Dinámica del clima y vegetación en el Páramo de Berlín (Complejo Santurbán), norte de la Cordillera Oriental de Colombia, durante el período Tardiglacial

dc.contributor.advisorVelásquez Ruíz, César Augustospa
dc.contributor.authorRueda Trujillo, Manuela Andreaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupPalinología y Paleocologíaspa
dc.date.accessioned2020-08-19T20:33:47Zspa
dc.date.available2020-08-19T20:33:47Zspa
dc.date.issued2018-09-12spa
dc.description.abstractThe Lateglacial (~ 18000 – 11653 cal yr BP) was the transition period between Last Glacial Maximum (LGM) cold conditions and Holocene warm climate. Temperature patterns during this period were relatively similar in northern and tropical latitudes, with cold stadials and warm interstadials, but humidity conditions were quite variable. Knowledge about paleoprecipitation patterns during this period is of crucial importance due to the possible existence of similarities between global warming consequences and abrupt climate change effects during Lateglacial. Nevertheless, most cores available in Colombia until now have been studied at low resolutions and discontinuities are usually encountered in the sediments of this period. In this research a high resolution (~ 40 yr/cm) paleoecological study from the northeastern Colombian Andes is presented, with a time interval from 18009 to 11662 cal yr BP. The studied sediments correspond to the 68 – 229 cm interval of Core PB1, recovered from a lakes complex of periglacial origin at Complejo de Páramos Jurisdicciones Santurbán Berlín (72°49’24.2’’W, 07°06’37.4’’N, 3.570 m altitude). Climate and vegetation history were reconstructed based on pollen, stratigraphy, Titanium and Iron contents, and Loss On Ignition (LOI) at 1 cm resolution. Core chronology relies in 16 organic sediment samples dated by 14C AMS dating, six of which are part of Lateglacial sediments. As a general result, the more humid conditions at Páramo de Berlin took place during the coldest phases at the beginning of Heinrich 1 – H1 stadial and during the Younger Dryas - YD. At the same time, forest pollen representation was relatively high during these phases. The Bølling – Allerød – BA interstadial was also humid, but a progressive humidity decrease was registered during this period and the lowest Lateglacial humidity conditions took place previous to its end. Humidity decrease followed a four - step decline: 17366 – 16700, 16700 – 15531, 15531 – 14327 and 14327 - 13213 cal yr BP. Younger Dryas signal was reflected in two phases. The first, from 13213 to 12400 cal yr BP, was characterized by a humidity increase and a major forest representation, the second, from 12400 cal yr BP onward, was characterized by a tendency to dry conditions which extended until Early Holocene. These results give support to a paleoprecipitation asymmetry in sites located in the northern Colombian Andes with respect to other sites in Llanos Orientales, Cordillera de Mérida and Venezuelan lowlands, caused probably by Intertropical Convergence Zone (ITCZ) variations in form and intensity in addition to its north – south long term migration pattern. Andean forest response to humidity changes indicate that, in dry páramos, precipitation could function as a limiting factor which influences greatly the high mountain vegetation belts displacement.spa
dc.description.abstractEl Tardiglacial (~ 18000 – 11653 años cal AP) es el período de transición entre las condiciones frías del Último Máximo Glacial (LGM) y el clima cálido del Holoceno. En los trópicos, los patrones de temperatura durante este período fueron relativamente similares a los del hemisferio norte, con estadiales fríos e interestadiales cálidos, pero las condiciones de humedad fueron muy variables. Conocer los patrones de variación de la paleoprecipitación durante este período es de vital importancia debido a la similitud que podría existir entre el calentamiento actual y los cambios abruptos del clima que tuvieron lugar durante el Tardiglacial. Sin embargo, a la fecha son muy pocos los estudios paleoclimáticos de alta resolución en Colombia que tienen registro de este período. La presente investigación consiste en un estudio paleoecológico de alta resolución (~ 40 años/cm) en el noreste de los Andes colombianos para el período de tiempo entre 18009 y 11662 años cal AP. Los sedimentos estudiados corresponden a los cm 68 – 229 del núcleo PB1, recuperado en un complejo lagunar de origen periglacial perteneciente al Complejo de Páramos Jurisdicciones Santurbán – Berlín (72°49’24.2’’W, 07°06’37.4’’N, 3.570 msnm). Los proxies utilizados en la reconstrucción del clima y la vegetación fueron el polen, los contenidos de Titanio y Hierro, la estratigrafía y las Pérdidas por Ignición (LOI) a una resolución de 1 cm. La cronología del núcleo se basa en un total de 16 dataciones con radiocarbono AMS, de las cuales 6 corresponden al período Tardiglacial. Como resultado general se tiene que en el Páramo de Berlín las condiciones más húmedas tuvieron lugar durante las fases de menor temperatura hacia el comienzo del estadial Heinrich 1 – H1 y en el Younger Dryas – YD, a la vez que el bosque alcanzó mayores representaciones en el espectro polínico. El interestadial Bølling – Allerød - BA fue un período igualmente húmedo, pero con tendencia progresiva a hacerse seco, mostrando las condiciones de menor humedad durante el Tardiglacial. La disminución en la humedad se dio en cuatro fases, cada una de mayor intensidad: 17366 – 16700, 16700 – 15531, 15531 – 14327 y 14327 – 13213 años cal AP. La señal del YD se vio reflejada en dos fases, la primera se dio a partir de 13213 años cal AP y se caracterizó por un aumento en la humedad que condujo a una mayor representación del bosque, la segunda se dio a partir de 12400 años cal AP y se caracterizó por una tendencia a condiciones secas que se extendieron hasta el Holoceno Temprano. Los resultados obtenidos dan soporte a una asimetría en la paleoprecipitación del norte de los Andes colombianos con respecto a otros sitios ubicados en los Llanos Orientales, la Cordillera de Mérida y en las tierras bajas de Venezuela, que puede ser debida a variaciones en la forma en intensidad de la Zona de Convergencia Intertropical (ITCZ), adicionales a su patrón de migración norte – sur a largo plazo. La respuesta del bosque andino a los cambios en la humedad, indica que, en páramos secos, la precipitación podría funcionar como un factor limitante que influencia de manera considerable el desplazamiento de los cinturones de la vegetación de alta montaña.spa
dc.description.degreelevelMaestríaspa
dc.description.projectConvocatoria 714-2015 para Proyectos de Investigación, Desarrollo Tecnológico e Innovación en Ambiente, Océanos y Biodiversidadspa
dc.description.sponsorshipUniversidad Nacional de Colombia y Colcienciasspa
dc.format.extent96spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRueda Trujillo, M.A. (2018). Dinámica del clima y vegetación en el Páramo de Berlín (Complejo Santurbán), norte de la Cordillera Oriental de Colombia, durante el período Tardiglacial (tesis de maestría). Universidad Nacional del Colombia, Medellín, Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78090
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ciencias Forestalesspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.referencesAnderson, James L. 2003. “Paleoecology/Paleolimnology”. Environmental Encyclopedia 1051–52.spa
dc.relation.referencesArboleda, Diana. “Reconstrucción de la vegetación, clima y ambiente sedimentario durante el Holoceno en el norte de la Cordillera Oriental de Colombia, a partir de un análisis multiproxy”. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesArzac, Alberto, Eulogio Chacón-moreno, y Luis D. Llambí. 2011. “Del Ecotono Bosque Paramo En Los Andes Tropicales Distribution of Plant Life Forms in the Upper Limit of the Forest Paramo Ecotone in the Tropical Andes”. 24(1):26–46.spa
dc.relation.referencesAvellaneda, Mario. 2012. Informe Final Páramo Santurbán ‐ Componente Biótico. Bucaramanga.spa
dc.relation.referencesBaker, Paul A. et al. 2001. “The History of South American Tropical Precipitation for the Past 25,000 Years”. Science 291(January):640–43.spa
dc.relation.referencesBaker, Paul A. et al. 2001. “Tropical climate changes at millenial and orbital timescales on the Bolivian Altiplano”. Nature 409(February):698–700.spa
dc.relation.referencesBaker, Paul A. y Sherilyn C. Fritz. 2015. “Nature and causes of Quaternary climate variation of tropical South America”. Quaternary Science Reviews 124:31–47.spa
dc.relation.referencesBehling, Hermann y Henry Hooghiemstra. 1998. “Late Quaternary palaeoecology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia”. Palaeogeography, Palaeoclimatology, Palaeoecology 139:251–67.spa
dc.relation.referencesBehling, Hermann y Henry Hooghiemstra. 1999. “Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua”. Journal of Paleolimnology 21:461–76.spa
dc.relation.referencesBernal, Juan Pablo, Laura E. Beramendi Orosco, Karina C. Lugo-Ibarra, y Luis Walter Daesslé. 2010. “Revisión a algunos geocronómetros radiométricos aplicables al Cuaternario”. Boletin de la Sociedad Geologica Mexicana 62(3):305–23.spa
dc.relation.referencesBeta Analytic. 2018. “Idoneidad de la muestra: ¿AMS o datación radiométrica?” Recuperado el 3 de octubre de 2018 (https://www.radiocarbon.com/espanol/radiometrica-plus.htm).spa
dc.relation.referencesBlaauw, Maarten y J. Andrés Christen. 2013. “Bacon manual – v2.2”. 1–11.spa
dc.relation.referencesBogotá-A, R. G. et al. 2011. “Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: Implications for a basin-wide biostratigraphic zonation for the last 284 ka”. Quaternary Science Reviews 30(23–24):3321–37.spa
dc.relation.referencesBogotá-A, Raúl G., Sonia J. Lamprea, y Orlando Rangel-Ch. 1996. “El páramo ecosistema a proteger: Atlas palinológico de la clase magnoliopsida en el paramo de Monserrate”. Serie Montañas Tropiandinas 2:233.spa
dc.relation.referencesBoyle, J. F. 2001. “Inorganic Geochemical Methods in Palaeolimnology”. Pp. 83–141 en Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods, editado por W. M. Last y J. P. Smol. Dordrecht: Springer Netherlands.spa
dc.relation.referencesBradley, Raymond. 1999. Paleoclimatology. Reconstructing Climates of the Quaternary. Second Edi. Massachusetts: Academic Press.spa
dc.relation.referencesBradley, Raymond S. y John A. Eddy. 1991. “Records of Past Global Changes In: Global changes of the past”. Pp. 103–16 en University Corporation for Atmospheric Research, editado por R. Bradley. Colorado: OIES Global Change Institute.spa
dc.relation.referencesBronk Ramsey, C. 2008. “Radiocarbon dating: Revolutions in understanding”. Archaeometry 50(2):249–75.spa
dc.relation.referencesBush, Mark B. et al. 2005. “A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru”. Journal of Quaternary Science 20(7–8):703–14.spa
dc.relation.referencesBuytaert, Wouter, Francisco Cuesta-Camacho, y Conrado Tobón. 2011. “Potential impacts of climate change on the environmental services of humid tropical alpine regions”. Global Ecology and Biogeography 20(1):19–33.spa
dc.relation.referencesCastañeda, Ivonne Marcela. 2013. “Paleoecología de Alta Resolución del Holoceno (11000 Años), en el Páramo de Belmira, Antioquia (Colombia)”. Universidad Nacional de Colombia.spa
dc.relation.referencesCavelier, J., D. Lizcano, y M. T. Pulido. 2001. Colombia. editado por M. Kappelle y A. Brown. Santo Domingo de Heredia: Instituto Nacional de Biodiversidad.spa
dc.relation.referencesCleef, Antoine M. 1981. “The vegetation of the páramos of the Colombian Cordillera Oriental”. Mededelingen van het Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht 481(1):320.spa
dc.relation.referencesColinvaux, Paul A., Paulo E. De Oliveira, y Jorge Enrique Moreno Patino. 1999. Amazon Pollen Manual and Atlas/Manual e Atlas Palinologico da Amazonia. Amsterdam: Harwood Academic Publishers.spa
dc.relation.referencesCorrea-Metrio, Alexander et al. 2012. “Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years”. Quaternary Science Reviews 38:63–75.spa
dc.relation.referencesCurtis, J. H., D. a. Hodell, y M. Brenner. 1999. “Climate change in the Lake Valencia Basin, Venezuela, 12600 yr BP to present”. The Holocene 9(5):609–19.spa
dc.relation.referencesDansgaard, W. et al. 1993. “Evidence for general instability of past climate from a 250-kyr ice-core record”. Nature 364(July):218–20.spa
dc.relation.referencesDavies, Sarah J., Henry F. Lamb, y Stephen J. Roberts. 2015. “Micro-XRF Core Scanning in Palaeolimnology: Recent Developments”. P. 656 en Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, vol. 17, editado por I. W. Croudace y R. G. Rothwell. Dordrecht: Springer.spa
dc.relation.referencesDean, Walter E. 1974. “Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods”. Journal of Sedimentary Research 44(1):242–48.spa
dc.relation.referencesErdtman, G. 1952. Pollen Morphology and Plant Taxonomy; Angiosperms. An Introduction to Palynology. I. Stockholm: Almqvist & Wiksell.spa
dc.relation.referencesVan Geel, B. y T. Van der Hammen. 1973. “Upper quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera, Colombia)”. Palaeogeography, Palaeoclimatology, Palaeoecology 14:9–92.spa
dc.relation.referencesGill, D., A. Shomrony, y H. Fligelman. 1993. “Numerical zonation of log suites and logfacies recognition by multivariate clustering”. AAPG Bulletin 77(10):1781–91.spa
dc.relation.referencesGonzalez-Carranza, Z., H. Hooghiemstra, y M. I. Velez. 2012. “Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene”. The Holocene 22(11):1227–41.spa
dc.relation.referencesGonzalez-Melo, A. y A. Parrado-Rosselli. 2010. “Diferencias en la producción de frutos del roble Quercus humboldtii Bonpl. en dos bosques andinos de la Cordillera Oriental colombiana”. Colombia Forestal 13(1):141–62.spa
dc.relation.referencesGornitz, Vivien. 2009. “Paleoclimate Proxies, an Introduction”. Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series 743–46.spa
dc.relation.referencesGosling, William D., Mark B. Bush, Jennifer A. Hanselman, y Alex Chepstow-Lusty. 2008. “Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru)”. Palaeogeography, Palaeoclimatology, Palaeoecology 259(1):35–50.spa
dc.relation.referencesGrabandt, Renetta A. J. 1980. “Pollen rain in relation to vegetation in the Colombian Cordillera Oriental”. Review of Palaeobotany and Palynology 29:65–147.spa
dc.relation.referencesGrimm, Eric C. 1987. “CONISS: a Fortran 77 program for a stratigraphically constrained cluster analysis by the method of the incremental sum squares”. Computers and Geosciences 13(1):13–35.spa
dc.relation.referencesGrimm, Eric C. 1991. “TILIA and TILIAGRAPH software”.spa
dc.relation.referencesGroot, M. H. M. et al. 2011. “Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles”. Climate of the Past 7(1):299–316.spa
dc.relation.referencesVan der Hammen, T. 1973. “The quaternary of Colombia: Introduction to a research project and a series of publications”. Palaeogeography, Palaeoclimatology, Palaeoecology 14(1):1–7.spa
dc.relation.referencesVan der Hammen, T. 1995. “La última glaciación en Colombia (Glaciación Cocuy; Fuquense)”. Análisis Geográficos 24:69–89.spa
dc.relation.referencesVan der Hammen, T., J. Barelds, H. De Jong, y A. .. De Veer. 1980. “Glacial Sequence and Environmental History in the Sierra Nevada Del Cocuy (Colombia)”. Palaeogeography, Palaeoclimatology, Palaeoecology 32:247–340.spa
dc.relation.referencesVan der Hammen, T. y a. Cleef. 1983. “Datos Para La Historia De La Flora Andina”. Revista chilena de historia natural 56:97–101.spa
dc.relation.referencesVan der Hammen, T. y A. M. Cleef. 1986. “Development of the High Andean Paramo Flora and Vegetation”. Pp. 153–201 en High Altitude Tropical Biogeography, editado por F. Vuilleumier y M. Monasterio. Oxford: Oxford University Press.spa
dc.relation.referencesVan der Hammen, T., Orlando Rangel-Ch, y Antoine M. Cleef. 2005. “Zonal ecosystems of the west and east flanks of the Colombian Western Cordillera (Tatamá Transect).” Pp. 935–972 en Studies on Tropical Andean Ecosystems. Berlin-Stuttgart: J Cramer/Bornträger.spa
dc.relation.referencesVan der Hammen, Thomas. 1981. “Glaciales y glaciaciones en el Cuaternario de Colombia: Paleoecología y Estratigrafía”. Revista CIAF 6:635–38.spa
dc.relation.referencesHansen, B. C. S. et al. 2003. “Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador”. Palaeogeography, Palaeoclimatology, Palaeoecology 194(1–3):79–108.spa
dc.relation.referencesHaug, Gerald, Konrad Hughen, Daniel Sigman, Larry Peterson, y Ursula Rohl. 2001. “Southward Migration of the Intertropical Convergence Zone Through the Holocene”. Science 293(17):1304–8.spa
dc.relation.referencesHead, Martin J. y Philip L. Gibbard. 2015. “Formal subdivision of the Quaternary System/Period: Past, present, and future”. Quaternary International 383:4–35.spa
dc.relation.referencesHelmens, K. F. 1990. “Neogene-Quaternary Geology of the High Plain of Bogotá, Eastern Cordillera, Colombia: Stratigraphy, Paleoenvironments and Landscape Evolution”. J. Cramer.spa
dc.relation.referencesHessler, Ines et al. 2010. “Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial”. Quaternary Science Reviews 29(21–22):2882–99.spa
dc.relation.referencesHodell, David A. et al. 2008. “An 85-ka record of climate change in lowland Central America”. Quaternary Science Reviews 27(11–12):1152–65.spa
dc.relation.referencesHooghiemstra, Henry. 1984. Vegetational and Climatic History of the High Plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years (Dissertationes Botanicae). Vaduz: Lubrecht & Cramer Ltd.spa
dc.relation.referencesHooghiemstra, Henry et al. 2012. “The Dynamic History of the Upper Forest Line Ecotone in the Northern Andes”. Pp. 229–46 en Ecotones Between Forest and Grassland, editado por R. W. Myster. New York, NY: Dordrecht:Springer.spa
dc.relation.referencesHooghiemstra, Henry y Thomas Van der Hammen. 2004. “Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy.” Philosophical transactions of the Royal Society of London. Series B, Biological sciences 359(1442):173-80; discussion 180-1.spa
dc.relation.referencesHyde, H. A. y D. A. Williams. 1944. “The Right Word”. P. 6 en Pollen Analysis Circular, vol. 8.spa
dc.relation.referencesIDEAM. 2008. “Zonificación climática de Colombia”. Recuperado el 4 de octubre de 2018 (http://www.ideam.gov.co/geoportal).spa
dc.relation.referencesIversen, Johannes. 1954. “The Late - glacial Flora of Denmark and its Relation to Climate and Soil”. Danmarks Geologiske Undersøgelser 80:87–119.spa
dc.relation.referencesJansen, J. H. F., S. J. Van Der Gaast, B. Koster, y A. J. Vaars. 1998. “CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores”. Marine Geology 151(1–4):143–53.spa
dc.relation.referencesJin, Zhangdong, Fuchun Li, Junji Cao, Sumin Wang, y Jimin Yu. 2006. “Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering”. Geomorphology 80(3–4):147–63.spa
dc.relation.referencesKisser, J. 1935. “Bemerkungen zum einschulss in glycerin – gelatine”. Ztschr. f. Mikroskopie 51:372–74.spa
dc.relation.referencesKneller, Margaret. 2009. “Pollen analysis” editado por V. Gornitz. Encyclopedia of Paleoclimatology and Ancient Environments. 815–23.spa
dc.relation.referencesKörner, Christian. 2012. Alpine Treelines. Functional Ecology of the Global High Elevation Tree Limits. Springer.spa
dc.relation.referencesKörner, Christian y Jens Paulsen. 2004. “A world-wide study of high altitude treeline temperatures”. Journal of Biogeography 31(5):713–32.spa
dc.relation.referencesKuhry, P. 1988. Palaeobotanical–palaeoecological studies of tropical high Andean peatbog sections (Cordillera Oriental, Colombia). Berlín: Cramer - Borntraeger.spa
dc.relation.referencesLea, David, Dorothy Pak, Larry Peterson, y Konrad Hughen. 2003. “Synchroneity of Tropical and High-Latitude Atlantic Temperatures over the Last Glacial Termination”. Science 301(5638):1361–64.spa
dc.relation.referencesLedru, Marie-Pierre y Philippe Mourguiart. 2001. “Chapter 20 - Late Glacial Vegetation Records in the Americas and Climatic Implications”. Pp. 371–90 en Interhemispheric Climate Linkages.spa
dc.relation.referencesLee Lerner, K. y Brenda Wilmoth Lerner. 2004. “Paleoecology”. The Gale Encyclopedia of Science 2945.spa
dc.relation.referencesLenoir, J., J. C. Gégout, P. A. Marquet, P. De Ruffray, y H. Brisse. 2008. “A significant upward shift in plant species optimum elevation during the 20th century”. Science 320(5884):1768–71.spa
dc.relation.referencesLlambí, Luis Daniel et al. 2012. Ecología, hidrología y suelos de páramos. Proyecto Páramo Andino.spa
dc.relation.referencesLozano-García, Socorro, Beatriz Ortega, Priyadarsi D. Roy, Laura Beramendi-Orosco, y Margarita Caballero. 2015. “Climatic variability in the northern sector of the American tropics since the latest MIS 3”. Quaternary Research (United States) 84(2):262–71.spa
dc.relation.referencesLyell, Charles. 1830. Principles of Geology: being an attempt to explain the former changes of the earth’s surface, by reference to causes now in operation. The Second. London: J. Murray.spa
dc.relation.referencesMarchant, Robert et al. 2002. “Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database”. Review of Palaeobotany and Palynology 121:1–75.spa
dc.relation.referencesMartínez, José Ignacio. 2009. “La historia cenozoica del fenómeno de El Niño”. Revista Academia Colombiana de Ciencias 33:491–511.spa
dc.relation.referencesMcGee, David et al. 2018. “Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts”. Quaternary Science Reviews 180:214–28.spa
dc.relation.referencesMcGee, David, Aaron Donohoe, John Marshall, y David Ferreira. 2014. “Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene”. Earth and Planetary Science Letters 390:69–79.spa
dc.relation.referencesMesa, Oscar, Germán Poveda, y Luis Carvajal. 1997. Introducción al clima de Colombia. Medellín: Universidad Nacional de Colombia.spa
dc.relation.referencesMeyers, Philip A. y Elisabeth Lallier-Vergès. 1999. “Lacustrine sedimentary organic matter of Late Quaternary paleoclimates”. Journal of Paleolimnology 21(2):345–72.spa
dc.relation.referencesMogensen, Irene. 2009. “Dansgaard - Oeschger cycles”. Encyclopedia of Paleoclimatology and Ancient Environments 229–32.spa
dc.relation.referencesMommersteeg, Herman. 1998. “Vegetation Development and cyclic and abrupt climatic change during the Late Quaternary. Palynological evidence from Eastern Cordillera”. University of Amsterdam.spa
dc.relation.referencesMonsalve Marín, Carlos. 2015. “Climatic change during the late glacial in the northwestern part of Colombia, based on palynology and microfluorescence-x”. Université de Genevè.spa
dc.relation.referencesMoscol-Olivera, Marcela, Joost F. Duivenvoorden, y Henry Hooghiemstra. 2009. “Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador”. Review of Palaeobotany and Palynology 157:285–300.spa
dc.relation.referencesMoy, Christopher M. et al. 2002. “Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch”. Nature 420(November):162–65.spa
dc.relation.referencesMuñoz, Paula et al. 2017. “Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ”. Quaternary Science Reviews 155:159–78.spa
dc.relation.referencesMurillo, María Teresa y M. J. M. Bless. 1974. “Spores of recent Colombian Pteridophyta. I. Trilete spores”. Review of Palaeobotany and Palynology 18(3–4):223–69.spa
dc.relation.referencesMurillo, María Teresa y M. J. M. Bless. 1978. “Spores of recent Colombian Pteridophyta. II. Monolete spores”. Review of Palaeobotany and Palynology 25(5):319–65.spa
dc.relation.referencesNarváez-Bravo, Germán y Gloria León-Aristizábal. 2001. “Caracterización y Zonificación Climática de la Región Andina”. Meteorología Colombiana 4:121–26.spa
dc.relation.referencesNiemann, Holger y Hermann Behling. 2008. “Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes”. Journal of Quaternary Science 23(3):203–12.spa
dc.relation.referencesPaduano, Gina M., Mark B. Bush, Paul A. Baker, Sherilyn C. Fritz, y Geoffrey O. Seltzer. 2003. “A vegetation and fire history of Lake Titicaca since the last glacial maximum”. Palaeogeography, Palaeoclimatology, Palaeoecology 194(1–3):259–79.spa
dc.relation.referencesPaillard, Didier. 2009. “Last Glacial Termination”. Encyclopedia of Paleoclimatology and Ancient Environments 495–98.spa
dc.relation.referencesPansu, Marc y Jacques Gautheyrou. 2006. Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods. New York: Springer Berlin Heidelberg.spa
dc.relation.referencesParra, Luis Norberto. 2005. “Análisis facial de alta resolución de sedimentos del Holoceno tardío en el Páramo de Frontino, Antioquia”. Universidad Nacional de Colombia.spa
dc.relation.referencesParra, Luis Norberto, J. O. Rangel-Ch, y Thomas Van der Hammen. 2010. “Pedoestratigrafía de la turbera Llano Grande, Páramo de Frontino”. Pp. 101–13 en Colombia Diversidad Biótica X: Cambios global (natural) y climático (antrópico) en el páramo colombiano, editado por J. O. Rangel-Ch. Bogotá: Instituto de Ciecias Naturales.spa
dc.relation.referencesParra, Luis Norberto, Orlando Rangel-Ch, y Thomas Van der Hammen. 2010a. “Geomorfología del Páramo de Frontino”. Pp. 1–14 en Colombia Diversidad Biótica X: Cambios global (natural) y climático (antrópico) en el páramo colombiano, editado por O. Rangel-Ch. Bogotá: Instituto de Ciecias Naturales.spa
dc.relation.referencesParra, Luis Norberto, Orlando Rangel-Ch, y Thomas Van der Hammen. 2010b. “Los sedimentos paramunos y la estratigrafía de la turbera Llanogrande, Páramo de Frontino (Antioquia, Colombia)”. Pp. 67–91 en Colombia Diversidad Biótica X: Cambios global (natural) y climático (antrópico) en el páramo colombiano, editado por O. Rangel-Ch. Bogotá: Instituto de Ciecias Naturales.spa
dc.relation.referencesParra, Luis Norberto, Orlando Rangel-Ch, y Thomas Van der Hammen. 2010c. “Modelo de facies para los humedales paramunos”. Pp. 15–41 en Colombia Diversidad Biótica X: Cambios global (natural) y climático (antrópico) en el páramo colombiano, editado por O. Rangel-Ch. Bogotá: Instituto de Ciecias Naturales.spa
dc.relation.referencesPeterson, Larry C. y Gerald H. Haug. 2006. “Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela)”. Palaeogeography, Palaeoclimatology, Palaeoecology 234(1):97–113.spa
dc.relation.referencesPeterson, Larry C., Gerald H. Haug, y Konrad A. Hughen. 2000. “Tropical Atlantic During the Last Glacial Rapid Changes in the Hydrologic Cycle of the Tropical Atlantic During the Last Glacial”. Science 290(December):1947–51.spa
dc.relation.referencesPoveda, Germán. 2004. “La Hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna”. Revista Academia Colombiana de Ciencias (28):201–22.spa
dc.relation.referencesPoveda, Germán y Oscar Mesa. 2000. “On the Existence of Lloró (the Rainiest Locality on Earth): Enhanced Ocean-Land-Atmosphere Interaction by a Low- Level Jet”. Geophysical Research Letters 27(11):1675–78.spa
dc.relation.referencesRasmussen, Sune O. et al. 2014. “A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy”. Quaternary Science Reviews 106:14–28.spa
dc.relation.referencesRehm, Evan M. y Kenneth J. Feeley. 2015. “The inability of tropical cloud forest species to invade grasslands above treeline during climate change: Potential explanations and consequences”. Ecography 38(12):1167–75.spa
dc.relation.referencesReimer, Paula J. et al. 2013. “IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP”. Radiocarbon 55(4):1869–87.spa
dc.relation.referencesRodbell, Donald T. et al. 1999. “An ~15,000-year Record of El Niño-driven alluviation in southwestern Ecuador”. Science 283(5401):516–20.spa
dc.relation.referencesRoubik, David W. y Jorge Enrique Moreno Patino. 1991. Pollen and spores of Barro Colorado Island. St. Louis: Missouri Botanical Garden.spa
dc.relation.referencesRubio, Pedro et al. 2006. Estudio General de Suelos y Zonificación de Tierras del Departamento de Norte de Santander. Bogotá: IGAC.spa
dc.relation.referencesRull, V., T. Vegas-Vilarrúbia, y E. Montoya. 2015. “Neotropical vegetation responses to Younger Dryas climates as analogs for future climate change scenarios and lessons for conservation”. Quaternary Science Reviews 115:28–38.spa
dc.relation.referencesSalomons, Johannes Barwold. 1986. “Paleoecology of Volcanic Soils in the Colombian Central Cordillera. (Parque Nacional Natural de los Nevados)”. University of Amsterdam.spa
dc.relation.referencesSarmiento, Carlos y Paula Ungar, eds. 2014. Aportes a la delimitación del páramo mediante la identificación de los límites inferiores del ecosistema a escala 1:25.000 y análisis del sistema social asociado al territorio: Complejo de Páramos Jurisdicciones – Santurbán – Berlín Departamentos de Santa. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesSchillereff, Daniel N., Richard C. Chiverrell, Neil Macdonald, y Janet M. Hooke. 2014. “Flood stratigraphies in lake sediments: A review”. Earth-Science Reviews 135:17–37.spa
dc.relation.referencesSchneider, Tapio, Tobias Bischoff, y Gerald H. Haug. 2014. “Migrations and dynamics of the intertropical convergence zone.” Nature 513(7516):45–53.spa
dc.relation.referencesSchreve-Brinkman, Elisabeth J. 1978. “A palynological study of the upper quaternary sequence in the El Abra corridor and rock shelters (Colombia)”. Palaeogeography, Palaeoclimatology, Palaeoecology 25(1–2):1–109.spa
dc.relation.referencesShepherd, Kenneth R. 2004. “Stratigraphy” editado por K. Lee Lerner y B. Wilmoth Lerner. The Gale Encyclopedia of Science 3859–61.spa
dc.relation.referencesShuman, Bryan. 2003. “Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States”. Journal of Paleolimnology 30(4):371–85.spa
dc.relation.referencesSolignac, Sandrine et al. 2011. “Late-holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts”. The Holocene 21(4):539–52.spa
dc.relation.referencesStansell, Nathan D. et al. 2010. “Abrupt Younger Dryas cooling in the northern tropics recorded in lake sediments from the Venezuelan Andes”. Earth and Planetary Science Letters 293(1–2):154–63.spa
dc.relation.referencesSuárez del Moral, Patricia y Eulogio Chacón-Moreno. 2011. “Modelo espacial de distribución del ecotono bosque-páramo en los Andes venezolanos. Ubicación potencial y escenarios de cambio climático”. Ecotrópicos 24(1):3–25.spa
dc.relation.referencesTapia, Pedro M., Sherilyn C. Fritz, Paul A. Baker, Geoffrey O. Seltzer, y Robert B. Dunbar. 2003. “A late quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia)”. Palaeogeography, Palaeoclimatology, Palaeoecology 194(1–3):139–64.spa
dc.relation.referencesTaylor, Ervin. 2009. “Radiocarbon Dating”. Encyclopedia of Paleoclimatology and Ancient Environments 863–68.spa
dc.relation.referencesThompson, L., E. Thompson, y K. Henderson. 2000. “Ice-core paleoclimate records in tropical South America since the Last Glacial Maximum.” Journal of Quaternary Science 15(4):377–94.spa
dc.relation.referencesTraverse, Alfred. 2007. Topics in Geobiology: Paleopalynology. Second Edi. The Netherlands: Springer Berlin Heidelberg.spa
dc.relation.referencesVan’t Veer, R., G. A. Islebe, y H. Hooghiemstra. 2000. “Climatic change during the Younger Dryas chron in northern South America: a test of the evidence”. Quaternary Science Reviews 19:1821–35.spa
dc.relation.referencesVargas, William G. 2002. Guía ilustrada de las plantas de las montañas del Quindío y los Andes. Manizales: Universidad de Caldas.spa
dc.relation.referencesVásquez, A. y A. Buitrago, eds. 2011. El gran libro de los Páramos. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Proyecto Páramo Andino.spa
dc.relation.referencesVegas-Vilarrúbia, T., V. Rull, E. Montoya, y E. Safont. 2011. “Quaternary palaeoecology and nature conservation : a general review with examples from the neotropics”. Quaternary Science Reviews 30:2361–88.spa
dc.relation.referencesVelásquez-R., César A. 1999. Atlas palinológico de la flora vascular paramuna de Colombia: Angiospermae. Medellín: Universidad Nacional de Colombia.spa
dc.relation.referencesVelásquez-R., César A. 2005. Paleoecología de alta resolución del Holoceno tardío en el Páramo de Frontino Antioquia. Medellín: Universidad Nacional de Colombia - Sede Medellín.spa
dc.relation.referencesVelásquez-R., César A. y Henry Hooghiemstra. 2013. “Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes”. Review of Palaeobotany and Palynology 194:38–49.spa
dc.relation.referencesVelásquez, C. A. et al. 1999. Tardiglacial y Holoceno del norte de la cordillera Occidental de Colombia. Medellín: Universidad Nacional de Colombia & Colciencias.spa
dc.relation.referencesVelásquez, Rosa Elena. 2013. “Paleoecología de Alta Resolución del Final de la Última Glaciación y la Transición al Holoceno en el Páramo de Belmira (Antioquia)”. Universidad de Colombia - Sede Medellín.spa
dc.relation.referencesVélez, Maria Isabel, Henry Hooghiemstra, Sarah Metcalfe, Ignacio Martínez, y Herman Mommersteeg. 2003. “Pollen-and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, Colombia”. Journal of Quaternary Science 18(1):17–30.spa
dc.relation.referencesVélez, Jorge y Jorge Pérez. Guía ilustrada de la Flora de la zona sur del Complejo de Páramos Jurisdicciones Santurbán - Berlín. Departamentos de Santander y Norte de Santander, Colombia. Medellín: Universidad Nacional de Colombia.spa
dc.relation.referencesWang, Xianfeng et al. 2004. “Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies”. Nature 432(December):740–43.spa
dc.relation.referencesWard, D. E. et al. 1973. Memoria Explicativa: Mapa Geológico de Colombia Planchas 109, 110, 120 y 121. Bogotá: Instituto Colombiano de Geología y Minería (Ingeominas).spa
dc.relation.referencesWard, Dweight et al. 1973. Mapa Geológico de Colombia. Cuadrángulo H-12 Bucaramanga. Planchas 109 Rionegro - 120 Bucaramanga. Cuadrángulo H-13 Pamplona. Planchas 110 Pamplona - 121 Cerrito. Escala 1:100.000. Memoria Explicativa. Bogotá.spa
dc.relation.referencesWeng, Chengyu et al. 2006. “Deglaciation and Holocene climate change in the western Peruvian Andes”. Quaternary Research 66:87–96.spa
dc.relation.referencesWille, Michael, Henry Hooghiemstra, Hermann Behling, Klaas van der Borg, y Alvaro Jose Negret. 2001. “Environmental change in the Colombian subandean forest belt from 8 pollen records: the last 50 kyr”. Vegetation History and Archaeobotany 10(2):61–77.spa
dc.relation.referencesYarincik, K. M., R. W. Murray, y L. C. Peterson. 2000. “Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al”. Paleoceanography 15(2):210–28.spa
dc.relation.referencesDavid, Santiago. “Paleoecología multiproxy durante el Último Máximo Glacial en el Páramo de Berlín, norte de la Cordillera Oriental, Colombia”. Universidad Nacional de Colombia, Sede Medellín.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaspa
dc.subject.proposalTardiglacialspa
dc.subject.proposalLateglacialeng
dc.subject.proposalestadial Heinrich 1spa
dc.subject.proposalHeinrich 1 stadialeng
dc.subject.proposalYounger Dryasspa
dc.subject.proposalYounger Dryaseng
dc.subject.proposalpaleoprecipitationeng
dc.subject.proposalpaleoprecipitaciónspa
dc.subject.proposalITCZspa
dc.subject.proposalITCZeng
dc.subject.proposalBosque tropicalspa
dc.subject.proposalPáramo de Berlín (Complejo Santurbánspa
dc.titleDinámica del clima y vegetación en el Páramo de Berlín (Complejo Santurbán), norte de la Cordillera Oriental de Colombia, durante el período Tardiglacialspa
dc.title.alternativeClimate and vegetation dynamics in the Paramo de Berlin (Santurban complex), north of the Eastern Cordillera of Colombia, during the Lateglacial periodspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039458337.2018.pdf
Tamaño:
3.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: