Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)

dc.contributor.advisorZea, Sven
dc.contributor.advisorMiranda-Baeza, Anselmo
dc.contributor.authorOspina Salazar, Gloria Helena
dc.contributor.orcidOspina Salazar, Gloria Helena [0000-0001-7754-8304]spa
dc.contributor.researchgroupFauna Marina Colombiana: Biodiversidad y Usosspa
dc.date.accessioned2024-02-26T20:59:13Z
dc.date.available2024-02-26T20:59:13Z
dc.date.issued2023
dc.description.abstractSe evaluó el efecto del alimento vivo enriquecido (rotífero Brachionus plicatilis) con siete proporciones de proteínas y lípidos (P/L): 100/0, 90/10, 80/20, 70/30, 60/40, 50/50 y 40/60, durante el desarrollo larval de la jaiba azul Callinectes sapidus. El contenido de lípidos aumentó significativamente de 100/0 a 40/60 (7,48 a 11,47 g 100 g-1), al igual que la energía (21,88 a 23,16 kJ g-1), y aparentemente el contenido de proteínas no fue un factor limitante (63,93 a 67,50 g 100 g-1). Las dietas 50/50 y 40/60 evidenciaron las mejores respuestas en todas las variables estudiadas. Se presentaron hasta ocho estadios de zoea, y la metamorfosis a megalopa ocurrió desde la quinta muda, entre 49 a 57 días. La supervivencia fluctuó entre 6 y 34 %, y el ciclo de muda fue haciéndose significativamente más corto de 100/0 a 40/60. Mediante RNA-seq se realizó un análisis transcriptómico de novo entre el primer (inicial) y segundo estadio de zoea, para observar el efecto de dos dietas con resultados opuestos durante el primer ensayo (80/20 y 40/60). En las rutas metabólicas relacionadas con la digestión y metabolismo de los nutrientes se identificaron 110 genes sobre-regulados en 40/60 vs inicial y 47 en 80/20 vs inicial. Las zoeas alimentadas con el mayor contenido de lípidos (40/60) mejoraron los niveles de expresión de los genes relacionados con este nutriente, influenciando el metabolismo de proteínas, carbohidratos, y la expresión de genes del sistema digestivo y transporte y catabolismo celular. Este estudio establece los cimientos básicos de dietas formuladas de composición bioquímica conocida, como suministro a las larvas de C. sapidus con el fin de optimizar y parametrizar su cultivo (Texto tomado de la fuente)spa
dc.description.abstractDIET INFLUENCE ON LARVAL DEVELOPMENT OF BLUE CRAB CALLINECTES SAPIDUS (DECAPODA: BRACHYURA) The effect of enriched live food (rotifer Brachionus plicatilis) with seven proportions of proteins and lipids (P/L), was evaluated: 100/0, 90/10, 80/20, 70/30, 60/40, 50/50, and 40/60, during the larval development of the blue crab Callinectes sapidus. The lipid content increased significantly from 100/0 to 40/60 (7.48 to 11.47 g 100 g-1), as did the energy (21.88 to 23.16 kJ g-1), while apparently, the protein content was not a limiting factor (63.93 to 67.50 g 100 g-1). The 50/50 and 40/60 diets showed the best responses in all studied variables. Up to eight zoeal stages were present, and the metamorphosis to megalopa occurred from the fifth moult, between 49 to 57 days. Survival fluctuated between 6 % and 34 %, and the molt cycle became significantly shorter from 100/0 to 40/60. Using RNA-seq, a de novo transcriptomic analysis was performed between the first (initial) and second instars of zoea to observe the effect of the two diets with opposite results during the first trial (80/20 and 40/60). In the metabolic pathways related to digestion and metabolism of nutrients, 110 overregulated genes were identified in 40/60 vs. initial and 47 in 80/20 vs. initial. The zoeas fed with the highest lipid content (40/60) improved the expression levels of the genes related to this nutrient, influencing the metabolism of proteins, carbohydrates, and the expression of genes of the digestive system, and of transport and cellular catabolism. This study establishes the basic foundations of formulated diets of known biochemical composition as supply to C. sapidus larvae to optimize and parameterize their culture.eng
dc.description.curricularareaOtra. Sede Caribespa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ciencias - Biologíaspa
dc.description.researchareaAcuiculturaspa
dc.description.researchareaBiologia molecularspa
dc.description.researchareaNutriciónspa
dc.description.sponsorshipEste trabajo pudo realizarse gracias a la financiación del Ministerio de Ciencia, Tecnología e Innovación de Colombia —Minciencias, bajo el marco del proyecto: “Influencia de la dieta en la actividad enzimática digestiva y su expresión génica durante el desarrollo larvario del cangrejo azul Callinectes sapidus Rathburn, 1895 (Crustacea: Decapoda: Portunidae)” (Referencia: 110171451096, contrato: 149-2016). Y por la Universidad de Bogotá Jorge Tadeo Lozano, Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, bajo la financiación del proyecto: “Evaluación del potencial de cultivo de larvas de cangrejo azul Callinectes sapidus (Decapoda: Brachyura), en condiciones de laboratorio, fase I” (código: 746 -13-16). Así como por la financiación como becaria de la convocatoria 617 de Minciencias, para conformar bancos de elegibles para formacion de alto nivel para la ciencia, la tecnologia y la innovacion (semilleros y jovenes investigadores, doctorados nacionales, en el exterior e insercion laboral).spa
dc.format.extentXIV, 189 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85728
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribespa
dc.publisher.programCaribe - Caribe - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAaqillah-Amr, M.A., Hidir, A., Azra, M.N., Ahmad-Ideris, A.R., Abualreesh, M.H., Noordiyana, M.N., and Ikhwanuddin, M. 2021. Use of pelleted diets in commercially farmed decapods during juvenile stages: A Review. Animals, 11: 1971. https://doi.org/10.3390/ani11061761spa
dc.relation.referencesAbrunhosa, F., and Melo, M. 2008. Development and functional morphology of the foreguts of larvae and postlarvae of three crustacean decapods. Braz. J. Biol., 68: 221–228. https://doi.org/10.1590/S1519-69842008000100032spa
dc.relation.referencesAbu-Rezq, T., Al-Abdul-Elah, K., Duremdez, R., Al-Marzouk, A., James, C. M., Al- Gharabally, H., Al-Shimmari, J. 2002. Studies on the effect of using the rotifer, Brachionus plicatilis, treated with different nutritional enrichment media and antibiotics on the growth and survival of blue-fin sea bream, Sparidentex hasta (Valenciennes), larvae. Aquac. Res., 33: 117–128. https://doi.org/10.1046/j.1365- 2109.2002.00658.xspa
dc.relation.referencesAcosta, E., and Gómez-León, J. 2013. Influence of larval density at the initial seeding and the concentration of food on Argopecten nucleus larviculture (Ostreoida: Pectiniidae). Bol. Investig. Mar. Cost., 42 (1): 73–90. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/60spa
dc.relation.referencesAggio, J.F., Tieu, R., Wei, A., and Derby, C.D. 2012. Oesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food. J. Exp. Biol., 215: 1700–1710. https://doi.org/10.1523/ENEURO.0324- 17.2017Aspa
dc.relation.referencesAgh, N., and Sorgeloos, P. 2005. Handbook of protocols and guidelines for culture and enrichment of live food for use in larviculture. Urmia, Iran. 61 p.spa
dc.relation.referencesAguilar, R., Johnson, E.G., Hines, A.H., Kramer, M.A., and Goodison, M.R. 2008. Importance of blue crab life history for stock enhancement and spatial management of the fishery in Chesapeake Bay. Rev. Fish. Sci., 16: 117–124. https://doi.org/10.1080/10641260701681599spa
dc.relation.referencesAlagawany, M., Taha, A.E., Noreldin, A., El-Tarabily, K. A., and Abd El-Hack, M.E. 2021. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542 736841. https://doi.org/10.1016/j.aquaculture.2021.736841spa
dc.relation.referencesAlava, V.R., Quinitio, E.T., De Pedro, J.B., Orosco, Z.G.A., and Wille, M. 2007. Reproductive performance, lipids and fatty acids of mud crab Scylla serrata (Forsskål) fed dietary lipid levels. Aquac. Res., 38: 1442–1451. https://doi.org/10.1111/j.1365-2109.2007.01722.xspa
dc.relation.referencesAli, Y.B., Verger, R., and Abousalham, A. 2012. Lipases or esterases: Does it really matter? toward a new bio-physico-chemical classification. 31–51. In: Sandoval, G. (Ed.). Methods in Molecular Biology, Vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_2spa
dc.relation.referencesAllman, A.L., Williams, E.P., and Place, A.R. 2017. Growth and enzyme production in blue crabs (Callinectes sapidus) fed cellulose and chitin supplemented diets. J. Shellfish Res., 36: 283–291. https://doi.org/10.2983/035.036.0132spa
dc.relation.referencesAlmeida, E.V., Cardoso, C.S., Souza, M.S., and Bonecker, S.L.C. 2021. Swimming behavior of newly hatched larvae of six decapod species (Crustacea: Decapoda). Nauplius, https://doi.org/10.1590/2358-2936e2021023spa
dc.relation.referencesAmaro, M.A., and Fiscarelli, A.G. 2009. Length-weight relationship and condition factor of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Crustacea, Brachyura, Ucididae). Braz. Arch. Biol., 52: 397–406. https://doi.org/10.1590/S1516-89132009000200017spa
dc.relation.referencesAmsler, M.O., and George, R.Y. 1984. Seasonal variation in the biochemical composition of the embryos of Callinectes sapidus Rathbun. J. Crustac. Biol., 4: 546–553. https://doi.org/10.2307/1548068spa
dc.relation.referencesAnastasia, J.R., Morgan, S.G., and Fisher, N.S. 1998. Tagging crustacean larvae: Assimilation and retention of trace elements. Limnol. Oceanogr., 43: 362–368. https://doi.org/10.4319/lo.1998.43.2.0362spa
dc.relation.referencesAndrés, M., Estévez, A., Anger, K., and Rotllant, G. 2008. Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 357: 35–40. https://doi.org/10.1016/j.jembe.2007.12.015spa
dc.relation.referencesAndrés, M., Estévez, A., Hontoria, F., and Rotllant, G. 2010a. Differential utilization of biochemical components during larval development of the spider crab Maja brachydactyla (Decapoda: Majidae). Mar. Biol., 157: 2329–2340. http://hdl.handle.net/10261/43429spa
dc.relation.referencesAndrés, M., Estévez, A., and Rotllant, G. 2007. Growth, survival and biochemical composition of spider crab Maja brachydactyla (Balss, 1922) (Decapoda: Majidae) larvae reared under different stocking densities, prey: larva ratios and diets. Aquaculture, 273: 494–502. https://doi.org/10.1016/j.aquaculture.2007.10.026spa
dc.relation.referencesAndrés, M., Gisbert, E., Díaz, M., Moyano, F. J., Estévez, A., and Rotllant, G. 2010b. Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 389: 75–84. https://doi.org/10.1016/j.jembe.2010.03.015spa
dc.relation.referencesAnger, K. 1983. Moult cycle and morphogenesis in Hyas araneus larvae (decapoda, majidae), reared in the laboratory. Helgolander Meeresun., 36: 285–302. https://doi.org/10.1007/BF01983632spa
dc.relation.referencesAnger, K. 1987. The D0 threshold: a critical point in the larval development of decapod crustaceans. J. Exp. Mar. Biol. Ecol., 108: 15–30. https://doi.org/10.1016/0022-0981(87)90128-6spa
dc.relation.referencesAnger, K. 2001. The Biology of Decapod Crustacean Larvae: Crustacean Issues Volume 14. A.A. Balkema Publishers, Pensilvania. 419 p. https://doi.org/10.1016/S0022-0981(02)00381-7spa
dc.relation.referencesAnger, K. 2006. Contributions of larval biology to crustacean research: a review. Invertebr. Reprod. Dev., 49: 175–205. https://doi.org/10.1080/07924259.2006.9652207spa
dc.relation.referencesAnger, K., and Dawirs, R.R. 1981. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgolander Meeresun., 34: 287–311. https://doi.org/10.1007/BF02074124spa
dc.relation.referencesAnger, K., Dawirs, R.R., Anger, V., Goy, J.W., and Costlow, J.D. 1981. Starvation resistance in first stage zoeae of brachyuran crabs in relation to temperature. J. Crustac. Biol., 1: 518–525. https://doi.org/10.2307/1548128spa
dc.relation.referencesAnger, K., and Nair, K.K.C. 1979. Laboratory experiments on the larval development of Hyas araneus (Decapoda, Majidae). Helgoland. Wiss. Meer., 32: 36–54. https://doi.org/10.1007/BF02189891spa
dc.relation.referencesAnger, K., and Spindler, K.D. 1987. Energetics, moult cycle and ecdysteroid titers in spider crab (Hyas araneus) larvae starved after the D0 threshold. Mar. Biol., 94: 367–375. https://doi.org/10.1007/BF00428242spa
dc.relation.referencesAntipov, D., Korobeynikov, A., McLean, J.S., and Pevzner, P.A. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics, 32: 1009–1015. https://doi.org/10.1093/bioinformatics/btv688spa
dc.relation.referencesA.O.A.C. 1984. Official methods of Analysis of the Association of Official Agricultural Chemists. 13th ed. AOAC, Washington. 1038 p.spa
dc.relation.referencesA.O.A.C. 2000. Oficial methods of Analysis of the Asociation of Official Analytical Chemists. 17th ed. Sigma-Aldrich, Washington. 2200 p.spa
dc.relation.referencesA.O.A.C. 2005. Official methods of Analysis of the Asociation of Official Analytical Chemists. 18th ed. AOAC, Arlingtonspa
dc.relation.referencesArakane, Y., and Muthukrishnan, S. 2010. Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci., 67: 201–216. https://doi.org/10.1007/s00018-009-0161-9spa
dc.relation.referencesArguelles, E. 2021. Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Curr. Appl. Sci. Technol. 21: 65–77. https://li01.tci-thaijo.org/index.php/cast/article/view/245911spa
dc.relation.referencesArias-Moscoso, J.L., Cuevas-Acuña, D.A., Rivas-Vega, M.E., Martínez-Córdova, L.R., Osuna-Amarilas, P., and Miranda-Baeza, A. 2016. Características físicas y químicas de biofloc liofilizado producido en cultivos de camarón blanco con diferente inclusión de harina de pescado en la dieta. Lat. Am. J. Aquat. Res., 44: 760-768. http://dx.doi.org/10.3856/vol44-issue4-fulltext-12spa
dc.relation.referencesAsadpour-Ousalou, Y.A. 2014. Application of shark liver oil for Artemia enrichment and its comparison with imported Selco oil. Glob. Vet., 13: 1037–1042. http://www.idosi.org/gv/gv13(6)14/13.pdfspa
dc.relation.referencesAshraf, M.Y., Javed Iqbal, M., and Naqvi, S.A. 2011. Replacement of expensive pure nutritive media with low cost commercial fertilizers for mass culture of freshwater algae, Chlorella vulgaris Intensive fish culture. Int. J. Agric. Biol., 13: 484–490. https://www.researchgate.net/profile/Muhammad-Iqbal-147/publication/288717170_Replacement_of_Expensive_Pure_Nutritive_Media_with_Low_Cost_Commercial_Fertilizers_for_Mass_Culture_of_Freshwater_Algae_Chlorella_vulgaris/links/58f21746aca27289c2167107/Replacement-of-Expensive-Pure-Nutritive-Media-with-Low-Cost-Commercial-Fertilizers-for-Mass-Culture-of-Freshwater-Algae-Chlorella-vulgaris.pdfspa
dc.relation.referencesAustin, E.L., and Moore, P.A. 2022. Influence of amino acid concentrations on foraging and feeding in the rusty crayfish Faxonius rusticus (Girard, 1852) (Decapoda: Astacidea: Cambaridae), assayed in flow-through mesocosms. J. Crustac. Biol., 42: https://doi.org/10.1093/jcbiol/ruac034spa
dc.relation.referencesAzra, M.N., Chen, J.C., Hsu, T.H., Ikhwanuddin, M., and Abol-Munafi, A.B. 2019. Growth, molting duration and carapace hardness of blue swimming crab, Portunus pelagicus, instars at different water temperatures. Aquac. Rep., 15: 100226. https://doi.org/10.1016/j.aqrep.2019.100226spa
dc.relation.referencesBacab, F.J., Amador, L.E., Valdes, R., and Cabrera, P. 2002. Cultivo de larvas de la jaiba azul Callinectes sapidus en condiciones de laboratorio en la Isla del Carmen, Campeche, México. I Congreso Iberoamericano Virtual de Acuicultura - Civa, 122–128. https://www.researchgate.net/profile/Luis-Enrique-Amador-Del-Angel/publication/235256039_Cultivo_de_larvas_de_la_jaiba_azul_Callinectes_sapidus_en_condiciones_de_laboratorio_en_la_Isla_del_Carmen_Campeche_Mexico_Mexico/links/0deec52a8ee312ec10000000/Cultivo-de-larvas-de-la-jaiba-azul-Callinectes-sapidus-en-condiciones-de-laboratorio-en-la-Isla-del-Carmen-Campeche-Mexico-Mexico.pdfspa
dc.relation.referencesBallabio, A. 2016. The awesome lysosome. EMBO Mol. Med., 8: 73–76. https://pubmed.ncbi.nlm.nih.gov/26787653/spa
dc.relation.referencesBangHong, W., ZhiGang, Y., YongXu, C., Hang, Y., and XiaoZhen, Y. 2019. Gene cloning and expression analysis of pancreatic lipase in Chinese mitten crab (Eriocheir sinensis). Gen. Appl. Biol., 38: 2466–2475. https://www.cabdirect.org/cabdirect/abstract/20193351306spa
dc.relation.referencesBartlett, K., and Eaton, S. 2004. Mitochondrial β-oxidation. European J. Mol. Biol. Biochem., 271: 462–469. https://doi.org/10.1046/j.1432-1033.2003.03947.xspa
dc.relation.referencesBarrett, A.J. 1994. [1] Classification of peptidases. Meth. Enzymol., 244: 1–15. https://doi.org/10.1016/0076-6879(94)44003-4spa
dc.relation.referencesBarrett, A.J., Rawlings, N.D., and Woessner, J.F. 2004. Handbook of proteolytic enzymes. Elsevier Academic Press. Miami. 984 p.spa
dc.relation.referencesBasford, A.J., Makings, N., Mos, B., White, C.A., and Dworjanyn, S. 2021. Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus. Aquaculture, 534: 736331. https://doi.org/10.1016/j.aquaculture.2020.736331spa
dc.relation.referencesBaylon, J.C. 2009. Appropriate food type, feeding schedule and Artemia density for the zoea larvae of the mud crab, Scylla tranquebarica (Crustacea: Decapoda: Portunidae). Aquaculture, 288, 190–195. https://doi.org/10.1016/j.aquaculture.2008.11.028spa
dc.relation.referencesBaylon, J.C., Bravo, M.E.A., and Maningo, N.C. 2004. Ingestion of Brachionus plicatilis and Artemia salina nauplii by mud crab Scylla serrata larvae. Aquac. Res., 35: 62–70. https://doi.org/10.1111/j.1365-2109.2004.00987.xspa
dc.relation.referencesBegum, N., Mamun Siddiky, M.N.S., Ahmmed, S. 2021. Comparison of growth performance of live feed microalgae and rotifer (Brachionus sp.) under different feeding medium in outdoor culture condition. World J. Biol. Pharm. Health Sci. 5: 025–032. https://doi.org/10.30574/wjbphs.2021.5.2.0008spa
dc.relation.referencesBelgrad, B.A., and Griffen, B.D. 2016. The influence of diet composition on fitness of the blue crab, Callinectes sapidus. Plos One, 11: e0145481. https://pubmed.ncbi.nlm.nih.gov/26784581/spa
dc.relation.referencesBell, J.D., Leber, K.M., Blankenship, H.L., Loneragan, N.R., and Masuda, R. 2008. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Rev. Fish. Sci., 16: 1–9. https://doi.org/10.1080/10641260701776951spa
dc.relation.referencesBembe, S., Liang, D., and Chung, J.S. 2017. Optimal temperature and photoperiod for the spawning of blue crab, Callinectes sapidus, in captivity. Aquac. Res., 48: 5498–5505. https://doi.org/10.1111/are.13366spa
dc.relation.referencesBhavan, P.S., Devi, V.G., Shanti, R., Radhakrishnan, S., and Poongodi, R. 2010. Basic biochemical constituents and profiles of amino acids in the post larvae of Macrobrachium rosenbergii fed with spirulina and yeast enriched Artemia. J. Sci. Res., 2 539–539. https://api.semanticscholar.org/CorpusID:83716180spa
dc.relation.referencesBiesiot, P.M., and Capuzzo, J.M.D. 1990. Changes in digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J. Exp. Mar. Biol. Ecol., 136: 107–122. https://doi.org/10.1016/0022-0981(90)90190-Nspa
dc.relation.referencesBolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBonilla-Gómez, J.L., Chiappa-Carrara, X., Galindo, C., Cuzón, G., and Gaxiola, G. 2013. Effects of adaptation to laboratory conditions on growth, molting, and food consumption of juvenile Farfantepenaeus duorarum (Decapoda: Penaeidae). J. Crustac. Biol., 33: 191–197. https://doi.org/10.1163/1937240X-00002125spa
dc.relation.referencesBookhout, C., and Costlow, J.D. 1977. Larval development of Callinectes similis reared in the laboratory. Bull. Mar. Sci., 27: 704–728. https://www.ingentaconnect.com/content/umrsmas/bullmar/1977/00000027/00000004/art00006spa
dc.relation.referencesBown, D.P., and Gatehouse, J.A. 2004. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues. Eur. J. Biochem., 271: 2000–2011. https://doi.org/10.1111/j.1432-1033.2004.04113.xspa
dc.relation.referencesBrandão, M.C., Freire, A.S., and Burton, R.S. 2016. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Syst. Biodivers., 14: 288–302. https://doi.org/10.1080/14772000.2016.1140245spa
dc.relation.referencesBrito, R., Rosas, C., Chimal, M.E., Gaxiola, G. 2001. Effect of different diets on growth and digestive enzyme activity in Litopenaeus vannamei (Boone, 1931) early post-larvae. Aquac. Res., 32: 257-266. https://doi.org/10.1046/j.1365-2109.2001.00548.xspa
dc.relation.referencesBrooks, W.K. 1882. Handbook of invertebrate zoology for laboratories and seaside work. Bradlee Whidden, Boston. 392 p.spa
dc.relation.referencesBrucet, S., Boix, D., López-Flores, R., Badosa, A., and Quintana, X.D. 2005. Ontogenic changes of amino acid composition in planktonic crustacean species. Mar. Biol., 148: 131–139. https://doi.org/10.1007/s00227-005-0068-4spa
dc.relation.referencesBu, X., Wang, X., Lin, Z., Wang, C., Li, L., Liu, S., Shi, Q., Qin, J.G., and Chen, L. 2022. Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Br. J. Nutr., 127: 666–678. https://doi.org/10.1017/S0007114521001409spa
dc.relation.referencesCalado, R., Carvalho, L., Rodrigues, A.C.M., Abe, F., Patrício, S.A.L., Soares, A.M.V.M., and Gravato, C. 2022. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture, 546: 737391. https://doi.org/10.1016/j.aquaculture.2021.737391spa
dc.relation.referencesCantalapiedra, C.P., Hern̗andez-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol., 38: 5825–5829. https://doi.org/10.1093/molbev/msab293spa
dc.relation.referencesCaracappa, J.C., and Munroe, D.M. 2018. Morphological variability among broods of first-stage blue crab (Callinectes sapidus) zoeae. Biol. Bull., 235: 123–133. https://www.journals.uchicago.edu/doi/abs/10.1086/699922spa
dc.relation.referencesCardona, E., Lorgeoux, B., Geffroy, C., Richard, P., Saulnier, D., Gueguen, Y., Guillou, G., and Chim, L. 2015. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture, 448: 288–297. https://doi.org/10.1016/j.aquaculture.2015.05.035spa
dc.relation.referencesCarić, M., Sanko-Njire, J., and Skaramuca, B. 1993. Dietary effects of different feeds on the biochemical composition of the rotifer (Brachionus plicatilis Müller). Aquaculture, 110: 141–150. https://doi.org/10.1016/0044-8486(93)90268-4spa
dc.relation.referencesCarneiro, W.F., Castro, T.F.D., Orlando, T.M., Meurer, F., Paula, D.A.J., Virote, B.C.R., Vianna, A.R.C.B., and Murgas, L.D.S. 2020. Replacing fish meal by Chlorella sp. meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture, 528: 735612. https://doi.org/10.1016/j.aquaculture.2020.735612spa
dc.relation.referencesCarrillo-Farnés, O., Forrellat-Barrios, A., Guerrero-Galván, S., and Vega-Villasante, F. 2007. A review of digestive enzyme activity in penaeid shrimps. Crustaceana, 80: 257–275. https://www.jstor.org/stable/20107805spa
dc.relation.referencesCarter, C.G. 2015. Feeding in hatcheries. 317-348. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Oxford. 432 p. https://doi.org/10.1016/B978-0-08-100506-4.00013-1spa
dc.relation.referencesCarter, C.G., and Codabaccus, M.B. 2022. Feeding in hatcheries. 355–398. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Cambridge. 403 p.spa
dc.relation.referencesCarter, C.G., and Mente, E. 2014. Protein synthesis in crustaceans: A review focused on feeding and nutrition. Cent. Eur. J. Biol., 9: 1–10. https://doi.org/10.2478/s11535-013-0134-0spa
dc.relation.referencesCastejón, D., Rotllant, G., Alba-Tercedor, J., Font-i-Furnols, M., Ribes, E., Durfort, M., and Guerao, G. 2019. Morphology and ultrastructure of the midgut gland (“hepatopancreas”) during ontogeny in the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Majidae). Arthropod Struct. Dev., 49: 137–151. https://doi.org/10.1016/j.asd.2018.11.013spa
dc.relation.referencesCeccaldi, H.J. 1997. Anatomy and phisiology of the digestive system. 261–291. In: D´Abramo, L., Conklin, D., and Akiyama, D. (Eds.). Crustacean nutrition. The World Aquaculture Society, Louisiana. 587 p.spa
dc.relation.referencesCha, G.H., Wang, W.N., Peng, T., Huang, M.Z., and Liu, Y. 2015. A Rac1 GTPase is a critical factor in the immune response of shrimp (Litopenaeus vannamei) to Vibrio alginolyticus infection. Dev. Com. Immunol., 51: 226–237. https://doi.org/10.1016/j.dci.2015.04.004spa
dc.relation.referencesChakraborty, K., Chakraborty, R.D., Radhakrishnan, E.V., and Vijayan, K.K. 2010. Fatty acid profiles of spiny lobster (Panulirus homarus) phyllosoma fed enriched Artemia. Aquac. Res., 41: e393–e403. https://doi.org/10.1111/j.1365-2109.2009.02469.xspa
dc.relation.referencesChandhini, S., and Kumar, R. 2019. Transcriptomics in aquaculture: current status and applications. Rev. Aquac., 11: 1379–1397. https://doi.org/10.1111/raq.12298spa
dc.relation.referencesChang, E.S., and Mykles, D.L. 2011. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol., 172: 323–330. https://doi.org/10.1016/j.ygcen.2011.04.003spa
dc.relation.referencesChaoruangrit, L., Tapaneeyaworawong, P., Powtongsook, S., and Sanoamuang, L. 2018. Alternative microalgal diets for cultivation of the fairy shrimp Branchinella thailandensis (Branchiopoda: Anostraca). Aquacult. Int., 26: 37–47. https://doi.org/10.1007/s10499-017-0191-5spa
dc.relation.referencesChen, B., Zheng, J., Chen, C., Wu, K., Lin, F., Ning, L., Rong, H., Chen, C., Xiao, F., Zhang, H., and Wen, X. 2023. Differences in lipid accumulation and mobilization in the hepatopancreas and ovary of female mud crab (Scylla paramamosain, Estampador, 1949) during ovarian development. Aquaculture, 564: 739046. https://doi.org/10.1016/j.aquaculture.2022.739046spa
dc.relation.referencesChen, L., and Yang, G. 2014. PPARs integrate the mammalian clock and energy metabolism. PPAR Res., 2014: 653017. https://doi.org/10.1155/2014/653017spa
dc.relation.referencesChi, Y., Li, F., Sun, Y., Wen, R., and Li, S. 2013. Expression and function analysis of Rac1 homolog in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol., 35: 927–932. https://doi.org/10.1016/j.fsi.2013.07.006spa
dc.relation.referencesChiu, T.T., Jensen, T.E., Sylow, L., Richter, E.A., and Klip, A. 2011. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell. Signal., 23: 1546–1554. https://doi.org/10.1016/j.cellsig.2011.05.022spa
dc.relation.referencesChristiansen, M.E., and Costlow, J.D. 1982. Ultrastructural study of the exoskeleton of the estuarine crab Rhithropanopeus harrisii: Effect of the insect growth regulator Dimilin® (diflubenzuron) on the formation of the larval cuticle. Mar. Biol., 66: 217–226. https://doi.org/10.1007/BF00397025spa
dc.relation.referencesChung, J.S. 2010. Hemolymph ecdysteroids during the last three molt cycles of the blue crab, Callinectes sapidus: quantitative and qualitative analyses and regulation. Arch. Insect. Biochem. Physiol., 73: 1–13. https://doi.org/10.1002/arch.20327Cspa
dc.relation.referencesChung, J.S. 2020. Role of hepatopancreas trehalose-6-phosphate synthase in carbohydrate levels of the blue crab Callinectes sapidus in feeding and emersion. J. Shellfish Res., 39: 449–459. https://doi.org/10.2983/035.039.0226spa
dc.relation.referencesChurchill, E.R. 1942. The zoeal stages of the blue crab, Callinectes sapidus Rathbun. Ches. Biol. Lab. Pub. 49. 26 p.spa
dc.relation.referencesCock, P.J.A., Grüning, B.A., Paszkiewicz, K., and Pritchard, L. 2013. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ, e167. https://doi.org/10.7717/peerj.167spa
dc.relation.referencesCodabaccus, B.M., Carter, C.G., Fitzgibbon, Q.P., Trotter, A.J., and Smith, G.G. 2020. Growth and biochemical composition of hatchery reared Scyllaridae lobster (Thenus australiensis) larval stages, nisto and juvenile first stage. Aquaculture, 524: 735262. https://doi.org/10.1016/j.aquaculture.2020.735262spa
dc.relation.referencesCôrtes, G., and Tsuzuki, M.Y. 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa 1997) larvae. Aquac. Res., 43: 831–834. https://doi.org/10.1111/j.1365-2109.2011.02896.xspa
dc.relation.referencesCostlow, J.D. 1965. Variability in larval stages of the blue crab, Callinectes sapidus. Biol. Bull., 128: 58–66. https://www.journals.uchicago.edu/doi/abs/10.2307/1539389?journalCode=bblspa
dc.relation.referencesCostlow, J.D. 1967. The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab Callinectes sapidus. Elgoland. Wiss. Meer., 15: 84–97. https://doi.org/10.1007/BF01618611spa
dc.relation.referencesCostlow, J.D., and Bookhout, C.G. 1959a. Preliminary note on the complete larval development of Callinectes sapidus Rathbun under laboratory conditions. Limnol. Oceanogr. 4: 222–223. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.1959.4.2.0222spa
dc.relation.referencesCostlow, J.D., and Bookhout, C.G. 1959b. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116: 373–396. https://www.journals.uchicago.edu/doi/abs/10.2307/1538947?journalCode=bblspa
dc.relation.referencesCruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1spa
dc.relation.referencesCruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1spa
dc.relation.referencesda Silva, U.A.T., Cottens, K., Ventura, R., Boeger, W. A., and Ostrensky, A. 2012. Different pathways in the larval development of the crab Ucides cordatus (Decapoda, Ocypodidae) and their relation with high mortality rates by the end of massive larvicultures. Pesquisa Vet. Brasil., 32: 284–288. https://doi.org/10.1590/S0100-736X2012000400002spa
dc.relation.referencesDai, T., Zhang, X., Li, M., Tao, X., Jin, M., Sun, P., Zhou, Q., and Jiao, L. 2022. Dietary vitamin K3 activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct., 13: 6362–6372. https://doi.org/10.1039/D2FO00865Cspa
dc.relation.referencesDai, Y., Wang, T.T., Wang, Y.F., Gong, X.J., and Yue, C.F. 2009. Activities of digestive enzymes during embryonic development in the crayfish Procambarus clarkii (Decapoda). Aquac. Res., 40: 1394–1399. https://doi.org/10.1111/j.1365-2109.2009.02237.xspa
dc.relation.referencesDaly, B.J., Eckert, G.L., and Long, W.C. 2020. Moulding the ideal crab: implications of phenotypic plasticity for crustacean stock enhancement. ICES J. Mar. Sci., 78: 421-434. https://doi.org/10.1093/icesjms/fsaa043spa
dc.relation.referencesDan, S., and Koiso, M. 2008. Effect of microalgal addition on stability of n-3HUFA contents in enriched rotifer Brachionus plicatilis in large tank for seed production. Aquac. Sci., 56: 603-604. https://doi.org/10.11233/aquaculturesci.56.603spa
dc.relation.referencesDan, S., and Hamasaki, K. 2011. Effects of salinity and dietary n-3 highly unsaturated fatty acids on the survival, development, and morphogenesis of the larvae of laboratory-reared mud crab Scylla serrata (Decapoda, Portunidae). Aquac. Int., 19: 323–338. https://doi.org/10.1007/s10499-010-9374-zspa
dc.relation.referencesDan, S., Ashidate, M., and Hamasaki, K. 2015. Improved method for culturing the swimming crab Portunus trituberculatus larvae to prevent mass mortality during seed production. Fish. Sci., 82: 113–126. https://doi.org/10.1007/s12562-015-0935-yspa
dc.relation.referencesDavis, J.A. 2003. Development of hatchery techniques for the mud crab Scylla serrata (Forskǻl) in South Africa. Tesis Ph.D. in Applied Biological Sciences, Universiteit Gent, Bélgica. 165 p. https://biblio.ugent.be/publication/521739/file/1875443.pdf#page=101spa
dc.relation.referencesDawirs, R.R. 1984. Influence of starvation on larval development of Carcinus maenas L. (Decapoda : Portunidae). J. Exp. Mar. Biol. Ecol., 80: 47–66. https://doi.org/10.1016/0022-0981(84)90093-5spa
dc.relation.referencesDeleo, D.M., Pérez-Moreno, J.L., Vázquez-Miranda, H., and Bracken-Grissom, H.D. 2018. RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes. Biol. Methods Protoc., 3: bpy012. https://doi.org/10.1093/biomethods/bpy012spa
dc.relation.referencesDe Silva, S.S., and Anderson, T.A. 1994. Fish Nutrition in Aquaculture. Aquaculture Series. Chapman y Hall, London. 320 p.spa
dc.relation.referencesDe Walsche, C., Mertens, J., and Dumont, H.J. 1991. Observations on temperature optimum, cyst production, and survival of Streptocephalus proboscideus (Frauenfeld, 1873) (Crustacea: Anostraca), fed different diets. Hydrobiologia, 212: 21–26. https://doi.org/10.1007/BF00025983spa
dc.relation.referencesDendinger, J.E. 1987. Digestive proteases in the midgut gland of the atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 88: 503–506. https://doi.org/10.1016/0305-0491(87)90334-8spa
dc.relation.referencesDendinger, J.E., and Alterman, A. 1983. Mechanical properties in relation to chemical constituents of postmolt cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. Part A: Phys., 75: 421–424. http://biomimetic.pbworks.com/f/MECHANICAL+PROPERTIES+IN+RELATION+TODendinger.pdfspa
dc.relation.referencesDendinger, J.E., and O’Connor, K.L. 1990. Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 95: 525–530. https://doi.org/10.1016/0305-0491(90)90014-Kspa
dc.relation.referencesDhert, P., King, N., and O’Brien, E. 2014. Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture, 431: 59–64. https://doi.org/10.1016/j.aquaculture.2014.04.021spa
dc.relation.referencesDhert, P., Rombaut, G., Suantika, G., and Sorgeloos, P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200: 129–146. https://doi.org/10.1016/S0044-8486(01)00697-4spa
dc.relation.referencesDíaz-Tenorio, L.M., García-Carreño, F.L., and Navarrete del Toro, M.A. 2006. Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebr. Biol., 125: 125–135. https://doi.org/10.1111/j.1744-7410.2006.00047.xspa
dc.relation.referencesDomingues, P.M., Turk, P.E., Andrade, J.P., and Lee, P.G. 2001. Effects of enriched Artemia nauplii on production, survival and growth of the mysid shrimp Mysidopsis almyra Bowman 1964 (Crustacea: Mysidacea). Aquac. Res., 32: 599–603. https://doi.org/10.1046/j.1365-2109.2001.00608.xDspa
dc.relation.referencesDonnelly, J.M. 2009. Blue crab farming on Maryland’s eastern shore. Doctoral Thesis. University of Maryland, College Park, Maryland. 102 p. https://drum.lib.umd.edu/handle/1903/10054spa
dc.relation.referencesDuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–356. https://doi.org/10.1021/ac60111a017spa
dc.relation.referencesEngel, D. W., and Brouwer, M. 1993. Crustaceans as models for metal metabolism: I. Effects of the molt cycle on Blue Crab Metal Metabolism and MetallothioneinMar. Environ. Res., 35, 1–5. https://doi.org/10.1016/0141-1136(93)90004-Jspa
dc.relation.referencesEpelbaum, A., and Borisov, R. 2006. Feeding behaviour and functional morphology of the feeding appendages of red king crab Paralithodes camtschaticus larvae. Mar. Biol. Res., 2: 77–88. https://doi.org/10.1080/17451000600672529spa
dc.relation.referencesEpifanio, C.E. 2019. Early life history of the blue crab Callinectes sapidus: A Review. J. Shellfish Res., 38: 1–22. https://doi.org/10.2983/035.038.0101spa
dc.relation.referencesEstudillo-del Castillo, C., Gapasin, R.S., and Leaño, E.M. 2009. Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture, 293: 57–61. doi:10.1016/j.aquaculture.2009.04.008. https://doi.org/10.1016/j.aquaculture.2009.04.008spa
dc.relation.referencesFactor, J.R. 1982. Development and metamorphosis of the feeding apparatus of the stone crab, Menippe mercenaria (brachyura, xanthidae). J. Morphol., 172: 299–312. https://doi.org/10.1002/jmor.1051720305spa
dc.relation.referencesFang, F., Yuan, Y., Jin, M., Shi, B., Zhu, T., Luo, J., Lu, J., Wang, X., Jiao, L., and Zhou, Q. 2021. Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus. Aquaculture, 543: 737016. https://doi.org/10.1016/j.aquaculture.2021.737016spa
dc.relation.referencesFan, L., Wang, A., Miao, Y., Liao, S., Ye, C., and Lin, Q. 2016. Comparative proteomic identification of the hepatopancreas response to cold stress in white shrimp, Litopenaeus vannamei. Aquaculture, 454: 27–34. https://doi.org/10.1016/j.aquaculture.2015.10.016spa
dc.relation.referencesFan, L., Wang, L., and Wang, Z. 2019. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. Fish Shellfish Immunol., 92: 438–449. https://doi.org/10.1016/j.fsi.2019.06.037spa
dc.relation.referencesFantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E., and Fogel, M.L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120: 416–426. https://doi.org/10.1007/s004420050874spa
dc.relation.referencesFAO 2020. FAO Yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/ FAO anuario. Estadísticas de pesca y acuicultura 2018. Food and Agriculture Organization of the United Nations, Roma. 110 p. https://www.fao.org/fishery/en/publications/269665spa
dc.relation.referencesFassatoui, C., Hatira, S., and Romdhane, M.S. 2021. Size-weight relationships and condition factor of the invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae) from northern Tunisia: a preliminary investigation. J. Crustac. Biol., 41: ruab039. https://doi.org/10.1093/jcbiol/ruab039spa
dc.relation.referencesFelgenhauer, A., Thistle, B., and Watling, L. 1989. Functional Morphology of Feeding and Grooming in Crustacea. Crustacean Issues 6. A.A. Balkema, Netherlands. 224 p.spa
dc.relation.referencesFerreira, M., Cortina-Burgueño, Á., Freire, I., and Otero, A. 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture, 491: 351–357. https://doi.org/10.1016/j.aquaculture.2018.03.024 .spa
dc.relation.referencesFiore, D.R., and Tlusty, M.F. 2005. Use of commercial Artemia replacement diets in culturing larval American lobsters (Homarus americanus). Aquaculture, 243: 291–303. https://doi.org/10.1016/j.aquaculture.2004.10.009spa
dc.relation.referencesFischer, S., Thatje, S., and Brey, T. 2009. Early egg traits in Cancer setosus (Decapoda, Brachyura): effects of temperature and female size. Mar. Ecol. Prog. Ser., 377: 193–202. https://doi.org/10.3354/meps07845spa
dc.relation.referencesFlowers, E.M., Johnson, A.F., Aguilar, R., and Schott, E.J. 2018. Prevalence of the pathogenic crustacean virus Callinectes sapidus reovirus 1 near flow-through blue crab aquaculture in Chesapeake Bay, USA. Dis. Aquat. Organ., 129: 135–144. https://doi.org/10.3354/dao03232spa
dc.relation.referencesForbes, M.S. 2012. Cell Structure. 67–83. In: Sperelakis, N. (Ed.). Cell Physiology Source Book: Essentials of Membrane Biophysics, Academic Press, Canada. 1235 p.spa
dc.relation.referencesFrancis, R., Bryan, M., Aguilar, R., Watkins, E., Lindquist, M., and Hemingway, A. 2021. The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation. Can. J. Fish. Aquat. Sci., 78: 371–385. https://doi.org/10.1139/cjfas-2020-0112spa
dc.relation.referencesFrank, J.R., Sulkin, S.D., and Morgan, R.P. 1975. Biochemical changes during larval development of the xanthid crab Rhithropanopeus harrisii. I. Protein, total lipid, alkaline phosphatase, and glutamic oxaloacetic transaminase. Mar. Biol., 32: 105–111. https://doi.org/10.1007/BF00388503spa
dc.relation.referencesFrolova, A., Muffett, K., and Miglietta, M.P. 2022. Multiple occurrences of Callinectes sapidus larvae on Gulf of Mexico Chrysaora chesapeakei. J. Plankton Res., 44: 966-969. https://doi.org/10.1093/plankt/fbac053spa
dc.relation.referencesFrolov, A.V., Pankov, S.L., Geradze, K.N., Pankova, S.A., and Spektorova, L.V. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture, 97: 181-202. https://doi.org/10.1016/0044-8486(91)90264-8spa
dc.relation.referencesFuzita, F.J., Pinkse, M.W.H., Patane, J.S.L., Juliano, M.A., Verhaert, P., and Lopes, A.R. 2015. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: Insights into function and evolution of digestion in an ancient arthropod. Plos One 10: e0123841. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123841spa
dc.relation.referencesFu, Z., Yang, R., Zhou, S., Ma, Z., and Zhang, T. 2021. Effects of rotifers enriched with different enhancement products on larval performance and jaw deformity of golden Pompano larvae Trachinotus ovatus (Linnaeus, 1758). Front. Mar. Sci., 7. https://doi.org/10.3389/fmars.2020.626071spa
dc.relation.referencesGamboa-Delgado, J., Morales-Navarro, Y.I., Nieto-López, M.G., Villarreal-Cavazos, D.A., and Cruz-Suárez, L.E. 2019. Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (Arthrospira platensis) and Nannochloropsis oculata in shrimp Litopenaeus vannamei fed compound diets. J. Appl. Phycol., 31: 2379–2389. https://doi.org/10.1007/s10811-019-1732-2spa
dc.relation.referencesGao, Q., Liu, B., Shan, F., Gu, Z., Song, C., Sun, C., and Zhou, Q. 2022. Effects of oxidized fish oil on digestive enzyme activity and antioxidant system in Macrobrachium rosenbergii post-larvae. Aquac. Rep., 23: 101062. https://doi.org/10.1016/j.aqrep.2022.101062spa
dc.relation.referencesGarcia, A.S., Parrish, C.C., and Brown, J.A. 2008. Use of enriched rotifers and Artemia during larviculture of Atlantic cod (Gadus morhua Linnaeus, 1758): Effects on early growth, survival and lipid composition. Aquac. Res., 39: 406–419. https://doi.org/10.1111/j.1365-2109.2007.01816.xspa
dc.relation.referencesGebauer, P., Giménez, L., Hinojosa, I.A., and Paschke, K. 2020. Settlement and metamorphosis in barnacles and decapods. 223–253. In: Anger, K., Harzsch, S., and Thiel, M.(Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 836 p.spa
dc.relation.referencesGebauer, P., Paschke, K., and Anger, K. 1999. Costs of delayed metamorphosis: reduced growth and survival in early juveniles of an estuarine grapsid crab, Chasmagnathus granulata. J. Exp. Mar. Biol. Ecol., 238: 271–281. https://doi.org/10.1016/S0022-0981(98)00219-6spa
dc.relation.referencesGebauer, P., Paschke, K., and Anger, K. 2003. Delayed metamorphosis in decapod crustaceans: evidence and consequences. Rev. Chil. Hist. Nat., 76: 169–175. https://epic.awi.de/id/eprint/9112/spa
dc.relation.referencesGenodepa, J., Zeng, C., and Southgate, P.C. 2004. Preliminary assessment of a microbound diet as an Artemia replacement for mud crab, Scylla serrata, megalopa. Aquaculture, 236: 497-509. https://doi.org/10.1016/j.aquaculture.2004.02.007spa
dc.relation.referencesGenodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022a. Ontogenetic variation in digestive enzyme activities within embryos and newly-hatched larvae of the tropical spiny lobster, Panulirus ornatus. Aquaculture, 548: 737595. https://doi.org/10.1016/j.aquaculture.2021.737595spa
dc.relation.referencesGenodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022b. Responses of digestive enzyme profiles to various scenarios of food availability in newly-hatched Stage I phyllosoma larvae of the tropical spiny lobster Panulirus ornatus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 261: 110751. https://doi.org/10.1016/j.cbpb.2022.110751spa
dc.relation.referencesGiménez, L. 2003. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata. Helgol. Mar. Res., 56: 265–273. https://doi.org/10.1007/s10152-002-0127-xspa
dc.relation.referencesGiménez, L. 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integr. Comp. Biol., 46: 615–622. https://doi.org/10.1093/icb/icl010spa
dc.relation.referencesGiménez, L. 2010. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology, 91: 1401–1413. https://doi.org/10.1890/09-1028.1spa
dc.relation.referencesGimenez, L., and Anger, K. 2005. Effects of temporary food limitation on survival and development of brachyuran crab larvae. J. Plankton. Res., 27: 485–494. https://doi.org/10.1093/plankt/fbi024spa
dc.relation.referencesGiménez, L., and Anger, K. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. J. Exp. Mar. Biol. Ecol., 260: 241–257. https://doi.org/10.1016/S0022-0981(01)00258-1spa
dc.relation.referencesGoh, J., Tan, L., Law, J., Khaw, K., Zengin, G., Chan, K., Letchumanan, V., Lee, L., and Goh, B. 2023. Probiotics: comprehensive exploration of the growth promotion mechanisms in shrimps. Prog. Microbes Mol. Biol., 6 (1): a0000324. https://doi.org/10.36877/pmmb.a0000324spa
dc.relation.referencesGoncalves, R., Gesto, M., Rodríguez, C., Reis, D.B., Pérez, J.A., and Lund, I. 2022. Ontogenetic changes in digestive enzyme activity and biochemical indices of larval and postlarval European lobster (Homarus gammarus, L). Mar. Biol., 169: 53. https://doi.org/10.1007/s00227-022-04034-xspa
dc.relation.referencesGoptar, I.A., Shagin, D.A., Shagina, I.A., Mudrik, E.S., Smirnova, Y.A., Zhuzhikov, D.P., Belozersky, M.A., Dunaevsky, Y.E., Oppert, B., Filippova, I.Y., and Elpidina, E.N. 2013. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol., 43: https://doi.org/10.1016/j.ibmb.2013.02.009spa
dc.relation.referencesGore, R.H. 1985. Molting and growth in decapod larvae. 1–66. In: Wenner, A.M. (Ed.). Crustacean Issues 2: Larval Growth. A.A. Balkema Publishers, Rotterdam. 252 p.spa
dc.relation.referencesGuarizo, M., Costa, T.M., and Marochi, M.Z. 2020. Effect of diet during larval development of Menippe nodifrons Stimpson, 1859 and Callinectes danae Smith, 1869. Aquac. Int., 28: 1969–1980. https://doi.org/10.1007/s10499-020-00569-2spa
dc.relation.referencesGuillaume, J. 1997. Protein and aminoacids. 26-50. In: D'Abramo, R., Douglas, E., Conklin, D., and Akiyama, M. (Eds.). Crustacean Nutrition. World Aquaculture Society, Bator Rouge. 587 p.spa
dc.relation.referencesGulf Coast Research Laboratory. 2021. The University of Souther Mississipi. Blue Crab Aquaculture. https://gcrl.usm.edu/research/blue.crab.aquaculture.phpspa
dc.relation.referencesGul, I., Abbas, M.N., Kausar, S., Luo, J., Gao, X., Mu, Y., Fan, W., and Cui, H. 2023. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. Fish Shellfish Immunol., 139: 108852. https://doi.org/10.1016/j.fsi.2023.108852spa
dc.relation.referencesGuo, H., Tang, D., Shi, X., Wu, Q., Liu, R., Tang, B., and Wang, Z. 2019a. Comparative transcriptome analysis reveals the expression and characterization of digestive enzyme genes in the hepatopancreas of the Chinese mitten crab. Fish. Sci., 85: 979–989. https://doi.org/10.1080/07420528.2023.2189481spa
dc.relation.referencesGuo, Q., Chen, Z., Santhanam, R. K., Xu, L., Gao, X., Ma, Q., Xue, Z., and Chen, H. 2019b. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int. J. Biol. Macromol., 121: 981–988. https://doi.org/10.1016/j.ijbiomac.2018.10.100spa
dc.relation.referencesGu, X., Fu, H., Sun, S., Qiao, H., Zhang, W., Jiang, S., Xiong, Y., Jin, S., Gong, Y., and Wu, Y. 2017. Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. Comp. Biochem. Physiol. Part D Genomics Proteomics, 23: 39–48. https://doi.org/10.1016/j.cbd.2017.06.001spa
dc.relation.referencesHaas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T.,Dewey, C.N., Henschel, R.,,Leduc, R.D., Friedman, N., and Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8: 1494– https://doi.org/10.1038/nprot.2013.084spa
dc.relation.referencesHaché, R., and Plante, S. 2011. The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture, 311: 201–208. https://doi.org/10.1016/j.aquaculture.2010.11.034spa
dc.relation.referencesHamasaki, K., Suprayudi, M.A., and Takeuchi, T. 2002. Effects of dietary N-3 HUFA on larval morphogenesis and metamorphosis to megalops in the seed production of the mud crab, Scylla serrata (Brachyura: Portunidae). Aquac. Sci., 50: 333–340. https://doi.org/10.11233/aquaculturesci1953.50.333spa
dc.relation.referencesHammer, H.S., Bishop, C.D., and Watts, S.A. 2000. Activities of three digestive enzymes during development in the crayfish Procambarus clarkii (Decapoda). J. Crustac. Biol., 20: 614–620. https://doi.org/10.1163/20021975-99990084spa
dc.relation.referencesHamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450: 136–142. https://doi.org/10.1016/j.aquaculture.2015.07.016spa
dc.relation.referencesHamre, K., Srivastava, A., Ronnestad, I., Mangor-Jensen, A., and Stoss, J. 2008. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac. Nutr., 14: 51–60. https://doi.org/10.1111/j.1365-2095.2007.00504.xspa
dc.relation.referencesHan, W., Sun, Y., Liu, J., Zhang, Y., Lu, Z., and Cheng, Y. 2021. Effect of different feeding modes on the growth, biochemical composition, and living environment of the juvenile Chinese mitten crab Eriocheir sinensis. Aquaculture, 541: 736687. https://doi.org/10.1016/j.aquaculture.2021.736687spa
dc.relation.referencesHarms, J., Anger, K., Klaus, S., and Seeger, B. 1991. Nutritional effects on ingestion rate, digestive enzyme activity, growth, and biochemical composition of Hyas araneus L. (Decapoda: Majidae) larvae. J. Exp. Mar. Biol. Ecol.,145: 233–265. https://doi.org/10.1016/0022-0981(91)90178-Yspa
dc.relation.referencesHarms, J., Meyer-Harms, B., Dawirs, R.R., and Anger, K. 1994. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser., 108: 107–118. https://www.int-res.com/articles/meps/108/m108p107.pdfspa
dc.relation.referencesHaunerland, N.H. 1997. Transport and utilization of lipids in insect flight muscles. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 117: 475–482. https://doi.org/10.1016/S0305-0491(97)00185-5spa
dc.relation.referencesHewitt, D.R. 1992. Response of protein turnover in the brown tiger prawn Penaeus esculentus to variation in dietary protein content. Comp. Biochem. Physiol. Part A Physiol., 103: 183–187. https://doi.org/10.1016/0300-9629(92)90261-Nspa
dc.relation.referencesHill, J., Fowler, D.L., and Van Den Avyle, M.J. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic) - blue crab. Biological Report - US Fish & Wildlife Service 82, 18 p. https://apps.dtic.mil/sti/pdfs/ADA210181.pdfspa
dc.relation.referencesHirche, H.J., and Anger, K. 1987. Digestive enzyme activities during larval development of Hyas araneus (Decapoda, Majidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 87: 297–302. https://epic.awi.de/id/eprint/1387/spa
dc.relation.referencesHoeger, U., and Schenk, S. 2023. Crustacean yolk proteins: structure, function and diversity. 38-69. In: Zupo, V. (Ed.). Crustaceans: Endocrinology, Biology and Aquaculture. CRS Press Taylor & Francis Group, Boca Ratón. 308 p.spa
dc.relation.referencesHolme, M.H., Southgate, P.C., and Zeng, C. 2007. Survival, development and growth response of mud crab, Scylla serrata, megalopae fed semi-purified diets containing various fish oil:corn oil ratios. Aquaculture, 269: 427–435. https://doi.org/10.1016/j.aquaculture.2007.05.024spa
dc.relation.referencesHolme, M.H., Zeng, C., and Southgate, P. 2009. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture, 286: 164–175. https://doi.org/10.1016/j.aquaculture.2008.09.021spa
dc.relation.referencesHopkins, S.H. 1944. the external morphology of the third and fourth zoeal stages of the blue crab, Callinectes sapidus Rathbun. Biol. Bull., 87: 145–152. https://www.journals.uchicago.edu/doi/abs/10.2307/1538344?journalCode=bblspa
dc.relation.referencesHorst, M.N. 1990. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. J. Exp. Zool., 256: 242–254. https://doi.org/10.1002/jez.1402560303spa
dc.relation.referencesHosain, M.E., Amin, S.M.N., Kamarudin, M.S., Arshad, A., Karim, M., and Romano, N. 2021. Effect of salinity on growth, survival, and proximate composition of Macrobrachium rosenbergii post larvae as well as zooplankton composition reared in a maize starch based biofloc system. Aquaculture, 533: 736235. https://doi.org/10.1016/j.aquaculture.2020.736235spa
dc.relation.referencesHuang, Y., Wang, G., Liu, J., Zhang, L., Huang, S., Wang, Y., Yang, Z., and Ge, H. 2021. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene, 787: 145642. https://doi.org/10.1016/j.gene.2021.145642spa
dc.relation.referencesHu, K.J., and Leung, P.C. 2007. Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 146: 69–80. https://doi.org/10.1016/j.cbpb.2006.09.010spa
dc.relation.referencesHu, S., Wang, J., Han, T., Li, X., Jiang, Y., and Wang, C. 2017. Effects of dietary DHA/EPA ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus). Aquac. Res., 48: 1291–1301. https://doi.org/10.1111/are.12971spa
dc.relation.referencesHuang, X., and Madan, A. 1999. CAP3: A DNA Sequence Assembly Program. Genome Res., 9: 868–877. https://genome.cshlp.org/content/9/9/868.shortspa
dc.relation.referencesInbakandan, D. 2020. Transcriptomics in Aquaculture. 1919–1936. In: Se-Kwon, K. (ed.). Encyclopedia of Marine Biotechnology, Volume III. John Wiley & Sons, New Jersey. 649 p. https://doi.org/10.1002/9781119143802.ch84spa
dc.relation.referencesINVE-Aquaculture TC-SPRESSO-EN-0212 Technical card S.Presso: complete liquid enrichment for Artemia and rotifers.spa
dc.relation.referencesInvitrogen 2016. Trizol reagent invitrogen user guide. Catalog Numbers 15596026 and 15596018 Doc. Part No. 15596026.PPS Pub. No. MAN0001271 Rev. A.0. 4 p.spa
dc.relation.referencesInvitrogen 2019. Quant-iT RiboGreeen RNA reagent and kit user guide. Catalog Numbers R11490, R11491, T11493 Pub. No. MAN0002073 Rev. A.0. 6 p.spa
dc.relation.referencesJahn, C.E., Charkowski, A.O., and Willis, D.K. 2008. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J. Microbiol. Methods, 75: 318–324. https://doi.org/10.1016/j.mimet.2008.07.004spa
dc.relation.referencesJeffs, A., and O´Rorke, R. 2020. Feeding and nutrition of crustacean larvae. 309–331. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). The Natural History of the Crustacea: Developmental Biology and Larval Ecology, Volume 7. Oxford University Press, New York. 437 p.spa
dc.relation.referencesJeong, C.B., Kim, B.M., Lee, J.S., and Rhee, J.S. 2014. Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genom., 15: 1–15. https://doi.org/10.1186/1471-2164-15-651spa
dc.relation.referencesJiang, K., Zhang, F., Zhang, D., Tao, Q., Zhang, Y., Pi, Y., Qiao, Z., and Ma, L. 2011. Identification of a trypsin gene from Scylla paramamosain and its expression profiling during larval development. Afr. J. Agric. Res., 6: 6613–6621. https://doi.org/10.5897/AJAR11.784spa
dc.relation.referencesJiang, S., Xiong, Y., Zhang, W., Zhu, J., Cheng, D., Gong, Y., Wu, Y., Qiao, H., and Fu, H. 2022. A Novel legumain-like protease in Macrobrachium nipponense: Identification, characterization, and function analysis in ovary maturation. Front. Endocrinol., 13: 858726. https://doi.org/10.3389/fendo.2022.858726spa
dc.relation.referencesJiang, X., Yang, Y., Cheng, Y., and Wu, X. 2021. Feeding history affects the crabseed quality and subsequent culture performance of juvenile Chinese mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Brachyura, Varunidae). Crustaceana, 94: 97–114. https://brill.com/view/journals/cr/94/1/article-p97_6.xmlspa
dc.relation.referencesJimenez-Gutierrez, S., Cadena-Caballero, C.E., Barrios-Hernandez, C., Perez-Gonzalez, R., Martinez-Perez, F., and Jimenez-Gutierrez, L.R. 2019. Crustacean vitellogenin: a systematic and experimental analysis of their genes, genomes, mRNAs and proteins; and perspective to Next Generation Sequencing. Crustaceana, 92: 1169–1205. https://doi.org/10.1163/15685403-00003930spa
dc.relation.referencesJones, D.A., Kumlu, M., Le Vay, L., and Fletcher, D.J. 1997a. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: A review. Aquaculture, 155: 285–295. https://doi.org/10.1016/S0044-8486(97)00129-4spa
dc.relation.referencesJones, D.A., Yule, A.B., and Holland, D.L. 1997b. Larval nutrition. 353-389. In: D’Abramo, L.R., Conklin, D.E., and Akiyama, D.M. (Eds). Crustacean nutrition. World Aquaculture Society, 587 p.spa
dc.relation.referencesKalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., and Jermiin, L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods, 14: 587–589. https://doi.org/10.1038/nmeth.4285spa
dc.relation.referencesKamarudin, M.S., Jones, D.A., le Vay, L., and Abidin, A.Z. 1994. Ontogenetic change in digestive enzyme activity during larval development of Macrobrachium rosenbergii. Aquaculture, 123: 323–333. https://doi.org/10.1016/0044-8486(94)90068-Xspa
dc.relation.referencesKent, M., Browdy, C.L., and Leffler, J.W. 2011. Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture, 319: 363–368. https://doi.org/10.1016/j.aquaculture.2011.06.048spa
dc.relation.referencesKerr, M.S. 1969. The hemolymph proteins of the blue crab, Callinectes sapidus: II. A lipoprotein serologically identical to oocyte lipovitellin. Dev. Biol., 20: 1–17. https://doi.org/10.1016/0012-1606(69)90002-5spa
dc.relation.referencesKeller, T.A., Powell, I., and Weissburg, M.J. 2003. Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar. Ecol. Prog. Ser., 261: 217–231. https://www.int-res.com/abstracts/meps/v261/p217-231spa
dc.relation.referencesKeskin, E., and Atar, H.H. 2013. DNA barcoding commercially important aquatic invertebrates of Turkey. Mitochondrial DNA, 24: 440–450. https://doi.org/10.3109/19401736.2012.762576spa
dc.relation.referencesKhoa, T.N.D., Waqalevu, V., Honda, A., Matsui, H., Truong, N.X., Sakaguchi, K., Kawaji, H., Ishikawa, M., and Shiozaki, K. 2021. Enrichment effects of fermented by-product of Shochu distillery on Brachionus plicatilis sp. rotifer and larviculture performance in Japanese flounder (Paralichthys olivaceus). Aquaculture, 535: 736352. https://doi.org/10.1016/j.aquaculture.2021.736352spa
dc.relation.referencesKhudyi, O., Khuda, L., Kushniryk, O., Prusinska, M., Kolman, R., Marchenko, M. 2017. An effectiveness of Artemia nauplii enrichment with polyunsaturated fatty acids using a supplement easy dha selco. Acta Biol. Univ. Daugavp., 17: 169–183. https://du.lv/wp-content/uploads/2022/02/Khudyi.pdfspa
dc.relation.referencesKibria, G. 1993. Studies on molting, molting frequency and growth of shrimp Penaeus monodon fed on natural and compounded diets. Asian Fish. Sci., 6: 203–211. https://cir.nii.ac.jp/crid/1571417125960508032spa
dc.relation.referencesKim, D., Langmead, B., and Salzberg, S.L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, https://doi.org/10.1038/nmeth.3317spa
dc.relation.referencesKlee, C.B., and Vanaman, T.C. 1982. Calmodulin. Adv. Protein Chem., 35: 213–321. https://doi.org/10.1016/S0065-3233(08)60470-2spa
dc.relation.referencesKobayashi, T., Nagase, T., Hino, A., and Takeuchi, T. 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fisheries Sci., 74: 649–656. https://doi.org/10.1111/j.1444-2906.2008.01570.xspa
dc.relation.referencesKoopman, H.N., and Siders, Z.A. 2013. Variation in egg quality in blue crabs, Callinectes sapidus, from North Carolina: Does female size matter? J. Crustac. Biol., 33: 481–487. https://doi.org/10.1163/1937240X-00002152spa
dc.relation.referencesKovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., and Pertea, M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol., 20: 1–13. https://doi.org/10.1186/s13059-019-1910-1spa
dc.relation.referencesKumari, S.S., and Skinner, D.M. 1993. Proteins of crustacean exoskeleton II: Immunological evidence for their relatedness to cuticular proteins of two insects. J. Exp. Zool., 265: 195–210. https://doi.org/10.1002/jez.1402650302spa
dc.relation.referencesKumar, V., Sinha, A.K., Romano, N., Allen, K.M., Bowman, B.A., Thompson, K.R., and Tidwell, J.H. 2018. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac., 26: 254–273. https://doi.org/10.1080/23308249.2018.1429384spa
dc.relation.referencesKurmaly, K., Jones, D.A., and Yule, A.B. 1990. Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar. Biol., 106: 181–190. https://doi.org/10.1007/BF01314799spa
dc.relation.referencesKurmaly, K., Yule, A.B., and Jones, D.A. 1989. An energy budget for the larvae of Penaeus monodon (Fabricius). Aquaculture, 81: 13–25. https://doi.org/10.1016/0044-8486(89)90227-5spa
dc.relation.referencesLage, L.P.A., Plagnes-Juan, E., Putrino, S.M., Baron, F., Weissman, D., Guyonvarch, A., Brugger, R., Nunes, A.J.P., and Panserat, S. 2017. Ontogenesis of metabolic gene expression in whiteleg shrimp (Litopenaeus vannamei): New molecular tools for programming in the future. Aquaculture, 479: 142–149. https://doi.org/10.1016/j.aquaculture.2017.05.030spa
dc.relation.referencesLakshmanasenthil, S., Vinothkumar, T., Geetharamani, D., and Maruthupandi, T. 2013. Influence of Micro algae in enrichment of Artemia salina for aquaculture feed enhancement Research Article J. Algal Biomass Utln., 4: 67–73. http://www.jalgalbiomass.com/vol4-2spa
dc.relation.referencesLavarías, S., Pasquevich, M.Y., Dreon, M. S., and Heras, H. 2009. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 152: 364–369. https://doi.org/10.1016/j.cbpb.2009.01.004spa
dc.relation.referencesLavens, P., and Sorgeloos, P. 2000. Experiences on importance of diet for shrimp postlarval quality. Aquaculture, 191: 169-176. https://doi.org/10.1016/S0044-8486(00)00426-9spa
dc.relation.referencesLavens, P., and Sorgeloos, P. 1996. Manual of the production and use of live food for aquaculture. Food and agriculture organization on the United Nations – FAO, Rome. http://www.fao.org/3/w3732e03.htm#2spa
dc.relation.referencesLe Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the Perch (Perca fluviatilis). J. Anim. Ecol., 20: 201-219. https://www.jstor.org/stable/1540spa
dc.relation.referencesLe, D.V.B., Nguyen, P.N., Dierckens, K., Nguyen, D.V., De Schryver, P., Hagiwara, A., and Bossier, P. 2017. Growth performance of the very small rotifer Proales similis is more dependent on proliferating bacterial community than the bigger rotifer Brachionus rotundiformis. Aquaculture, 476: 185–193. https://doi.org/10.1016/j.aquaculture.2017.03.046spa
dc.relation.referencesLee, M.H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A.K., Salen, G., Dean, M., and Patel, S.B. 2001. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet., 27: 79–83. https://doi.org/10.1038/83799spa
dc.relation.referencesLee, P.G., and Meyers, S.P. 1997. Chemoattraction and feeding stimulation, 292–352. In: D´Abramo, L.R., Conklin, D. E. and Akiyama, D.M. (Eds.). Crustacean nutrition. The World Aquaculture Society; Louisiana. 587 p.spa
dc.relation.referencesLee, S.Y., Kim, D.S., and Nam, Y.K. 2012. Molecular characterization of cytoskeletal beta-actin and its promoter in the javanese ricefish Oryzias javanicus. Fish. Aquatic Sci., 15: 317–324. https://oak.go.kr/central/journallist/journaldetail.do?article_seq=12011spa
dc.relation.referencesLemos, D., Garcia-Carreño, F.L., Hernández, P., and Navarrete del Toro, A. 2002. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture, 214: 363–380. https://doi.org/10.1016/S0044-8486(02)00253-3spa
dc.relation.referencesLemos, D., and Weissman, D. 2020. Moulting in the grow-out of farmed shrimp: a review. Rev. Aquac., 13: 5–17. https://doi.org/10.1111/raq.12461spa
dc.relation.referencesLe Moullac, G., Klein, B., Sellos, D., and Van Wormhoud, A. 1997. Adaptation of trypsin, chymotrypsin and α-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J. Exp. Mar. Biol. Ecol., 208: 107–125. https://doi.org/10.1016/S0022-0981(96)02671-8spa
dc.relation.referencesLe Moullac, G., and Van Wormhoudt, A. 1994. Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat. Living Resour., 7: 203–210. https://doi.org/10.1051/alr:1994022spa
dc.relation.referencesLe Vay, L., Jones, D.A., Puello-Cruz, A.C., Sangha, R.S., and Ngamphongsai, C. 2001. Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 128: 621–628. https://doi.org/10.1016/S1095-6433(00)00339-1spa
dc.relation.referencesLi, K., Kjørsvik, E., Bergvik, M., and Olsen, Y. 2015a. Manipulation of the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine in rotifers Brachionus nevada and Brachionus cayman. Aquac. Nut., 21: 85–97. https://doi.org/10.1111/anu.12140spa
dc.relation.referencesLi, K., and Olsen, Y. 2015. Effect of enrichment time and dietary DHA and non-highly unsaturated fatty acid composition on the efficiency of DHA enrichment in phospholipid of rotifer (Brachionus cayman). Aquaculture, 446: 310–317. https://doi.org/10.1016/j.aquaculture.2015.05.005spa
dc.relation.referencesLi, S., Cheng, Y., Zhou, B., and Hines, A.H. 2012. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. J. Shellfish Res., 31: 941–946. https://doi.org/10.2983/035.031.0405spa
dc.relation.referencesLi, W., Chiu, K.H., Tien, Y.C., Tsai, S.F., Shih, L.J., Lee, C.H., Toullec, J.Y., and Lee, C.Y. 2017. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii. Plos One, 12: e0172557. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172557spa
dc.relation.referencesLi, X., Han, T., Zheng, S., and Wu, G. 2021. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Adv. Exp. Med. Biol., 1285: 169–198. https://pubmed.ncbi.nlm.nih.gov/33770407/spa
dc.relation.referencesLi, Y., Min, H., Cui, Z., Liu, Y., Song, C., and Shi, G. 2015b. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comp. Biochem. Physiol. - D: Genom. Proteom., 13: 1–9. https://doi.org/10.1016/j.cbd.2014.10.002spa
dc.relation.referencesLi, Y., Xue, H., and Li, X. 2018. Transcriptome analysis of the Chinese grass shrimp Palaemonetes sinensis (Sollaud 1911) and its predicted feeding habit. J. Oceanol. Limnol., 36: 1778–1787. https://doi.org/10.1007/s00343-019-7189-yspa
dc.relation.referencesLiao, Y., Smyth, G.K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30: 923–930. https://doi.org/10.1093/bioinformatics/btt656spa
dc.relation.referencesLin, Z., Wang, X., Bu, X., Jia, Y., Shi, Q., Du, Z., Qin, J., and Chen, L. 2021. Dietary phosphatidylcholine affects growth performance, antioxidant capacity and lipid metabolism of Chinese mitten crab (Eriocheir sinensis). Aquaculture, 541: 736814. https://doi.org/10.1016/j.aquaculture.2021.736814spa
dc.relation.referencesLiu, J.D., Liu, W.B., Zhang, D.D., Xu, C.Y., Zhang, C.Y., Zheng, X. C., and Chi, C. 2020. Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol., 100: 300– https://doi.org/10.1016/j.fsi.2020.02.064spa
dc.relation.referencesLiu, Q., Wen, B., Li, X., Jiang, Y., Liang, Z., and Zuo, R. 2021a. An investigation on the effects of dietary protein level in juvenile Chinese mitten crab (Eriocheir sinensis) reared at three salinities: survival, growth performance, digestive enzyme activities, antioxidant capacity and body composition. Aquac. Res., 52: 2580-2592. https://doi.org/10.1111/are.15106spa
dc.relation.referencesLiu, S., Wang, X., Bu, X., Zhang, C., Qiao, F., Qin, C., Li, E., Qin, J.G., and Chen, L. 2021b. Influences of dietary vitamin D3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J. Steroid Biochem. Mol. Biol., 210: 105862. https://doi.org/10.1016/j.jsbmb.2021.105862spa
dc.relation.referencesLloret, J., Shulman, G., and Love, R.M. 2013. Condition and health indicators of exploited marine fishes. John Wiley & Sons, Oxford. 247 p.spa
dc.relation.referencesLoose, G.J., Vogt, G., Charmantier-Daures, M., Charmantier, G., and Harzsch, S. 2020. Organogenesis. 80-112. In: Klaus, A., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology: The Natural History of the Crustacea, Volume 7. University Press, Oxford., https://doi.org/10.1093/oso/9780190648954.003.0003spa
dc.relation.referencesLove M.I., Huber W., and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15: 550. http://bioconductor.org/packages/DESeq2/spa
dc.relation.referencesLovett, D.L., and Felder, D.L. 1990. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Aquaculture, 178: 144–159. https://www.journals.uchicago.edu/doi/pdf/10.2307/1541973spa
dc.relation.referencesLucía-Pavón, E., Sarma, S.S.S., and Nandin, S. 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev. Biol. Trop., 49:, 895–902. https://revistas.ucr.ac.cr/index.php/rbt/article/view/18037/18222spa
dc.relation.referencesLuo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-zspa
dc.relation.referencesLuo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-zspa
dc.relation.referencesMahmoud, N., Mozanzadeh, M., Agh, N., Ahmadi, A., and Yaghoubi, M. 2018. Enriched Artemia with L-lysine and DL-methionine on growth performance, stress resistance, and fatty acid profile of Litopenaeus vannamei postlarvae. J. Appl. Aquac., 30: 325–336. https://doi.org/10.1080/10454438.2018.1484838spa
dc.relation.referencesMaliwat, G.C.F., Velasquez, S.F., Buluran, S.M.D., Tayamen, M.M., and Ragaza, J.A. 2020. Growth and immune response of pond-reared giant freshwater prawn Macrobrachium rosenbergii post larvae fed diets containing Chlorella vulgaris. Aquac. Fish., 6: 465-470. https://doi.org/10.1016/j.aaf.2020.07.002spa
dc.relation.referencesMaliwat, G.C., Velasquez, S., Robil, J.L., Chan, M., Traifalgar, R.F.,and Tayamen, M. 2017. Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquac. Res., 48: 1666–1676 https://doi.org/10.1111/are.13004spa
dc.relation.referencesMansour, A.T., Ashry, O.A., El-Neweshy, M.S., Alsaqufi, A.S., Dighiesh, H.S., Ashour, M., Kelany, M.S., El-Sawy, M.A., Mabrouk, M.M., and Abbas, E.M. 2022. Effect of agricultural by-products as a carbon source in a biofloc-based system on growth performance, digestive enzyme activities, hepatopancreas histology, and gut bacterial load of Litopenaeus vannamei post larvae. J. Mar. Sci. Eng., 10: 1333. https://doi.org/10.3390/jmse10101333spa
dc.relation.referencesMantelatto, F.L., Reigada, A.L.D., Gatti, A.C.R., and Cuesta, J.A. 2014. Morphology of the first zoeal stages of five species of the portunid genus Callinectes (Decapoda, Brachyura) hatched at the laboratory. An. Acad. Bras., 86: 755–767. https://www.scielo.br/j/aabc/a/TqKbh5yVGwPndMrXpLLnVpm/?lang=en&format=htmlspa
dc.relation.referencesMartin, S.A.M., and Król, E. 2017. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev. Comp. Immunol., 75: 86–98. https://doi.org/10.1016/j.dci.2017.02.024spa
dc.relation.referencesMartínez-Alarcón, D., Hagen, W., Held, C., and Saborowski, R. 2020. Molecular aspects of lipid metabolism in the midgut gland of the brown shrimp Crangon crangon. Comp. Biochem. Physiol. B, Biochem. Mol. Biol.. 248–249: 110465. https://doi.org/10.1016/j.cbpb.2020.110465spa
dc.relation.referencesMartínez-Alarcón, D., Saborowski, R., Rojo-Arreola, L., and García-Carreño, F. 2018. Is digestive cathepsin D the rule in decapod crustaceans? Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 215: 31–38. https://doi.org/10.1016/j.cbpb.2017.09.006spa
dc.relation.referencesMartínez-Barrio, A., Lagercrantz, E., Sperber, G.O., Blomberg, J., and Bongcam-Rudloff, E. 2009. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX. BMC Bioinformatics, 10: https://doi.org/10.1186/1471-2105-10-S6-S18spa
dc.relation.referencesMaruyama, I., and Hirayama, K. 1993. The Culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing vitamin B12 in its cells. J. World Aquacult. Soc., 24: 194–198. https://doi.org/10.1111/j.1749-7345.1993.tb00008.xspa
dc.relation.referencesMaruyama, I., Nakao, T., Shigeno, I., Ando, Y., and Hirayama, K. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. 133-138. In: Hagiwara, A., Snell, T.W., Lubzens, E., Tamaru, C.S. (Eds.). Live Food in Aquaculture. Developments in Hydrobiology, vol 124. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2097-7_20spa
dc.relation.referencesMaurer, L., Liang, D., and Chung, J.S. 2017. Effects of prey densities and dietary supplementation on the larval development of the blue crab Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae). J. Crustac. Biol., 37: 674–682. https://doi.org/10.1093/jcbiol/rux079spa
dc.relation.referencesMcCarthy, J.F. 1979. Ponasterone A: A new ecdysteroid from the embyros and serum of brachyuran crustaceans. Steroids, 34: 799–806. https://doi.org/10.1016/0039-128X(79)90092-8spa
dc.relation.referencesMcCarthy, S.D., Dugon, M.M., and Power, A.M. 2015. “Degraded” RNA profiles in Arthropoda and beyond. PeerJ., 2015: e1436. https://doi.org/10.7717/peerj.1436 McClintock, J.B., Klinger, T.S., Marion, K., and Hsueh, P. 1991. Digestive carbohydrases of the blue crab Callinectes sapidus (Rathbun): implications in utilization of plant-derived detritus as a trophic resource. J. Exp. Mar. Biol. Ecol., 148: 233–239. https://doi.org/10.1016/0022-0981(91)90084-Aspa
dc.relation.referencesMcConaugha, J.R. 1985. Nutrition and larval growth, chapter 3. 1-28. In: Shram, F.R. (Ed.). Crustacean Issues 2. A.A. Balkema Publishers, Boston. 252 p.spa
dc.relation.referencesMente, E., Coutteau, P., Houlihan, D., Davidson, I., and Sorgeloos, P. 2002. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source. J. Exp. Biol., 205: 3107–3122. https://doi.org/10.1242/jeb.205.20.3107spa
dc.relation.referencesMente, E., Houlihan, D.F., and Smith, K. 2001. Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L. J. Exp. Zool., 289: https://doi.org/10.1002/jez.1023spa
dc.relation.referencesMiandare, H.K., Mirghaed, A.T., Hosseini, M., Mazloumi, N., Zargar, A., and Nazari, S. 2017. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae. Fish Shellfish Immunol., 70: 621–627. https://doi.org/10.1016/j.fsi.2017.09.048spa
dc.relation.referencesMiandare, H.K., Yarahmadi, P., and Abbasian, M. 2016. Immune related transcriptional responses and performance of Litopenaeus vannamei post-larvae fed on dietary probiotic PrimaLac®. Fish Shellfish Immunol., 55: 671–678. https://doi.org/10.1016/j.fsi.2016.06.053spa
dc.relation.referencesMiner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K., and Relyea, R.A. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol., 20: 685–692. https://doi.org/10.1016/j.tree.2005.08.002spa
dc.relation.referencesMirbakhsh, M., Mahjoub, M., Afsharnasab, M., Kakoolaki, S., Sayyadi, M., and Hosseinzadeh, S. 2021. Effects of Bacillus subtilis on the water quality, stress tolerance, digestive enzymes, growth performance, immune gene expression, and disease resistance of white shrimp (Litopenaeus vannamei) during the early hatchery period. Aquac. Int., 29: 2489–2506. https://doi.org/10.1007/s10499-021-00758-7spa
dc.relation.referencesMöller, L., Vainstein, Y., Wöhlbrand, L., Dörries, M., Meyer, B., Sohn, K., and Rabus, R. 2022. Transcriptome–proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics, 22: 2100404. https://doi.org/10.1002/pmic.202100404spa
dc.relation.referencesMoller, O.S., Anger, K., and Guerao, G. 2020. Patterns of larval development. 165–194. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 449 p.spa
dc.relation.referencesMoller, T.H. 1978. Feeding behaviour of larvae and postlarvae of Macrobrachium rosenbergii (de Man) (Crustacea: palaemonidae). J. Exp. Mar. Biol. Ecol., 35: 251–258. https://doi.org/10.1016/0022-0981(78)90078-3spa
dc.relation.referencesMontu, M., Anger, K., and Bakker, C. 1990. Variability in the larval development of Metasesarma rubripes (Decapoda, Grapsidae) reared in the laboratory. Neritica, 5: 113–118. https://epic.awi.de/id/eprint/5327/spa
dc.relation.referencesMontú, M., Anger, K., and de Bakker, C. 1996. Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgolander Meeresun., 50: 223–252. https://doi.org/10.1007/BF02367153spa
dc.relation.referencesMoran, A.L., and McAlister, J.S. 2009. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull., 216: 226–242. https://doi.org/10.1086/BBLv216n3p226spa
dc.relation.referencesMoriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35: W182–W185. https://doi.org/10.1093/nar/gkm321spa
dc.relation.referencesMostary, S., Rahman, M., Mandal, A., Hasan, K., Rehena, Z., and Basar, S. 2010. Culture of Brachionus plicatilis feeding with powdered dried Chlorella. Bangladesh Vet., 27: 91–98. https://www.researchgate.net/profile/Md-Safiul-Basar/publication/266880015_Culture_of_Brachionus_plicatilis_feeding_with_powdered_dried_Chlorella/links/6381c2d67b0e356feb86181b/Culture-of-Brachionus-plicatilis-feeding-with-powdered-dried-Chlorella.pdfspa
dc.relation.referencesMuangyao, P., Fukami, K., Songsangjinda, P., and Predalumpaburt, Y. 2020. Stimulation by gutweed to increase the abundance of insect larvae as food for shrimp aquaculture in Thailand. Aquaculture, 519: 734740. https://doi.org/10.1016/j.aquaculture.2019.734740spa
dc.relation.referencesMugnier, C., and Justou, C. 2004. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. J. Exp. Mar. Biol. Ecol., 309: 35–46. https://doi.org/10.1016/j.jembe.2004.03.008spa
dc.relation.referencesMuhlia-Almazán, A.T., and Fernández-Gimenez, A.V. 2022. Understanding the digestive peptidases from crustaceans: from their biochemical basis and classical perspective to the biotechnological approach. Mar. Biotechnol., 24: 480–491. https://doi.org/10.1007/s10126-022-10122-2spa
dc.relation.referencesNates, S.F., and McKenney, C.L. 2000. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 127: 459–468. https://doi.org/10.1016/S0305-0491(00)00283-2spa
dc.relation.referencesNavarrete del Toro, M.A., and García-Carreño, F. 2019. The toolbox for protein digestion in decapod crustaceans: a review. Rev. Aquac., 11: 1005–1021. https://doi.org/10.1111/raq.12276spa
dc.relation.referencesNavarrete Del Toro, M., García-Carreño, F., López, M., Celis-Guerrero, L., and Saborowski, R. 2006. Aspartic proteinases in the digestive tract of marine decapod crustaceans. J. Exp. Zool. A, Com. Exp. Biol., 305A: 645–654. https://doi.org/10.1002/jez.a.318spa
dc.relation.referencesNelson, M.M., Crear, B.J., Nichols, P.D., and Ritz, D.A. 2004. Growth and lipid composition of phyllosomata of the southern rock lobster, Jasus edwardsii, fed enriched Artemia. Aquac. Nutr., 10: 237–246. https://doi.org/10.1111/j.1365-2095.2004.00295.xspa
dc.relation.referencesNeori, A. 2011. Green water microalgae: The leading sector in world aquaculture. Journal of Applied Phycology 23. https://doi.org/10.1007/s10811-010-9531-9spa
dc.relation.referencesNghia, T.T., Wille, M., Vandendriessche, S., Vinh, Q.T., and Sorgeloos, P. 2007. Influence of highly unsaturated fatty acids in live food on larviculture of mud crab Scylla paramamosain (Estampador 1949). Aquac. Res., 38 (4): 1512–1528. https://doi.org/10.1111/j.1365-2109.2007.01815.xspa
dc.relation.referencesNieves-Soto, M., Lozano-Huerta, R., López-Peraza, D.J., Medina-Jasso, M.A., Hurtado-Oliva, M.A., and Bermudes-Lizárraga, J.F. 2021. Effect of the enrichment time with the tuna orbital oil emulsion on the fatty acids profile of juveniles of Artemia franciscana. Aquac. Fish., 6: 69–74. https://doi.org/10.1016/j.aaf.2020.03.008spa
dc.relation.referencesNiță, V., and Nenciu, M. 2021. Laboratory testing of the American blue crab’s (Callinectes sapidus Rathbun, 1896) capacity of adaptation to aquaculture systems at the Romanian coast. Sci. Papers Ser. D, Anim. Sci. Vol. LXIV, No. 1: 560- 568. https://www.animalsciencejournal.usamv.ro/pdf/2021/issue_1/Art78.pdfspa
dc.relation.referencesNordgreen, A., Penglase, S., and Hamre, K. 2013. Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture, 380–383: 120–129. https://doi.org/10.1016/j.aquaculture.2012.11.032spa
dc.relation.referencesOliphant, A., and Thatje, S. 2013. Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. Mar. Ecol. Prog. Ser., 493: 207–217 https://doi.org/10.3354/meps10496spa
dc.relation.referencesOlvera, M.A., Martínez-Palacios, C.A., and Real de León, E. 1993. Manual de tecnicas para laboratorio de nutricion de peces y crustaceos. Documento de campo No.7. Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion FAO, México. http://www.fao.org/3/AB489S/AB489S00.htmspa
dc.relation.referencesOrbea, A., Fahimi, H.D., and Cajaraville, M.P. 2000. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol., 114: 393–404. https://doi.org/10.1007/s004180000207spa
dc.relation.referencesOspina-Salazar, G.H., Santos-Acevedo, M., López-Navarro, J., Gómez-López, D.I., Álvarez-Barrera, J.E., and Gómez-León, J. 2011. Avances en la reproducción y mantenimiento de peces marinos ornamentales. Santa Marta: Serie de Publicaciones Generales del INVEMAR No. 46 http://hdl.handle.net/1834/8269spa
dc.relation.referencesPalm, H., Sörensen, H., and Knaus, U. 2015. Montmorillonite clay minerals with or without microalgaeb as a feed additive in larval white leg shrimp (Litopenaeus vannamei). Ann. Aquac. Res., 2: 1008. https://doi.org/10.47739/2379-0881/1008spa
dc.relation.referencesParan, B.C., Jeyagobi, B., Kizhakedath, V.K., Antony, J., Francis, B., Anand, P.S.S., Radhakrishnapillai, A., Lalramchhani, C., Kannappan, S., Marimuthu, R.D., and Paulpandi, S. 2022. Production of juvenile mud crabs, Scylla serrata: Captive breeding, larviculture and nursery production. Aquac. Rep., 22: 101003. https://doi.org/10.1016/j.aqrep.2021.101003spa
dc.relation.referencesPark, H.G., and Brown, J. 2004. Biochemical composition of rotifer, Brachionus plicatilis enriched with different commercial enrichments. J. Aquac., 17: 187–196. Available at: https://www.koreascience.or.kr/article/JAKO200411922608006.pagespa
dc.relation.referencesPedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr. 10: 167–173. https://doi.org/10.1111/j.1365-2095.2004.00284.xspa
dc.relation.referencesPeñaflorida, V.D. 2004. Amino acid profiles in the midgut, ovary, developing eggs and zoes of the mud crab, Scylla serrata. Isr. J. Aquac. – Bamidgeh, 56: 111–123. https://evols.library.manoa.hawaii.edu/items/f8e34477-5db6-4357-b792-a55eea7dda7aspa
dc.relation.referencesPerera, E., Moyano, F.J., Díaz, M., Perdomo-Morales, R., Montero-Alejo, V., Rodriguez-Viera, L., Alonso, E., Carrillo, O., and Galich, G.S. 2008. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 151: 250–256. https://doi.org/10.1016/j.cbpb.2008.07.005spa
dc.relation.referencesPedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr., 10: 167-173. https://doi.org/10.1111/j.1365-2095.2004.00284.xspa
dc.relation.referencesPertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33: 290–295. https://doi.org/10.1038/nbt.3122spa
dc.relation.referencesPhillips, N.E. 2002. Effects of nutrition-mediated larval conditions on juvenile performance in a marine mussel. Ecology, 83: 2562–2574. https://doi.org/10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2spa
dc.relation.referencesPhillips, N.E. 2004. Variable timing of larval foods has consequences for early juvenile performance in a marine mussel. Ecology, 85: 2341–2346. https://doi.org/10.1890/03-3097spa
dc.relation.referencesPickart, C.M., and Eddins, M.J. 2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta Mol. Cell. Res., 1695: 55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019spa
dc.relation.referencesPletl, J.J. 1992. The growth and bioenergetics of Callinectes sapidus larvae and the effects of diet quality on larval physiology. PhD Thesis. Ocean & Earth Sciences. Old Dominion University, Virginia. 126 p. https://doi.org/10.25777/kk11-4n91spa
dc.relation.referencesPlettner, E., Slessor, K.N., and Winston, M.L. 1998. Biosynthesis of mandibular acids in honey bees (Apis mellifera): De novo synthesis, route of fatty acid hydroxylation and caste selective β-Oxidation. Insect Biochem. Mol. Biol., 28: 31–42. https://doi.org/10.1016/S0965-1748(97)00079-9spa
dc.relation.referencesPlough, L.V. 2017. Population genomic analysis of the blue crab Callinectes sapidus using genotyping-by-sequencing. J. Shellfish Res., 36: 249–261 https://doi.org/10.2983/035.036.0128spa
dc.relation.referencesPrangnell, D.I., and Fotedar, R. 2005. The effect of potassium concentration in inland saline water on the growth and survival of the western king shrimp, Penaeus latisulcatus Kishinouye, 1896. J. Appl. Aquac., 17: 19–34. https://doi.org/10.1300/J028v17n02_02spa
dc.relation.referencesProespraiwong, P., Tassanakajon, A., and Rimphanitchayakit, V. 2010. Chitinases from the black tiger shrimp Penaeus monodon: Phylogenetics, expression and activities. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 156: 86–96. https://doi.org/10.1016/j.cbpb.2010.02.007spa
dc.relation.referencesQiao, Y., Wang, J., Mao, Y., Liu, M., Song, X., Su, Y., Wang, C., and Zheng, Z. 2017. Identification and molecular characterization of Cathepsin L gene and its expression analysis during early ontogenetic development of kuruma shrimp Marsupenaeus japonicus. Acta Oceanol. Sin., 36: 52–60. https://doi.org/10.1007/s13131-017-0983-5spa
dc.relation.referencesRadhakrishnan, S., Saravana Bhavan, P., Seenivasan, C., Shanthi, R., and Muralisankar, T. 2014. Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool., 67: 25–33. https://doi.org/10.1016/j.jobaz.2013.12.003spa
dc.relation.referencesRaghuvaran, N., Parimal, S., Narottam, P., Shamna, N., Prasanta, J., Mritunjoy, P., Saiprasad, B., and Bhavatharaniya, U. 2023. Effect of L-carnitine supplemented diets with varying protein and lipid levels on growth, body composition, antioxidant status and physio-metabolic changes of white shrimp, Penaeus vannamei juveniles reared in inland saline water. Anim. Feed Sci. Technol., 296, 115548. https://doi.org/10.1016/j.anifeedsci.2022.115548spa
dc.relation.referencesRaja, R., Coelho, A., Hemaiswarya, S., Kumar, P., Carvalho, I.S., and Alagarsamy, A. 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni Suef Univ. J Basic Appl. Sci., 7: 740–747. https://doi.org/10.1016/j.bjbas.2018.10.004spa
dc.relation.referencesRambaut, A., Lam, T.T., Carvalho, L.M., and Pybus, O.G. 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol., 2. https://doi.org/10.1093/ve/vew007spa
dc.relation.referencesRamírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., and Manke, T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res., 44: W160–W165. https://doi.org/10.1093/nar/gkw257spa
dc.relation.referencesRedzuari, A., Azra, M., Abol-Munafi, A., Aizam, Z., Hii, Y., and Ikhwanuddin, M. 2012. Effects of feeding regimes on survival, development and growth of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) larvae. World Appl. Sci. J., 18: 472–478. https://www.researchgate.net/profile/Mohamad-Nor-Azra/publication/279922559_Effects_of_Feeding_Regimes_on_Survival_Development_and_Growth_of_Blue_Swimming_Crab_Portunus_pelagicus_Linnaeus_1758_Larvae/links/559e45a008aeb45d17160911/Effects-of-Feeding-Regimes-on-Survival-Development-and-Growth-of-Blue-Swimming-Crab-Portunus-pelagicus-Linnaeus-1758-Larvae.pdfspa
dc.relation.referencesRehberg-Haas, S., Meyer, S., Lippemeier, S., and Schulz, C. 2015. A comparison among different Pavlova sp. products for cultivation of Brachionus plicatilis. Aquaculture, 435: 424–430. https://doi.org/10.1016/j.aquaculture.2014.10.029spa
dc.relation.referencesRey, F., Alves, E., Melo, T., Domingues, P., Queiroga, H., Rosa, R., Domingues, M., and Calado, R. 2015. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep., 5: 1–13. https://doi.org/10.1038/srep14549spa
dc.relation.referencesRivera-Pérez, C., Navarrete del Toro, M.A., and García-Carreño, F. L. 2010. Digestive lipase activity through development and after fasting and re-feeding in the whiteleg shrimp Penaeus vannamei. Aquaculture, 300: 163–168. https://doi.org/10.1016/j.aquaculture.2009.12.030Lagespa
dc.relation.referencesRodríguez-Viera, L., Alpízar-Pedraza, D., Mancera, J. M., and Perera, E. 2021. Toward a more comprehensive view of α-amylase across decapods crustaceans. Biology, 10: 25. https://doi.org/10.3390/biology10100947spa
dc.relation.referencesRodriguez, A., Le Vay, L., Mourente, G., and Jones, D.A. 1994. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding. Mar. Biol., 118: 45–51. https://doi.org/10.1007/BF00699218spa
dc.relation.referencesRodríguez, C., Pérez, J.A., Izquierdo, M.S., Cejas, J.R., Bolaños, A., and Lorenzo, A. 1996. Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture, 147: 93–105. https://doi.org/10.1016/S0044-8486(96)01397-Xspa
dc.relation.referencesRodríguez, J., Olsen, Y., and Rosenlund, G. 1989. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture, 79: 157–161. https://doi.org/10.1016/0044-8486(89)90456-0spa
dc.relation.referencesRojo-Arreola, L., García-Carreño, F., Romero, R., and Díaz, L. 2020. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. Plos One, 15: e0239413. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239413spa
dc.relation.referencesRojo, L., Muhlia-Almazan, A., Saborowski, R., and García-Carreño, F. 2010. Aspartic Cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. Mar. Biotechnol., 12: 696–707. https://doi.org/10.1007/s10126-010-9257-3spa
dc.relation.referencesRomero-Romero, S., and Yúfera, M. 2012. Contribution of gut content to the nutritional value of Brachionus plicatilis used as prey in larviculture. Aquaculture, 364–365: 124–129. https://doi.org/10.1016/j.aquaculture.2012.08.011spa
dc.relation.referencesRotllant, G., Guerao, G., Gras, N., and Estévez, A. 2014. Larval growth and biochemical composition of the protected Mediterranean spider crab Maja squinado (Brachyura, Majidae). Aquat. Biol., 20: 13–21. http://hdl.handle.net/10261/111832spa
dc.relation.referencesRotllant, G., Moyano, F.J., Andrés, M., Díaz, M., Estévez, A., and Gisbert, E. 2008. Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture, 282: 90–96. https://doi.org/10.1016/j.aquaculture.2008.06.004spa
dc.relation.referencesRoustaian, P., Kamarudin, M.S., Omar, H.B., Saad, C.R., and Ahmad, M.H. 2000. Amino acid composition of developing larval freshwater prawn Macrobrachium rosenbergii. J. World Aquac. Soc., 31: 130–136. https://doi.org/10.1111/j.1749-7345.2000.tb00708.xspa
dc.relation.referencesRueda, M., Bustos-Montes, D., Gómez-León, J., Viloria, E., Santos-Acevedo, M., Girón, A., Viaña, J., Rodríguez, A., Castillo, H., Sierra, J., Romero, J.A., Chávez, S., Angulo, G., Vivas-Aguas, L.J., Garcés, O., Sánchez, D., Arbeláez-Merizalde, N.M., Arteaga, E., Licero-Villanueva, L.V., Rodríguez-Rodríguez, J.A. 2015. Capítulo III. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: Indicadores de presión. 70–116. En: INVEMAR (Ed.). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia Año 2014. Serie de Publicaciones Periódicas No. 3. Ediprint Ltda., Santa Marta. 176 p. http://www.invemar.org.co/redcostera1/invemar/docs/ier2014.pdfspa
dc.relation.referencesRueda, M., Escobar, F.D., Viaña, J., Navarro, H., and Romero, J. 2020. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: indicadores de presión. 76–94. En: INVEMAR (Ed.). Informe del estado de los ambientes y recursos marinos y costeros en Colombia, 2019. Serie de publicaciones periódicas No. 3. Marquillas, S.A., Santa Marta. 183 p.spa
dc.relation.referencesRuscoe, I.M., Williams, G.R., and Shelley, C.C. 2004. Limiting the use of rotifers to the first zoeal stage in mud crab (Scylla serrata Forskål) larval rearing. Aquaculture, 231: 517–527. https://doi.org/10.1016/j.aquaculture.2003.11.021spa
dc.relation.referencesRust, J.D., and Carlson, F. 1960. Some observations on rearing blue crab larvae. Chesap. Sci. 1: 196–197. https://doi.org/10.2307/1350397spa
dc.relation.referencesSaborowski, R. 2015. Nutrition and digestion. 285–319. In: Chang, E., and Thiel, M. (Eds). Physiology: the natural history of the crustacea, Oxford University Press, New York. 512 p.spa
dc.relation.referencesSainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture Saborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. Digspa
dc.relation.referencesSaborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. Digestive enzymes in the ontogenetic stages of the southern king crab, Lithodes santolla. Mar. Biol., 149: 865–873. https://doi.org/10.1007/s00227-005-0240-xspa
dc.relation.referencesSainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034spa
dc.relation.referencesSánchez-Paz, A., García-Carreño, F., Muhlia-Almazán, A., Peregrino-Uriarte, A.B., Hernández-López, J., and Yepiz-Plascencia, G. 2006. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Mol. Biol., 36: 241–249. https://doi.org/10.1016/j.ibmb.2006.01.002spa
dc.relation.referencesSantamaría, M.E., Hernández-Crespo, P., Ortego, F., Grbic, V., Grbic, M., Diaz, I., and Martinez, M. 2012. Cysteine peptidases and their inhibitors in Tetranychus urticae: A comparative genomic approach. BMC Genom., 13: 1–13. https://doi.org/10.1186/1471-2164-13-307spa
dc.relation.referencesSchembri, P.J. 1982. Locomotion, feeding, grooming and the behavioural responses to gravity, light and hydrostatic pressure in the stage I zoea larvae of Ebalia tuberosa (Crustacea: Decapoda: Leucosiidae). Mar. Biol., 72: 125–134. https://doi.org/10.1007/BF00396913 .spa
dc.relation.referencesSchmitz, G., Langmann, T., and Heimerl, S. 2001. Role of ABCG1 and other ABCG family members in lipid metabolism. J. Lipid Res., 42: 1513–1520. https://doi.org/10.1016/S0022-2275(20)32205-7spa
dc.relation.referencesSchroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. 2006. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol., 7: 1–14. https://doi.org/10.1186/1471-2199-7-3spa
dc.relation.referencesSchubart, C.D., Deli, T., Mancinelli, G., Cilenti, L., Gil Fernández, A., Falco, S., and Berger, S. 2023. Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining origins and genetic connectivity of a large-scale invasion. Biology, 12: 35. https://doi.org/10.3390/biology12010035spa
dc.relation.referencesSchulz, H. 1991. Beta oxidation of fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids BBA, 1081: 109–120. https://doi.org/10.1016/0005-2760(91)90015-Aspa
dc.relation.referencesSeary, R., Spencer, T., Bithell, M., and McOwen, C. 2021. Measuring mangrove-fishery benefits in the Peam Krasaop Fishing Community, Cambodia. Estuar. Coast. Shelf. Sci., 248 106918. https://doi.org/10.1016/j.ecss.2020.106918spa
dc.relation.referencesSeear, P.J., Tarling, G.A., Burns, G., Goodall-Copestake, W. P., Gaten, E., Özkaya, Ö., and Rosato, E. 2010. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics, 11: 1–13. https://doi.org/10.1186/1471-2164-11-582spa
dc.relation.referencesSerrano, A.E., Traifalgar, R.F., and Serrano, A.E. 2012. Ontogeny and induction of digestive enzymes in Scylla serrata larvae fed live or artificial feeds or their combination. AACL Bioflux, 5: 101–111. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1835442bd0fb7ee545391871277cf6f2c13f19f0spa
dc.relation.referencesSeychelles, L.H., Ayala-Aguilar, J.A., Estrada, N., López, M., Ayala-Perez, V.O., Ludwig, M., and Mercier, L. 2022. Zootechnical performance, biochemical composition and gene expression of digestive enzymes in Litopenaeus vannamei post-larvae fed the nematode Panagrolaimus sp. (NFS 24–5). Aquac. Res., 53: 5325–5341. https://doi.org/10.1111/are.16016spa
dc.relation.referencesShan, X., and Lin, M. 2014. Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture, 428–429: 284–289. https://doi.org/10.1016/j.aquaculture.2014.03.021spa
dc.relation.referencesSheen, S.S. 2000. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture, 189: 277–285. https://doi.org/10.1016/S0044-8486(00)00379-3spa
dc.relation.referencesShi, B., Jin, M., Jiao, L., Betancor, M. B., Tocher, D. R., and Zhou, Q. 2020. Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/AMP-activated protein kinase pathway in juvenile Pacific white shrimp. Br. J. Nutr., 124: 773–784. https://doi.org/10.1017/S0007114520001725spa
dc.relation.referencesShi, C., Zeng, T., Li, R., Wang, C., Ye, Y., and Mu, C. 2019. Dynamic metabolite alterations of Portunus trituberculatus during larval development. J. Ocean. Limnol., 37: 361–372. https://doi.org/10.1007/s00343-019-7268-0spa
dc.relation.referencesShiau, S.Y., and Peng, C.Y. 1992. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater. Aquaculture, 101: 241–250. https://doi.org/10.1016/0044-8486(92)90028-Jspa
dc.relation.referencesSkinner, D.M., Kumari, S.S., and O’brien, J.J. 1992. Proteins of the crustacean exoskeleton. American Zoologist, 32: 470–484. https://doi.org/10.1093/icb/32.3.470spa
dc.relation.referencesSkottene, E., Tarrant, A.M., Olsen, A.J., Altin, D., Østensen, M.A., Hansen, B.H., Choquet, M., Jenssen, B.M., and Olsen, R.E. 2019. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep., 9: 1–13. https://doi.org/10.1038/s41598-019-53032-5spa
dc.relation.referencesSmith, W.A., Lamattina, A., and Collins, M.K. 2014. Insulin signaling pathways in lepidopteran ecdysone secretion. Front. Physiol., 5: 63298. https://doi.org/10.3389/fphys.2014.00019spa
dc.relation.referencesSmolenaars, M., Madsen, O., Rodenburg, K. W., and Van Der Horst, D.J. 2007. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res., 48: 489–502. https://doi.org/10.1194/jlr.R600028-JLR200spa
dc.relation.referencesSnyder, M.J., and Chang, E.S. 2016. Effects of eyestalk ablation on larval molting rates and morphological development of the american lobster, Homarus americanus. Biol. Bull., 170: 232–243. https://www.journals.uchicago.edu/doi/abs/10.2307/1541805spa
dc.relation.referencesSoh, W.T., Demir, F., Dall, E., Perrar, A., Dahms, S. O., Kuppusamy, M., Brandstetter, H., and Huesgen, P.F. 2020. ExteNDing proteome coverage with legumain as a highly specific digestion protease. Anal. Chem., 92: 2961–2971. https://doi.org/10.1021/acs.analchem.9b03604spa
dc.relation.referencesSoyel, H., and Kumlu, M. 2003. The Effects of salinity on postlarval growth and survival of Penaeus semisulcatus (Decapoda: Penaeidae). Turk. J. Zool., 27: 221–225. https://journals.tubitak.gov.tr/zoology/vol27/iss3/7/spa
dc.relation.referencesSpitznagel, M.I., Small, H.J., Lively, J.A., Shields, J.D., and Schott, E.J. 2019. Investigating risk factors for mortality and reovirus infection in aquaculture production of soft-shell blue crabs (Callinectes sapidus). Aquaculture, 502: 289–295. https://doi.org/10.1016/j.aquaculture.2018.12.051spa
dc.relation.referencesSpitzner, F., Meth, R., Krüger, C., Nischik, E., Eiler, S., Sombke, A., Torres, G., and Harzsch, S. 2018. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front. Zool., 15: 1–39. https://doi.org/10.1186/s12983-018-0271-zspa
dc.relation.referencesSrivastava, A., Stoss, J., and Hamre, K. 2011. A study on enrichment of the rotifer Brachionus “Cayman” with iodine and selected vitamins. Aquaculture, 319: 430–438. https://doi.org/10.1016/j.aquaculture.2011.07.027spa
dc.relation.referencesStaton, J.L., and Sulkin, S.D. 1991. Nutritional requirements and starvation resistance in larvae of the brachyuran crabs Sesarma cinereum (Bosc) and S. reticulatum (Say). J. Exp. Mar. Biol. Ecol., 152: 271–284. https://doi.org/10.1016/0022-0981(91)90219-Mspa
dc.relation.referencesStephens, A., Rojo, L., Araujo-Bernal, S., Garcia-Carreño, F., and Muhlia-Almazan, A. 2012. Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 161: 32–40. https://doi.org/10.1016/j.cbpb.2011.09.004spa
dc.relation.referencesStewart, J.M., Carlin, R.C., Macdonald, J.A., and Van Iderstine, S. 1994. Fatty acid binding proteins and fatty acid catabolism in marine invertebrates: Peroxisomal β-oxidation. Invertebr. Reprod. Dev., 25: 73–82. https://doi.org/10.1080/07924259.1994.9672370spa
dc.relation.referencesStincone, A., Prigione, A., Cramer, T., Wamelink, M., Campbell, K., Cheung, E., Olin-Sandoval, V., Grüning, N.M., Krüger, A., Tauqeer Alam, M., Keller, M.A., Breitenbach, M., Brindle, K.M., Rabinowitz, J.D., and Ralser, M. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev., 90: 927–963. https://doi.org/10.1111/brv.12140spa
dc.relation.referencesŠtrus, J., Žnidaršič, N., Mrak, P., Bogataj, U., and Vogt, G. 2019. Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles. Cell Tissue Res., 377: 415–443. https://doi.org/10.1007/s00441-019-03056-0spa
dc.relation.referencesStuck, K., Perry, H., Graham, D., and Heard, R.W. 2009. Morphological characteristics of early life history stages of the blue crab, Callinectes sapidus Rathbun, from the Northern Gulf of Mexico with a comparison of studies from the Atlantic seaboard. Gulf Caribb. Res., 21: 37–55. https://aquila.usm.edu/gcr/vol21/iss1/5/spa
dc.relation.referencesSubramoniam, T. 2010. Mechanisms and control of vitellogenesis in crustaceans. Fish. Sci., 77 1–21. https://doi.org/10.1007/s12562-010-0301-zspa
dc.relation.referencesSugumar, V., Vijayalakshmi, G., and Saranya, K. 2013. Molt cycle related changes and effect of short term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus. Saudi J. Biol. Sci., 20: 93–103. https://doi.org/10.1016/j.sjbs.2012.10.003spa
dc.relation.referencesSui, L., Wille, M., Wu, X., Cheng, Y., and Sorgeloos, P. 2008. Effect of feeding scheme and prey density on survival and development of Chinese mitten crab Eriocheir sinensis zoea larvae. Aquac. Res., 39: 568–576. https://doi.org/10.1111/j.1365-2109.2008.01902.xspa
dc.relation.referencesSulkin, S.D., and Epifanio, C.E. 1975. Comparison of rotifers and other diets for rearing early larvae of the blue crab, Callinectes sapidus Rathbun. Estuar. Coast. Mar. Sci., 3: 109-113. https://doi.org/10.1016/0302-3524(75)90011-0spa
dc.relation.referencesSulkin, S.D. 1975. The significance of diet in the growth and development of larvae of the blue crab, Callinectes sapidus Rathbun, under laboratory conditions. J. Exp. Mar. Biol. Ecol., 20: 119–135. https://doi.org/10.1016/0022-0981(75)90019-2spa
dc.relation.referencesSulkin, S.D. 1978. Nutritional requirements during larval development of the portunid crab, Callinectes sapidus Rathbun. J. Exp. Mar. Biol. Ecol., 34: 29–41. https://doi.org/10.1016/0022-0981(78)90055-2spa
dc.relation.referencesSulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: Sulkin, S.D., Branscomb, E.S., and Miller, R.E. 1976. Induced winterspa
dc.relation.referencesSulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: 269–278. https://www.ingentaconnect.com/content/umrsmas/bullmar/1986/00000039/00000002/art00011spa
dc.relation.referencesSun, L., Wang, J., Li, X., and Cao, C. 2019. Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae. Ecotoxicology, 28: 754–762. https://doi.org/10.1007/s10646-019-02071-9spa
dc.relation.referencesSuprayudi, M.., Takeuchi, T., and Hamasaki, K. 2012. Phospholipids effect on survival and molting synchronicity of larvae mud crab Scylla serrata. Hayati, 19: 163-168. https://doi.org/10.4308/hjb.19.4.163spa
dc.relation.referencesSuprayudi, M., Takeuchi, T., and Hamasaki, K. 2004. Essential fatty acids for larval mud crab Scylla serrata: Implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture, 231: 403–416. https://doi.org/10.1016/S0044-8486(03)00542-8spa
dc.relation.referencesSuprayudi, M.A., Takeuchi, T., Hamasaki, K., and Hirokawa, J. 2002. The effect of N-3 HUFA content in rotifers on the development and survival of mud crab, Scylla serrata, larvae. Aquac. Sci., 50: 205–212. https://doi.org/10.11233/aquaculturesci1953.50.205spa
dc.relation.referencesSyafaat, M.N., Azra, M. N., Waiho, K., Fazhan, H., Abol-Munafi, A. B., Ishak, S. D., Syahnon, M., Ghazali, A., Ma, H., and Ikhwanuddin, M. 2021. A Review of the nursery culture of mud crabs, genus Scylla: Current progress and future directions. animals 11, 2034. https://doi.org/10.3390/ani11072034spa
dc.relation.referencesTakeuchi, T., Nakamoto, Y., Hamasaki, K., Sekiya, S., and Watanabe, T. 1999. Requirement of N-3 highly unsaturated fatty acids for larval swimming crab Portunus trituberculatus. Nippon Suisan Gakkai., 65: 797–803. https://www.cabdirect.org/cabdirect/abstract/20001416426spa
dc.relation.referencesTaufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515spa
dc.relation.referencesTaufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515spa
dc.relation.referencesTeschke, M., and Saborowski, R. 2005. Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J. Exp. Mar. Biol. Ecol., 316: 213–229. https://doi.org/10.1016/j.jembe.2004.11.007spa
dc.relation.referencesThe Galaxy Community 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50, W345–W351. https://doi.org/10.1093/nar/gkac247spa
dc.relation.referencesTian, H., Yang, C., Yu, Y., Yang, W., Lu, N., Wang, H., Liu, F., Wang, A., and Xu, X. 2020. Dietary cholesterol level affects growth, molting performance and ecdysteroid signal transduction in Procambarus clarkii. Aquaculture, 523: 735198. https://doi.org/10.1016/j.aquaculture.2020.735198spa
dc.relation.referencesTirumalai, R., and Subramoniam, T. 1992. Purification and characterization of vitellogenin and lipovitellins of the sand crab Emerita asiatica: Molecular aspects of crab yolk proteins. Mol. Reprod. Dev., 33: 16–26. https://doi.org/10.1002/mrd.1080330104Tspa
dc.relation.referencesTomkinson, B. 1999. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci., 24: 355–359. https://doi.org/10.1016/S0968-0004(99)01435-8spa
dc.relation.referencesTorres, G., and Giménez, L. 2020. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol., 34: 1564–1576. https://doi.org/10.1111/1365-2435.13607spa
dc.relation.referencesTorres, G., Spitzner, F., Harzsch, S., and Giménez, L. 2019. Ecological developmental biology and global ocean change: brachyuran crustacean larvae as models. 283–306. In: Minelli, A., and Fusco, G. (Eds.). Perspectives on Evolutionary and Developmental Biology. Padova University Press, Italia. 420 p. https://www.padovauniversitypress.it/system/files/attachments_field/9788869381409-oa.pdfspa
dc.relation.referencesTrapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S.L., Wold, B.J., and Pachter, L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28: 511–515. (2010). https://doi.org/10.1038/nbt.1621spa
dc.relation.referencesTruong, H.H., Moss, A.F., Bourne, N.A., and Simon, C.J. 2020. Determining the Importance of macro and trace dietary minerals on growth and nutrient retention in juvenile Penaeus monodon. Animals, 10: 2086. https://doi.org/10.3390/ani10112086spa
dc.relation.referencesTucker, R.K., and Costlow, J.D. 1975. Free amino acid changes in normal and eyestalkless megalopa larvae of the blue crab, Callinectes sapidus, during the course of the molt cycle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 51: 75–78. https://doi.org/10.1016/0300-9629(75)90415-6spa
dc.relation.referencesVega-Villasante, F., Fernández, I., Preciado, R., Oliva, M., Tovar, D., and Nolasco, H. 1999. The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bull. Mar. Sci., 65: 1–9. https://www.ingentaconnect.com/content/umrsmas/bullmar/1999/00000065/00000001/art00001spa
dc.relation.referencesVoet, D., and Voet, J. 2004. Bioquímica. 3a edición. Editorial Médica Panamericana, Montevideo. 1680 p.spa
dc.relation.referencesVogt, G. 2019. Functional cytology of the hepatopancreas of decapod crustaceans. J. Morphol., 280: 1405–1444. https://doi.org/10.1002/jmor.21040spa
dc.relation.referencesVogt, G. 2021. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. Zoology, 147: https://doi.org/10.1016/j.zool.2021.125945spa
dc.relation.referencesvon Zastrow, M., and Sorkin, A. 2007. Signaling on the endocytic pathway. COCEBI, 19: 436–445. https://doi.org/10.1016/j.ceb.2007.04.021spa
dc.relation.referencesWaiho, K., Fazhan, H., Quinitio, E.T., Baylon, J.C., Fujaya, Y., Azmie, G., Wu, Q., Shi, X., Ikhwanuddin, M., and Ma, H. 2018. Larval rearing of mud crab (Scylla): What lies ahead. Aquaculture, 493: 37–50. https://doi.org/10.1016/j.aquaculture.2018.04.047spa
dc.relation.referencesWanders, R.J.A., Baes, M., Ribeiro, D., Ferdinandusse, S., and Waterham, H.R. 2023. The physiological functions of human peroxisomes. Physiol. Rev., 103: 957–1024. https://doi.org/10.1152/physrev.00051.2021spa
dc.relation.referencesWang, J., Shu, X., and Wang, W.X. 2019. Micro-elemental retention in rotifers and their trophic transfer to marine fish larvae: Influences of green algae enrichment. Aquaculture, 499: 374–380. https://doi.org/10.1016/j.aquaculture.2018.09.066spa
dc.relation.referencesWang, X., Jin, M., Cheng, X., Hu, X., Zhao, M., Yuan, Y., Sun, P., Jiao, L., Tocher, D.R., and Zhou, Q. 2022a. Hepatopancreas transcriptomic and lipidomic analyses reveal the molecular responses of mud crab (Scylla paramamosain) to dietary ratio of docosahexaenoic acid to eicosapentaenoic acid. Aquaculture, 551, 737903. https://doi.org/10.1016/j.aquaculture.2022.737903spa
dc.relation.referencesWang, X., Li, E., and Chen, L. 2016. A Review of carbohydrate nutrition and metabolism in crustaceans. N. Am. J. Aquac., 78: 178–187. https://doi.org/10.1080/15222055.2016.1141129spa
dc.relation.referencesWang, X., Wang, S., Li, C., Chen, K., Qin, J. G., Chen, L., and Li, E. 2015. Molecular pathway and gene responses of the pacific white shrimp Litopenaeus vannamei to acute low salinity stress. J. Shellfish Res., 34: 1037–1048. https://doi.org/10.2983/035.034.0330spa
dc.relation.referencesWang, Z., Zhang, Y., Yao, D., Zhao, Y., Tran, N. T., Li, S., Ma, H., and Aweya, J.J. 2022b. Metabolic reprogramming in crustaceans: A vital immune and environmental response strategy. Rev. Aquac., 14: 1094–1119. https://doi.org/10.1111/raq.12640spa
dc.relation.referencesWaqalevu, V., Honda, A., Dossou, S., Khoa, T.N.D., Matsui, H., Mzengereza, K., Liu, H., Ishikawa, M., Shiozaki, K. Kotani, T. 2019. Effect of oil enrichment on Brachionus plicatilis rotifer and first feeding red sea bream (Pagrus major) and Japanese flounder (Paralichthys olivaceus). Aquaculture 510, 73–83. https://doi.org/10.1016/j.aquaculture.2019.05.039spa
dc.relation.referencesWaycott, B. 2019. Aquaculture North America. Research project showing potential for farming Blue crab. https://www.aquaculturenorthamerica.com/research-project-showing-potential-for-farming-blue-crab-2383/spa
dc.relation.referencesWebster, S.G., and Dircksen, H. 2016. Putative Molt-Inhibiting Hormone in larvae of the shore crab Carcinus maenas L.: An immunocytochemical approach. Biol. Bull., 180: 65–71. https://www.journals.uchicago.edu/doi/abs/10.2307/1542429spa
dc.relation.referencesWei, J., Zhang, X., Yu, Y., Huang, H., Li, F., Xiang, J. 2014a. Comparative transcriptomic characterization of the early development in Pacific white shrimp Litopenaeus vannamei. Plos One, 9: e106201. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106201spa
dc.relation.referencesWei, J., Zhang, X., Yu, Y., Li, F., and Xiang, J. 2014b. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. - D: Genom. Proteom., 11: 37–44. https://doi.org/10.1016/j.cbd.2014.07.001spa
dc.relation.referencesWeissburg, M.J., and Zimmer-Faust, R.K. 1991. Ontogeny Versus Phylogeny in Determining Patterns of Chemoreception: Initial Studies with Fiddler Crabs. Univ. Chicago Press. J., 181: 205–215. https://www.journals.uchicago.edu/doi/abs/10.2307/1542091spa
dc.relation.referencesWeissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349 Wheatly, M.G.,spa
dc.relation.referencesWeissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349spa
dc.relation.referencesWheatly, M.G., Zanotto, F.P., and Hubbard, M.G. 2002. Calcium homeostasis in crustaceans: subcellular Ca dynamics. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 132: 163–178. https://doi.org/10.1016/S1096-4959(01)00520-6spa
dc.relation.referencesWilliams, J.A., Chen, X., and Sabbatini, M.E. 2009. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am. J. Physiol. - Endocrinol. Metab., 296: 405–414. https://doi.org/10.1152/ajpendo.90874.2008spa
dc.relation.referencesWilliams, K.C. 2007. Nutritional requirements and feeds development for post-larval spiny lobster: A review. Aquaculture, 263: 1–14. https://doi.org/10.1016/j.aquaculture.2006.10.019spa
dc.relation.referencesWilliams, M.J., and Primavera, J.H. 2001. Choosing tropical portunid species for culture, domestication and stock enhancement in the Indo-Pacific. Asian Fish. Sci., 14: 121–142. https://repository.seafdec.org.ph/handle/10862/1916spa
dc.relation.referencesWinarni, E.T., and Kusbiyanto, A.N. 2021. Estimating crustacean species utilize Segara Anakan Estuary Cilacap, Indonesia as nursery ground through DNA Barcoding. J. Hunan Univ. Nat. Sci., 48: 275–282. http://jonuns.com/index.php/journal/article/view/775spa
dc.relation.referencesWingett, S.W., and Andrews, S. 2018. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7: 1338. https://doi.org/10.12688/f1000research.15931.2 Wolcott, D.L., and O’connor, N.J. 1992. Herbivory in Crabs: Adaptations and Ecological Considerations 1. Amer. Zool., 32: 370–381.spa
dc.relation.referencesWinnebeck, E.C., Millar, C.D., and Warman, G.R. 2010. Why does insect RNA look degraded? J. Insect Sci., 10: 159. https://doi.org/10.1673/031.010.14119spa
dc.relation.referencesWouters, R., Lavens, P., Nieto, J., and Sorgeloos, P. 2001. Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture, 202: 1–21. https://doi.org/10.1016/S0044-8486(01)00570-1spa
dc.relation.referencesWu, X.G., Fu, R.B., Cheng, Y.X., Chrn, S.L., Yang, X.Z., Wang, C.L., Zhu, D.F., and Luo, H.Z. 2006. Effect of starvation on the survival and the mainly biochemical composition of swimming crab (Portunus trituberculatus) freshly hatched larvae. Chinese J. Zool., 41: 7–13. http://www.cqvip.com/qk/94741x/200606/23449245.htmlspa
dc.relation.referencesWu, X.G., Zeng, C.S., and Southgate, P.C. 2014. Ontogenetic patterns of growth and lipid composition changes of blue swimmer crab larvae: Insights into larval biology and lipid nutrition. Mar. Freshw. Res., 65: 228–243. https://doi.org/10.1071/MF13078spa
dc.relation.referencesWu, X., Zeng, C., and Southgate, P.C. 2017. Effects of starvation on survival, biomass, and lipid composition of newly hatched larvae of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758). Aquacult. Int., 25: 447–461. https://doi.org/10.1007/s10499-016-0042-9spa
dc.relation.referencesXie, H., Li, B., Zhong, R., Qin, J., Zhu, Y., and Lin, B. 2008. Microfluidic device for integrated restriction digestion reaction and resulting DNA fragment analysis. Electrophoresis, 29: 4956–4963. https://doi.org/10.1002/elps.200800490spa
dc.relation.referencesXu, C., Li, E., Liu, Y., Wang, X., Qin, J.G., and Chen, L. 2017a. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J. Proteomics, 162: 1–10. https://doi.org/10.1016/j.jprot.2017.04.013spa
dc.relation.referencesXu, R., Zheng, R., Wang, Y., Ma, R., Tong, G., Wei, X., Feng, D., and Hu, K. 2021. Transcriptome analysis to elucidate the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil on the hepatopancreas of Procambarus clarkii. Fish Shellfish Immunol., 116: 140–149. https://doi.org/10.1016/j.fsi.2021.07.004spa
dc.relation.referencesXu, Y., Li, X., Deng, Y., Lu, Q., Yang, Y., Pan, J., Ge, J., and Xu, Z. 2017b. Comparative transcriptome sequencing of the hepatopancreas reveals differentially expressed genes in the precocious juvenile Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). Aquac. Res., 48: 3645–3656. https://doi.org/10.1111/are.13189spa
dc.relation.referencesYamauchi, M.M., Miya, M.U., and Nishida, M. 2003. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene, 311: 129–135. https://doi.org/10.1016/S0378-1119(03)00582-1spa
dc.relation.referencesYang, Y., Jin, F., Liu, W., Huo, G., Zhou, F., Yan, J., Zhou, K., and Li, P. 2023. Comparative transcriptome, digital gene expression and proteome profiling analyses provide insights into the brachyurization from the megalopa to the first juvenile in Eriocheir sinensis. Heliyon, 9: e12736. https://www.cell.com/heliyon/pdf/S2405-8440(22)04024-5.pdfspa
dc.relation.referencesYang, Y., Xu, W., Jiang, Q., Ye, Y., Tian, J., Huang, Y., Du, X., Li, Y., Zhao, Y., and Liu, Z. 2022. Effects of low temperature on antioxidant and heat shock protein expression profiles and transcriptomic responses in crayfish (Cherax destructor). Antioxidants, 11: 1779. https://doi.org/10.3390/antiox11091779spa
dc.relation.referencesYednock, B.K., Sullivan, T.J., and Neigel, J.E. 2015. De novo assembly of a transcriptome from juvenile blue crabs (Callinectes sapidus) following exposure to surrogate Macondo crude oil. BMC Genom., 16: 1–15. https://doi.org/10.1186/s12864-015-1739-2spa
dc.relation.referencesYe, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., and Shi, C. 2018. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res., 46: https://doi.org/10.1093/nar/gky400spa
dc.relation.referencesYuan, Y., Xu, F., Jin, M., Wang, X., Hu, X., Zhao, M., Cheng, X., Luo, J., Jiao, L., Betancor, M.B., Tocher, D.R., and Zhou, Q. 2021. Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus). Food Chem., 354: 129570 https://doi.org/10.1016/j.foodchem.2021.129570spa
dc.relation.referencesYúfera, M., Moyano, F.J., and Martínez-Rodríguez, G. 2018. The digestive function in developing fishm larvae and fry. From molecular gene expression to enzymatic activity. 51–86. In: Yúfera, M. (Ed.). Emerging Issues in Fish Larvae Research. Springer International Publishing, Cadiz. 296 p.spa
dc.relation.referencesZambonino-Infante, J., Gisbert, E., Sarasquete, C., Navarro, I., Gutierrez, J., and Cahu, C. L. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. 277–344. In: Cyrino, J.E.P., Bureau, D.P., and Kapoor, B.G. (Eds.). Feeding and Digestive Functions in Fishes. Science Publishers, Boca Ratón. 589 p.spa
dc.relation.referencesZanotto, F.P., and Wheatly, M.G. 2002. Calcium balance in crustaceans: nutritional aspects of physiological regulation. Comp. Biochem. Physiol. Part A Mol. Integr., 133: 645–660. https://doi.org/10.1016/S1095-6433(02)00202-7spa
dc.relation.referencesZar, J.H. 2010. Bioestatistical analysis, 5th edition. Prentice Hall, New Jersey. 255 p.spa
dc.relation.referencesZeng, X., Wan, H., Zhong, J., Feng, Y., Zhang, Z., and Wang, Y. 2021. Large lipid transfer proteins in hepatopancreas of the mud crab Scylla paramamosain. Comp. Biochem. Physiol. Part D Genomics Proteomics, 38: 100801. https://doi.org/10.1016/j.cbd.2021.100801spa
dc.relation.referencesZhang, X., Huang, C., Guo, C., Xie, S., Luo, J., Zhu, T., Ye, Y., Jin, M., and Zhou, Q. 2021. Effect of dietary carbohydrate sources on the growth, glucose metabolism and insulin pathway for swimming crab, Portunus trituberculatus. Aquac. Rep., 21: 100967. https://doi.org/10.1016/j.aqrep.2021.100967spa
dc.relation.referencesZhang, X., Jin, M., Luo, J., Xie, S., Guo, C., Zhu, T., Hu, X., Yuan, Y., and Zhou, Q. 2022. Effects of dietary carbohydrate levels on the growth and glucose metabolism of juvenile swimming crab, Portunus trituberculatus. Aquac. Nutr., 2022: 1–15. https://doi.org/10.1155/2022/7110052spa
dc.relation.referencesZhang, X., Zhang, X., Yuan, J., Du, J., Li, F., and Xiang, J. 2018. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei. Mol. Genet. Genom., 293: 479–493. https://doi.org/10.1007/s00438-017-1397-yspa
dc.relation.referencesZhang, Z., and Hu, J. 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by Quantitative Real-Time RT-PCR. Toxicol. Sci., 95: 356–368. https://doi.org/10.1093/toxsci/kfl161spa
dc.relation.referencesZheng, D., Pan, L., and Fang, B. 2011. Effects of different dietary lipid contents on growth and lipase activity of Eriocheir sinensis larvae. J. Ocean Univ. China, 10: 55–60. https://doi.org/10.1007/s11802-011-1695-7spa
dc.relation.referencesZhou, J., He, W. Y., Wang, W. N., Yang, C. W., Wang, L., Xin, Y., Wu, J., Cai, D., Liu, Y., and Wang, A.L. 2009. Molecular cloning and characterization of an ATP-binding cassette (ABC) transmembrane transporter from the white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 150: 450–458. https://doi.org/10.1016/j.cbpc.2009.06.012spa
dc.relation.referencesZhou, Z.K., Gu, W.B., Wang, C., Zhou, Y.L., Tu, D.D., Liu, Z.P., Zhu, Q.H., and Shu, M.A. 2018. Seven transcripts from the chitinase gene family of the mud crab Scylla paramamosain: Their expression profiles during development and moulting and under environmental stresses. Aquac. Res., 49: 3296–3308. https://doi.org/10.1111/are.13793spa
dc.relation.referencesZhu, B., Tang, L., Yu, Y., Yu, H., Wang, L., Qian, C., Wei, G., and Liu, C. 2017. Identification of ecdysteroid receptor-mediated signaling pathways in the hepatopancreas of the red swamp crayfish, Procambarus clarkii. Gen. Comp. Endocrinol., 246: 372–381. https://doi.org/10.1016/j.ygcen.2017.01.013spa
dc.relation.referencesZmora, O., Findiesen, A., Stubblefield, J., Frenkel, V., and Zohar, Y. 2005. Large-scale juvenile production of the blue crab Callinectes sapidus. Aquaculture, 244: 129–139. https://doi.org/10.1016/j.aquaculture.2004.11.012spa
dc.relation.referencesZohar, Y., Hines, A.H., Zmora, O., Johnson, E.G., Lipcius, R.N., Seitz, R. D., Eggleston, D.B., Place, A.R., Schott, E.J., Stubblefield, J.D., and Chung, J.S. 2008. The Chesapeake Bay blue crab (Callinectes sapidus): A multidisciplinary approach to responsible stock replenishment. Rev. Fish. Sci., 16: 24–34. https://doi.org/10.1080/10641260701681623spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc590 - Animales::592 - Invertebradosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalCallinectes sapidusspa
dc.subject.proposallarval developmenteng
dc.subject.proposaldesarrollo larvalspa
dc.subject.proposaldiet influenceeng
dc.subject.proposalinfluencia de la dietaspa
dc.subject.proposalgene expressioneng
dc.subject.proposalexpresión génicaspa
dc.subject.proposalmetabolismo de nutrientesspa
dc.subject.proposalnutrient metabolismeng
dc.titleInfluencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)spa
dc.title.translatedDiet influence on larval development of blue crab Callinectes sapidus (Decapoda: Brachyura)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa
oaire.fundernameUniversidad de Bogotá Jorge Tadeo Lozanospa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad Estatal de Sonora, Méxicospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52083076.2023.pdf
Tamaño:
4.58 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: