetic of asphaltene precipitation from crude oils. | spa |
dc.relation.references | Mendoza de La Cruz, J. L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. D. L. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous Medium: An experimental investigation and modeling approach. Energy and Fuels, 23(11), 5611–5625. https://doi.org/10.1021/ef9006142 | spa |
dc.relation.references | Minssieux, L. (1997). Core damage from asphaltene deposition. SPE. | spa |
dc.relation.references | Mohammadi, S., Rashidi, F., Ghazanfari, M. H., & Mousavi-Dehghani, S. A. (2016). Kinetics of asphaltene aggregation phenomena in live oils. Journal of Molecular Liquids, 222, 359–369. https://doi.org/10.1016/j.molliq.2016.07.062 | spa |
dc.relation.references | Mohammadi, S., Rashidi, F., Mousavi-Dehghani, S. A., & Ghazanfari, M. H. (2016). On the effect of temperature on precipitation and aggregation of asphaltenes in light live oils. Canadian Journal of Chemical Engineering, 94(9), 1820–1829. https://doi.org/10.1002/cjce.22555 | spa |
dc.relation.references | Moncayo-Riascos, I., Rojas-Ruiz, F. A., Orrego-Ruiz, J. A., Cundar, C., Torres, R. G., & Cañas-Marín, W. (2022). Reconstruction of a Synthetic Crude Oil Using Petroleomics and Molecular Dynamics Simulations: A Multistructural Approach to Understanding Asphaltene Aggregation Behavior. Energy and Fuels, 36(2), 837–850. https://doi.org/10.1021/acs.energyfuels.1c03497 | spa |
dc.relation.references | Moukalled, F., Mangani, L., & Darwish, M. (2016). Fluid Mechanics and Its Applications The Finite Volume Method in Computational Fluid Dynamics. http://www.springer.com/series/5980 | spa |
dc.relation.references | Mousavi, S. M. R., Jafari, S., Schaffie, M., & Norouzi-Apourvari, S. (2020). Experimental study and modeling permeability damage in porous media due to asphaltene deposition. Journal of Petroleum Science and Engineering, 193. https://doi.org/10.1016/j.petrol.2020.107396 | spa |
dc.relation.references | Mozo, I. D. (2017). Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad Iván Darío. Universidad Nacional de Colombia. | spa |
dc.relation.references | Mullins, O. C., Sheu Eric Y., Hammami, A., & Marshall, A. G. (2007). Asphaltenes, Heavy Oils, and Petroleomics | spa |
dc.relation.references | Nascimento, F. P., Costa, G. M. N., & Vieira de Melo, S. A. B. (2019). A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope. Fluid Phase Equilibria, 494, 74–92. https://doi.org/10.1016/j.fluid.2019.04.027 | spa |
dc.relation.references | Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016a). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944 | spa |
dc.relation.references | Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016b). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944 | spa |
dc.relation.references | Nghiem, L. X., Kohse, B. F., Ali, F., & Doan, Q. (2000). Asphaltene Precipitation: Phase Behaviour Modelling and Compositional Simulation. SPE. | spa |
dc.relation.references | Nield, D. A., & Bejan, A. (2017). Convection in porous media. In Convection in Porous Media. Springer International Publishing. https://doi.org/10.1007/978-3-319-49562-0 | spa |
dc.relation.references | Padding, J. T., & Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3). https://doi.org/10.1103/PhysRevE.74.031402 | spa |
dc.relation.references | Pautz, J. F., & Crocker, M. E. (1989). Relating Water Quality and Formation Permeability to Loss of lnjectivity. SPE. | spa |
dc.relation.references | Rahmani, N. H. G., Dabros, T., & Masliyah, J. H. (2004). Evolution of asphaltene floc size distribution in organic solvents under shear. Chemical Engineering Science, 59(3), 685–697. https://doi.org/10.1016/j.ces.2003.10.017 | spa |
dc.relation.references | Raoof, A., & Majid Hassanizadeh, S. (2010). A new method for generating pore-network models of porous media. Transport in Porous Media, 81(3), 391–407. https://doi.org/10.1007/s11242-009-9412-3 | spa |
dc.relation.references | Seifried, C. M. (2016). Asphaltene Precipitation and Deposition from Crude Oil with CO 2 and Hydrocarbons: Experimental Investigation and Numerical Simulation. Imperial College London. | spa |
dc.relation.references | Shirani, B., Nikazar, M., & Mousavi-Dehghani, S. A. (2012). Prediction of asphaltene phase behavior in live oil with CPA equation of state. Fuel, 97, 89–96. https://doi.org/10.1016/j.fuel.2012.02.016 | spa |
dc.relation.references | Sim, S., Research Council, A., Takabayashi, K., Okatsu, K., Oil, J., Natl Corp, M., & Fisher, D. (2005). Asphaltene-Induced Formation Damage: Effect of Asphaltene Particle Size and Core Permeability. SPE, 9–12. | spa |
dc.relation.references | Su, P., Xia, Z., Wang, P., Ding, W., Hu, Y., Zhang, W., & Peng, Y. (2019). Fractal and multifractal analysis of pore size distribution in low permeability reservoirs based on mercury intrusion porosimetry. Energies, 12(7). https://doi.org/10.3390/en12071337 | spa |
dc.relation.references | Tabzar, A., Fathinasab, M., Salehi, A., Bahrami, B., Mohammadi, A. H., & Mohammadi Multi, A. H. (2018). Multiphase flow modeling of asphaltene precipitation and deposition. Oil & Gas Science and Technology. https://doi.org/10.2516/ogst/2018039ï | spa |
dc.relation.references | Ting, P. D., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21(3–4), 647–661. https://doi.org/10.1081/lft-120018544 | spa |
dc.relation.references | Tsakiroglou, C. D., & Payatakes, A. C. (1990). A New Simulator of Mercury Porosimetry for the Characterization of Porous Materials. Journal of Colloid and Interface Science. | spa |
dc.relation.references | Tsirikolias, K. (2016). Low level image processing and analysis using radius filters. Digital Signal Processing: A Review Journal, 50, 72–83. https://doi.org/10.1016/j.dsp.2015.12.001 | spa |
dc.relation.references | Uetani, T. (2014). Wettability Alteration by Asphaltene Deposition: A Field Example. SPE. | spa |
dc.relation.references | Valderrama, J. O. (2003). The state of the cubic equations of state. In Industrial and Engineering Chemistry Research (Vol. 42, Issue 8, pp. 1603–1618). American Chemical Society. https://doi.org/10.1021/ie020447b | spa |
dc.relation.references | Wang, J., & Ferguson, A. L. (2016). Mesoscale Simulation of Asphaltene Aggregation. Journal of Physical Chemistry B, 120(32), 8016–8035. https://doi.org/10.1021/acs.jpcb.6b05925 | spa |
dc.relation.references | Wang, J., Gayatri, M., & Ferguson, A. L. (2018). Coarse-Grained Molecular Simulation and Nonlinear Manifold Learning of Archipelago Asphaltene Aggregation and Folding. Journal of Physical Chemistry B, 122(25), 6627–6647. https://doi.org/10.1021/acs.jpcb.8b01634 | spa |
dc.relation.references | Wang, J. X., Brower, K. R., & Buckley, J. S. (2000). Observation of Asphaltene Destabilization at Elevated Temperature and Pressure. SPE. | spa |
dc.relation.references | Wang, J. X., & Buckley, J. S. (2001). An Experimental Approach to Prediction of Asphaltene Flocculation. SPE. | spa |
dc.relation.references | Wang, S., & Civan, F. (2005). Modeling formation damage by asphaltene deposition during primary oil recovery. Journal of Energy Resources Technology, Transactions of the ASME, 127(4), 310–317. https://doi.org/10.1115/1.1924465 | spa |
dc.relation.references | Yonebayashi, H., Masuzawa, T., Dabbouk, C., & Urasaki, D. (2009). Reservoir Characterization and Simulation Conference. SPE/EAGE | spa |
dc.relation.references | Yonebayashi, H., Miyagawa, Y., Ikarashi, M., Watanabe, T., Maeda, H., & Yazawa, N. (2018). Determination of asphaltene-onset pressure using multiple techniques in parallel. SPE Production and Operations, 33(3), 486–497. https://doi.org/10.2118/181278-PA | spa |
dc.relation.references | Zendehboudi, S., Shafiei, A., Bahadori, A., James, L. A., Elkamel, A., & Lohi, A. (2014). Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools. Chemical Engineering Research and Design, 92(5), 857–875. https://doi.org/10.1016/j.cherd.2013.08.001 | spa |
dc.relation.references | Zhang, X. and P. N. and M. T. (2012). Modeling asphaltene phase behavior: comparison of methods for flow assurance studies. Energy & Fuels | spa |
dc.relation.references | Zhang, Y., Lin, Q., Raeini, A. Q., Onaka, Y., Iwama, H., Takabayashi, K., Blunt, M. J., & Bijeljic, B. (2022). Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123202 | spa |
dc.relation.references | Zidane, A., & Firoozabadi, A. (2022). Higher-order compositional simulation of asphaltene damage and removal in the wellbore by the CPA-EOS. Fuel, 307. https://doi.org/10.1016/j.fuel.2021.121776 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
dc.subject.lemb | Asfaltenos | |
dc.subject.lemb | Permeabilidad | |
dc.subject.lemb | Dinámica de fluidos | |
dc.subject.lemb | Industria energética | |
dc.subject.lemb | Termodinámica | |
dc.subject.lemb | Formación de daños (Ingeniería de petróleos) | |
dc.subject.lemb | Simulación por computadores | |
dc.subject.lemb | Pozos petroleros | |
dc.subject.lemb | Campos petrolíferos | |
dc.subject.proposal | Asfaltenos | spa |
dc.subject.proposal | Ecuación de estado | spa |
dc.subject.proposal | Cinética de agregación | spa |
dc.subject.proposal | Daño de formación | spa |
dc.subject.proposal | Simulación numérica | spa |
dc.subject.proposal | Asphaltenes | eng |
dc.subject.proposal | Equation of state | eng |
dc.subject.proposal | Aggregation kinetics | eng |
dc.subject.proposal | Formation damage | eng |
dc.subject.proposal | Numerical simulation | eng |
dc.title | Modelo integrado del comportamiento de asfaltenos en condiciones de flujo | |
dc.title.translated | Integrated model of asphaltene behavior in flow conditions | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152186356.2024.pdf
- Tamaño:
- 4.97 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: