Estudio preliminar de susceptibilidad por deslizamientos submarinos en el Caribe colombiano
dc.contributor.advisor | Ávila Álvarez, Guillermo Eduardo | spa |
dc.contributor.author | Rodríguez Contador, David Styman | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Córdoba | spa |
dc.date.accessioned | 2025-03-13T13:42:25Z | |
dc.date.available | 2025-03-13T13:42:25Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | En Colombia se han realizado múltiples estudios de estabilidad de laderas y análisis de susceptibilidad, amenaza y riesgo por procesos de remoción en masa en zonas continentales, pero son escasos los estudios de estabilidad en relieves submarinos. Con el fin de comprender mejor las condiciones generales de estabilidad en estos ambientes, en la presente investigación se realizó un estudio preliminar de susceptibilidad a deslizamientos submarinos en un sector denominado la Cuenca Sinú Offshore, frente a las costas del Caribe colombiano, donde se dispone de información base, ya que se proyecta la exploración de hidrocarburos en un área de 15.530 km². El estudio se lleva a cabo a una escala de 1:50.000 y tiene como base el modelo de elevación digital, la geología, la geomorfología y la densidad de fallas en la región. Ante la falta de información detallada, se desarrolló una cartografía geológica fundamentada en datos estratigráficos y estructurales, complementada con un análisis geomorfológico basado en estudios previos. Estas variables se integran para establecer relaciones estadísticas con factores condicionantes, permitiendo identificar áreas con mayor susceptibilidad a inestabilidad. Para la zonificación de susceptibilidad, se aplican los métodos bivariados de Peso de Evidencia y el Valor de Información, combinados con unidades de condición única. Se construyen cinco combinaciones de variables, validadas a través de curvas de éxito, y se selecciona la combinación que mejor coincida con el inventario de procesos. Finalmente, se definen los intervalos de susceptibilidad alta, media y baja mediante un análisis de distribución de frecuencias. Este estudio preliminar proporciona una base sólida para la zonificación de deslizamientos submarinos en la Cuenca Sinú Offshore (Texto tomado de la fuente). | spa |
dc.description.abstract | In Colombia, multiple studies of slope stability and analysis of susceptibility, hazard and risk due to landslide processes have been carried out in continental areas, but stability studies in submarine reliefs are scarce. In order to better understand the general stability conditions in these environments, a preliminary study of susceptibility to submarine landslides was carried out in a sector called the Sinu Offshore Basin, off the Colombian Caribbean coast, where baseline information is available, since hydrocarbon exploration is planned in an area of 15,530 km². The study is carried out at a scale of 1:50,000 and is based on the digital elevation model, geology, geomorphology and fault density in the region. In the absence of detailed information, geological mapping was developed based on stratigraphic and structural data, complemented by a geomorphological analysis based on previous studies. These variables are integrated to establish statistical relationships with conditioning factors, allowing the identification of areas with greater susceptibility to instability. For susceptibility zoning, the bivariate methods of Weight of Evidence and Information Value are applied, combined with single condition units. Five combinations of variables are constructed, validated through success curves, and the combination that best matches the process inventory is selected. Finally, high, medium and low susceptibility intervals are defined through a frequency distribution analysis. This preliminary study provides a solid basis for the zoning of submarine landslides in the Sinú Offshore Basin. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Ingeniería - Geotecnia | spa |
dc.description.researcharea | Análisis de Confiabilidad y Riesgos Asociados al Entorno Geotécnico | spa |
dc.format.extent | 184 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87648 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V. & Bendaud, E. (2017). Landslide Susceptibility Mapping Using Analytic Hierarchy Process and Information Value Methods Along a Highway Road Section in Constantine, Algeria. Arab J Geosci 10, 194. https://doi.org/10.1007/s12517-017-2980-6 | spa |
dc.relation.references | AlmacenamientoIT. (2021). Las Inundaciones de los Ríos Pueden Causar Daños en los Cables Submarinos. ITUser. https://almacenamientoit.ituser.es/noticias-y-actualidad/2021/06/las-inundaciones-de-los-rios-pueden-causar-danos-en-los-cables-submarinos | spa |
dc.relation.references | Aristizábal, E., López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la Amenaza por Movimientos en Masa Detonados por Lluvias para una Región de los Andes Colombianos Estimando la Probabilidad Espacial, Temporal, y Magnitud. Boletín de Geología, 41(3), 85-105. https://doi:10.18273/revbol.v41n3-2019004 | spa |
dc.relation.references | Avdievitch N. & Coe J. (2022) Submarine Landslide Susceptibility Mapping in Recently Deglaciated Terrain, Glacier Bay, Alaska. Frontiers in Earth Science. 10:821188. https://doi.org/10.3389/feart.2022.821188 | spa |
dc.relation.references | Alfaro E. & Holz M. (2014a). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin, Marine and Petroleum Geology, Volume 57, pp. 294-311, ISSN 0264-8172, https://doi.org/10.1016/j.marpetgeo.2014.06.002 | spa |
dc.relation.references | Alfaro E. & Holz M. (2014b). Review of the chronostratigraphic charts in the Sinú-San Jacinto basin based on new seismic stratigraphic interpretations, Journal of South American Earth Sciences, Volume 56, pp. 139-169, ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2014.09.004 | spa |
dc.relation.references | Anadarko y Aquabiosfera (2014). Plan de Manejo Ambiental Específico para el Pozo Calasú 1, Área de Perforación Exploratoria Marina Fuerte Norte (Caribe Colombiano). Bogotá, D.C. | spa |
dc.relation.references | Antolínez H., Mosquera, J., Toledo, M. & Duarte, L. (2009). Caracterización Estratigráfica Conceptual del Sistema Costa-Afuera del Paleo-Abanico del Magdalena, Caribe Colombiano. X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas held in Cartagena, Colombia. ACGP. | spa |
dc.relation.references | Bernal–Olaya, R., Sánchez, J., Mann, P. & Murphy., M. (2015). Along–strike Crustal Thickness Variations of the Subducting Caribbean Plate Produces Two Distinctive Styles of Thrusting in the Offshore South Caribbean Deformed Belt, Colombia. In: Bartolini, C. y Mann, P. (editors), Petroleum Geology and Potential of the Colombian Caribbean Margin. American Association of Petroleum Geologists, Memoir 108, p. 295–322. https://doi.org/10.1306/13531941M1083645 | spa |
dc.relation.references | Bonham-Carter, G., & Agterberg, F. (1990). Application of a Microcomputer-based Geographic Information System to Mineral-Potential Mapping. Microcomputer Applications in Geology 2, 49–74. https://doi:10.1016/b978-0-08-040261-1.50012-x | spa |
dc.relation.references | Bryn, P., Berg, K., Forsberg, C., Solheim, A., & Kvalstad, T. (2005). Explaining the Storegga Slide. Mar Petrol Geol 22(1–2):11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003 | spa |
dc.relation.references | Cadena A. F., Romero, G., & Slatt, R. (2015). Application of Stratigraphic Grade Concepts to Understand Basin-Fill Processes and Deposits in an Active Margin Setting, Magdalena Submarine Fan and Associated Foldand-Thrust Belts, Offshore Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin. 108, 323-344. https://doi.org/10.1306/13531942M1083646 | spa |
dc.relation.references | Cardona A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J. & Zapata, S. (2012). From Arc-Continent Collision to Continuous Convergence, Clues from Paleogene Conglomerates Along the Southern Caribbean–South America Plate Boundary. Tectonophysics 580, 58–87. https://doi.org/10.1016/j.tecto.2012.08.039 | spa |
dc.relation.references | Carlton B., Vanneste, M., Forsberg, C. F., Knudsen, S., Løvholt, F., Kvalstad, T., Holm, S., Kjennbakken, H., Adeel, M., Degago, S., & Haflidason, H. (2018). Geohazard assessment related to submarine instabilities in Bjørnafjorden, Norway. Geological Society, London, Special Publications, SP477.39. https://doi.org/10.1144/SP477.39 | spa |
dc.relation.references | Carrara A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui,V., & Reichenbach, P. (1991) GIS Techniques and Statistical Models in Evaluating Landslide Hazard. Earth Surf Proc Landforms 16:427–445 | spa |
dc.relation.references | Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P.. (1995). GIS Technology in Mapping Landslide Hazard. In A. Carrara, & F. Guzzetti, Geographical Information Systems in Assessing Natural Hazards (vol. 5, pp. 135-175). Dordrecht: Kluwer Academic Publisher. https://doi:10.1007/978-94-015-8404-3_8 | spa |
dc.relation.references | Carvajal J. (2008). Primeras aproximaciones a la estandarización de la geomorfología en Colombia, Bogotá, 29 pp. | spa |
dc.relation.references | Carvajal J. (2012). Propuesta de Estandarización de la Cartografía Geomorfológica de Colombia. Colección Guías y Manuales. Servicio Geológico Colombiano. Bogotá, D. C. Pp. 1 – 84. | spa |
dc.relation.references | Carvajal J. (2017). Volcanismo de Lodo del Caribe Central Colombiano. Colección Guías y Manuales. Servicio Geológico Colombiano. Bogotá, D. C. PP. 1 – 89. | spa |
dc.relation.references | Carvajal-Arenas L., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology. Volume 121,104511. ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104511 | spa |
dc.relation.references | Cediel F., Shaw, F. & Cáceres, C. (2003). Tectonic Assembly of the Andean Block. In: Bartolini, C., Buffler, R.T., Blickwede, J. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, vol. 79. American Association of Petroleum Geologists Memoir, pp. 815–848. | spa |
dc.relation.references | Chen, T., Niu, R., & Jia, X. (2016). A Comparison of Information Value and Logistic Regression Models in Landslide Susceptibility Mapping by Using GIS. Environ Earth Sci 75, 867. https://doi.org/10.1007/s12665-016-5317-y | spa |
dc.relation.references | Chung, C. F. & Fabbri, A. (1999). Probabilistic Prediction Models for Landslide Hazard Mapping, Photogrammetric Engineering & Remote Sensing 65(12), 1389–1399. | spa |
dc.relation.references | Clare, M., Chaytor, J., Dabson, O., Gamboa, D., Georgiopoulou, A., Eady, H., Hunt, J., Jackson, C., Katz, O., Krastel, S., León, R., Micallef, A., Moernaut, J., Moriconi, R., Moscardelli, L., Mueller C., Normandeau, A., Patacci, M., Steventon M., Urlaub, M., Völker, D., Wood, L. & Jobe, Z.. (2018). A Consistent Global Approach for the Morphometric Characterization of Subaqueous Landslides. Geological Society, London, Special Publications, 477(1). SP477.15. https://doi.org/10.1144/SP477.15 | spa |
dc.relation.references | Comisión Colombiana del Océano (2016). Morfología del Océano. Enciclopedia Marítima de Colombia. Sistema de Información Nacional Oceánico y Costero. http://sinoc.cco.gov.co/index.php/ciencias-naturales/oceanografia/64-enciclopedia-maritima-de-colombia/ciencias-naturales/oceanografia/47-morfologia-del-oceano.html | spa |
dc.relation.references | Crandell, D., Miller, C., Glicken, H., Christiansen, R. & Newhall, C. (1984). Catastrophic Debris Avalanche from an Ancestral Mount Shasta Volcano, California, in Geology of the Upper Cretaceous Hornbrook Formation, Oregon and California, edited by T. H. Nilsen, pp. 197-201, Soc. of Econ. Paleontol. and Mineral., Tulsa, Okla. | spa |
dc.relation.references | Cruden, D.M. & Varnes, D.J. (1996). Landslide Types and Processes. En: R.L Schuster y A.K. Turner, Landslides: Investigation and Mitigation (pp. 36-75). Transportation Research Board. http://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf | spa |
dc.relation.references | Dahal, R., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictive Modelling of Rainfall-Induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-Evidence. Geomorphology, 102(3-4), 496-510. | spa |
dc.relation.references | Dai C., Lee, C., Li, J. & Xu, Z. (2001). Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hong Kong. 40(3), 381–391. https://doi.org/10.1007/s002540000163. | spa |
dc.relation.references | DatacenterDynamics. (2024). Reparado Frente a las Costas de África Occidental el Cable submarino WACS Después de los Daños Sufridos por un Deslizamiento de Tierra. DataCenter Dynamics. https://www.datacenterdynamics.com/es/noticias/reparado-frente-a-las-costas-de-africa-occidental-el-cable-submarino-wacs-despues-los-danos-sufridos-por-un-deslizamiento-de-tierra | spa |
dc.relation.references | Dávila J. (2011). Diccionario Geológico. Arth Grouting S.A.C. 901 pp. Perú. | spa |
dc.relation.references | Dingle, R. V. (1977). The Anatomy of a Large Submarine Slump on a Sheared Continental Margin (Southeast Africa), J. Geol. Soc. London, 134, 293-310. | spa |
dc.relation.references | Dott, R.H. (1963) Dynamics of subaqueous gravity depositional processes. AAPG Bull., 47,104-128. | spa |
dc.relation.references | Dugan, B., & Flemings, P., (2000). Overpressure and Fluid flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 289:288–291, https://doi:10.1126/science.289.5477.288. | spa |
dc.relation.references | Duque-Caro, H. (1979). Major Structural Elements and Evolution of Northwestern Colombia. Geological and Geophysical Investigations of Continental Margins. In: Watkins, J.S., Montadert, L., Dickerson, P.W. (Eds.), Geological and Geophysical Investigations of Continental Margins. American Association of Petroleum Geologist Memoir, vol. 29, pp. 239–351. | spa |
dc.relation.references | Duque-Caro, H. (1990). The Chocol Block in the Northwestern Corner of South America: Structural, Tectonostratigraphy and Paleogeographic Implications. J. S. Am. Earth Sci. 3 (1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-W | spa |
dc.relation.references | Dyer A., Mark-Moser, M., Duran, R. & Bauer, J. (2024). Offshore Application of Landslide Susceptibility Mapping Using Gradient-boosted Decision Trees: a Gulf of Mexico Case Study. Nat Hazards. https://doi.org/10.1007/s11069-024-06492-6 | spa |
dc.relation.references | Easterbrook, D. (1993). Surface Processes and Landforms. MacMillan Publ. Company, New York, 520 pp | spa |
dc.relation.references | Ecopetrol S.A. (2010a) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Sur en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 220 pp. | spa |
dc.relation.references | Ecopetrol S.A. (2010a) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Sur en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 220 pp. | spa |
dc.relation.references | Ecopetrol S.A. (2010b) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Norte en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 187 pp. | spa |
dc.relation.references | El Heraldo. (2017). Buscan el Origen del Microtsunami entre los Cables Submarinos del Caribe. El Heraldo. https://www.elheraldo.co/nacional/2017/07/25/buscan-el-origen-del-microtsunami-entre-los-cables-submarinos-del-caribe | spa |
dc.relation.references | Ercanoglu, M. & Gokceoglu, C. (2002) Assessment of Landslide Susceptibility for a Landslide-Prone Area (North of Yenice, NW Turkey) by Fuzzy Approach. Env Geol 41, 720–730 https://doi.org/10.1007/s00254-001-0454-2. | spa |
dc.relation.references | Ercilla, G. (2002). The Magdalena Turbidite System (Caribbean Sea): Present-Day Morphology and Architecture Model: Marine Geology, v. 185, p. 303–318. | spa |
dc.relation.references | Escalona A., & Mann P. (2011) Tectonics, Basin Subsidence Mechanisms, and Paleogeography of the Caribbean-South American Plate Boundary Zone. Marine and Petroleum Geology. Volume 28, Issue 1. pp 8-39. ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2010.01.016. | spa |
dc.relation.references | Esri. (s.f.) How Aspect Works. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspect-works.htm | spa |
dc.relation.references | Evans, N., Huang, S. & King, J. (1999). The Natural Terrain Landslide Study, Phases I and II. GEO Report No 73. The Government of the Hong Kong Special Administrative Region. | spa |
dc.relation.references | Figueroa H. (2022) El Caribe, con Enorme Potencial de Gas Costa Afuera. El Universal. https://www.eluniversal.com.co/economica/2022/07/15/el-caribe-con-enorme-potencial-de-gas-costa-afuera/ | spa |
dc.relation.references | Flinch, J., (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. In: Bartolini, C., Buffler, R.T., Blickwede, J. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics, vol. 79. American Association of Petroleum Geologists Memoir, pp. 776–796. https://doi.org/10.1306/M79877C35 | spa |
dc.relation.references | Flinch, J., Amaral, J., Doulcet, A., & Mouly, B. (2003). Structure of the Offshore Sinu Accretionary Wedge. Northern Colombia. In: 8th Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, pp. 76–83. Cartagena (Colombia). | spa |
dc.relation.references | Fredericksen, R., Jensen, A., & Westerberg, H. (1992). The distribution of the Scleractinian Coral Lophelia Pertusa Around the Faroe Islands and the Relation to Internal Tidal Mixing. Sarsia, 77(2), 157–171. https://doi.org/10.1080/00364827.1992.10413502 | spa |
dc.relation.references | Freiwald, A. Hühnerbach, V., Lindberg, B., Wilson, J., & Campbell, J. (2002). The Sula Reef Complex, Norwegian Shelf. Facies 47, 179–200. https://doi.org/10.1007/BF02667712 | spa |
dc.relation.references | Freiwald, A., Helge, J., Grehan, A., Koslow, T. & Murray, J. (2004). Cold-water Coral Reefs. UNEP-WCMC, Cambridge, UK. 86 pp. | spa |
dc.relation.references | Frey-Martínez, J. (2010). 3D Seismic Interpretation of Mass Transport Deposits: Implications for Basin Analysis and Geohazard Evaluation. En: D. C. Mosher et al., Submarine Mass Movements and Their Consequences, 553-568. https://doi.org/10.1007/978-90-481-3071-9_45 | spa |
dc.relation.references | Galindo, P. & Lonegan, L. (2013). Evolution of the Bahia Basin: Evidence for Vertical -Axis Block Rotation and Basin Inversion at the Caribbean Plate Margin Offshore Northern Colombia. In: American Association of Petroleum Geologists International Conference and Exhibition. Cartagena (Colombia). | spa |
dc.relation.references | GEBCO. (2023) Gridded Bathymetry Data GEBCO_2023. [Archivo: DEM] https://www.GEBCO.net/data_and_products/gridded_bathymetry_data/ | spa |
dc.relation.references | Gee, M. Masson, D., Watts, A. & Allen, P. (1999). The Saharan Debris Flow: An Insight into the Mechanics of Long Runout Debris Flows. Sedimentology 46, 317–335. https://doi:10.1046/j.13653091.1999.00215.x | spa |
dc.relation.references | Gokceoglu C. & Aksoy H (1996) Landslide Susceptibility Mapping of the Slopes in the Residual Soils of the Mengen Region (Turkey) by Deterministic Stability Analyses and Image Processing Techniques. Eng Geol 44:147–161. | spa |
dc.relation.references | Gómez, J, Nivia, A., Montes, N., Jiménez, D., Tejada, M., Sepúlveda, M., Osorio, J., Gaona, T., Diederix, H., Uribe, H. & Mora, M.. (2007) Mapa Geológico de Colombia Escala 1:1.000.000. Instituto Colombiano de Geología y Minería. | spa |
dc.relation.references | Haflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Fredrick, C., Berg, Kjell & Masson, D. (2004). The Storegga Slide: Architecture, Geometry and Slide Development. Mar. Geol. 213, 201–234. https://doi:10.1016/j.margeo.2004.10.007 | spa |
dc.relation.references | Hampton, M. & Lee, H. (1996). Submarine Landslides. Reviews of Geophysics, 34(1), 1-58. | spa |
dc.relation.references | Hernández-Quiroz, M., Ruiz-Meza, D., Rojo-Callejas, F., & Ponce de León-Hill, C.. (2018). Determinación de la Distribución de Contaminantes Emergentes en Agua Intersticial en Sedimentos de Humedal Mediante la Optimización y Validación de un Método Analítico. Rev. Int. Contam. Ambie. 35 (2) 407-419. https:// doi: 10.20937/rica.2019.35.02.12 | spa |
dc.relation.references | Idárraga-García J. & Vargas C. (2014). Morphological Expression of Submarine Landslides in the Accretionary Prism of the Caribbean Continental Margin of Colombia. In: Krastel, S., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00972-8_35 | spa |
dc.relation.references | Innocenti C., Battaglini, L., D’Angelo, S., & Fiorentino, A. (2020). Submarine landslides: mapping the susceptibility in European seas. Quarterly Journal of Engineering Geology and Hydrogeology; 54 (1): qjegh2020–027. https://doi.org/10.1144/qjegh2020-027 | spa |
dc.relation.references | INVEMAR (2008). Monitoreo biológico de macrofauna bentónica en el golfo de Morrosquillo. Informe Técnico Final (ITF) realizado para la Ecopetrol S.A. – Gerencia de Oleoductos. Instituto de Investigaciones Marinas y Costeras INVEMAR. Coordinación de Servicios Científicos. 131pp. | spa |
dc.relation.references | Jakob M. (2000) The Impacts of Logging on Landslide Activity at Clayoquot Sound, British Columbia. Catena 38:279–300 | spa |
dc.relation.references | Jenks G. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190. | spa |
dc.relation.references | Jenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. Dover Publications, New York, 281 p. | spa |
dc.relation.references | León R. & Somoza L. (2011). GIS-based mapping for marine geohazards in seabed fluid leakage areas (Gulf of Cadiz, Spain). Mar Geophys Res 32, 207–223. https://doi.org/10.1007/s11001-011-9135-z | spa |
dc.relation.references | Leslie S., Cordon, I. & López-Gamundi O. (2012). Pleistocene to Recent Channel / Levee System from the Slope of the Magdalena Fan. 11th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. European Association of Geoscientists y Engineers. pp: cp-330-00094. ISSN:2214-4609. https://doi.org/10.3997/2214-4609-pdb.330.109 | spa |
dc.relation.references | Lehner, P., Doust, H., Bakker, G., Allenbach, P., & Gueneau, J. (1983). Active Caribbean Margin of South America. Am. Assoc. Pet. Geol. Stud. Geol. 15, 342111–342128. | spa |
dc.relation.references | Liu X., Wang, Y., Zhang, H & Guo, X. (2023). Susceptibility of Typical Marine Geological Disasters: An Overview. Geoenvironmental Disasters Vol. 10. N° 1. https://doi.org/10.1186/s40677-023-00237-6 | spa |
dc.relation.references | Locat, J. & Lee, H. (2005). Subaqueous Debris Flows. In: Debris-Flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_9 | spa |
dc.relation.references | Londoño J., Schiek, C., & Biegert, E.. (2015). Basement Architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin. https://doi.org/10.1306/13531932M1083639 | spa |
dc.relation.references | Lonergan, L., Jamin, N., Jackson, C., & Johnson, H. (2013). U-Shaped Slope Gully Systems and Sediment Waves on the Passive Margin of Gabon (West Africa). Marine Geology, 337, 80-97. https://doi.org/10.1016/j.margeo.2013.02.001 | spa |
dc.relation.references | López E., Schiek, C., & Biegert, E. (2022). Detachment Levels of Colombian Caribbean Mud Volcanoes. Ecopetrol. Ciencia, Tecnologia y Futuro Vol 12, Num 2, pp 49-77. https://doi.org/10.29047/01225383.401 | spa |
dc.relation.references | López-Cabrera F., Puga-Bernabéu, A., Webster, J., & Beaman, R. (2016). Análisis morfométrico de los deslizamientos submarinos en el sector central del margen de la Gran Barrera de Arrecifes, Noreste de Australia / Morphometric analysis of the submarine landslides in the central Great Barrier Reef margin, north-eastern Australia. Geogaceta, 60. pp. 43-46. | spa |
dc.relation.references | Lugo J. (2011) Diccionario Geomorfológico. Geografía para el Siglo XXI. Instituto de Geografía Unam. ISBN: 970-32-2965-4. 479 pp. | spa |
dc.relation.references | Lyle M. (2016) Deep-sea Sediments. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_53 | spa |
dc.relation.references | Maharaj R., (1993) Landslide Processes and Landslide Susceptibility Analysis from an Upland Watershed: A Case Study from St. Andrew, Jamaica, West Indies. Eng Geol 34:53–79. | spa |
dc.relation.references | Mantilla-Pimiento, A. (2007). Crustal Structure of the Southwestern Colombian Caribbean Margin. PhD Thesis. Friedrich-Schiller-University Jena, p. 121. | spa |
dc.relation.references | Martínez-García P., Comas, M., Soto, J. & Lonergan, L. (2009). Deslizamientos Submarinos Recientes en la Cresta de Alborán (Mar de Alborán). GEOGACETA N°47. Sociedad Geológica de España. | spa |
dc.relation.references | Martinez-Martos, M., Galindo-Zaldivar, J., Lobo, F., Pedrera, A., Ruano, P., Lopez-Chicano, M. & Ortega-Sánchez, M.. (2016) Buried Marine–cut Terraces and Submerged Marine–Built Terraces: The Carchuna-Calahonda Coastal Area (Southeast Iberian Peninsula). Geomorphology 264:29–40 | spa |
dc.relation.references | Martinez J., Castillo, J., Ortiz-Karpf, A., Rendon, L., Mosquera, J. C., & Vega, V. (2015). Deep Water Untested Oil-play in the Magdalena Fan, Caribbean Colombian Basin, in C. Bartolini and P. Mann, eds., Petroleum Geology and Potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 729–748. https://doi.org/10.1306/13531955M1083658 | spa |
dc.relation.references | Marín D., Niño, H., Ramírez, V., Ojeda, G., Torres, V. & Niño, F. (2010). Imaging and Imagining Transitional Sedimentary Environments: A Paleogeographic Reconstruction of Northern Colombia. Search and Discovery Article #10281. Poster presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana. | spa |
dc.relation.references | Masson, D. (1996). Catastrophic Collapse of the Fank of El Hierro About 15,000 Years Ago, and the History of Large Fank Collapses in the Canary Islands. Geology 24, 231–234. https://doi:10.1130/00917613(1996)024!0231:CCOTVIO2.3.CO;2 | spa |
dc.relation.references | Masson, D., Watts, A., Gee, M., Urgeles, R., Mitchell, N., Le Bas, T., & Canals, M. (2002). Slope Failures on the Flanks of the Western Canary Islands. Earth Sci. Rev. 57, 1–35. http://doi:10.1016/S0012-8252(01)00069-1 | spa |
dc.relation.references | Masson D., Harbitz, C., Wynn, R., Pedersen, G., & Lovholt, F.. (2006). Submarine Landslides: Processes, Triggers and Hazard Prediction. Phil. Trans. R. Soc. A.3642009–2039. http://doi.org/10.1098/rsta.2006.1810 | spa |
dc.relation.references | Mateus D., Prieto, J., Murphy, W. & Naranjo, J. (2021). Identification of Submarine Landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) Using Seismic Investigations. The Leading Edge 40: 914–922. https://doi.org/10.1190/tle40120914.1 | spa |
dc.relation.references | Mateus D., Prieto, J., Murphy, W. & Naranjo, J. Rincón, D., Hernández, C., Madero, H., Mora, A. & Acuña-Uribe, M. (2023). Submarine Landslide Susceptibility Assessment Along the Southern Convergent Margin of the Colombian Caribbean. The Leading Edge. https://doi.org/10.1190/tle42050344.1 | spa |
dc.relation.references | Mendoza M. & Domínguez L. (2005). Guía para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos. Serie: Atlas Nacional de Riesgos. CENAPRED. México. Pp 207 – 280. | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2016). Política para la Gestión Sostenible del Suelo. Bogotá D.C., 94 pp. ISBN: 978-958-8901-24-4 | spa |
dc.relation.references | Ministerio de Tecnologías de la Información y las Comunicaciones -MinTIC-. (2015). Colombia ya tiene Nueve Cables Submarinos de Fibra Óptica. Gobierno de Colombia. https://mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/8920:Colombia-ya-tiene-nueve-cables-submarinos-de-fibra-optica | spa |
dc.relation.references | Minster, J. & Jordan, T. (1978). Present-Day Plate Motions. J. Geophys. Res. 83 (B11), 5331–5354. https://doi.org/10.1029/JB083iB11p05331 | spa |
dc.relation.references | Moore, J., Clauge, D., Holcomb, R., Lipman, P., Normark, W. & Torresan, M. (1989). Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94,17 465–17 484. https://doi.org/10.1029/JB094iB12p17465 | spa |
dc.relation.references | Mora, S. & Vahrson, W. (1994). Macrozonation Methodology for Landslide Hazard Determination. Bulleting of the Association of Engineering and Geologist, 31(1), 49-58. | spa |
dc.relation.references | Moscardelli, L., Wood, L. & Mann, P. (2006) Mass-transport complexes and associated processes in the Offshore Area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088. https://doi.org/1306/02210605052 | spa |
dc.relation.references | Moscardelli, L. & Wood, L. (2008). New Classification System for Mass Transport Complexes in Offshore Trinidad. Basin Research, 20(1), 73–98. https://doi.org/10.1111/j.13652117.2007.00340.x | spa |
dc.relation.references | Mountjoy J. & Micallef A. (2018). Submarine Landslides. In: Submarine Geomorphology., ed. by Micallef A., Krastel S. and Savini A. Springer, Cham, pp. 235-250, 16 pp. https://doi.org/10.1007/978-3-319-57852-1_13 | spa |
dc.relation.references | Nagarajan R, Roy, A., Vinod Kumar, R, Mukherjee, A. & Khire, M. (2000). Landslide Hazard Susceptibility Mapping Based on Terrain and Climatic Factors for Tropical Monsoon Regions. Bull Eng Geol Environ 58:275–287. https://doi.org/10.1007/s100649900032 | spa |
dc.relation.references | Naranjo-Vesga J, Ortiz-Karpf, A., Wood, L., Jobe, Z., Paniagua-Arroyave, J. F., Shumaker, L., Mateus-Tarazona, D. & Galindo, P. (2020). Regional Controls in the Distribution and Morphometry of Deep-water Gravitational Deposits Along a Convergent Tectonic Margin. Southern Caribbean of Colombia. Marine and Petroleum Geology, Volume 121, 104639, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104639. | spa |
dc.relation.references | Naranjo-Vesga J, Paniagua-Arroyave, J., Ortiz-Karpf A., Jobe, Z., Wood, L., Galindo, P., Shumaker, L. & Mateus-Tarazona, D. (2022). Controls on Submarine Canyon Morphology Along a Convergent Tectonic Margin. The Southern Caribbean of Colombia, Marine and Petroleum Geology, Volume 137, 105493, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2021.105493. | spa |
dc.relation.references | Nardin, T.R., Hein, F.J., Gorsline, D.S. & Edwards, B.D. (1979) A review of mass movement processes, sediment, and acoustic characteristics and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. Spec. Publ. – Soc. Economic Paleontologists Mineralogists, 27, 61–73. | spa |
dc.relation.references | Ortiz-Karpf A., Hodgson, D. M., Jackson, C. A.-L., & McCaffrey, W. D. (2017). Influence of Seabed Morphology and Substrate Composition on Mass-Transport Flow Processes and Pathways: Insights from the Magdalena Fan, Offshore Colombia. Journal of Sedimentary Research, 87, 189-209. https://doi.org/10.2110/jsr.2017.10 | spa |
dc.relation.references | Pindell, J. & Kennan, L. (2007). Cenozoic Kinematics and Dynamics of Oblique Collision Between Two Convergent Plate Margins: The Caribbean-South America Collision in Eastern Venezuela. In: Trinidad and Barbados. Perkins Research Conference, pp. 458–553. Houston. https://doi.org/10.5724/gcs.07.27.0458 | spa |
dc.relation.references | Prior, D., & Coleman J. (1978). Disintegrative Retrogressive Landslides on Very-Low-Angle Subaqueous Slopes, Mississippi Delta, Mar. Geotechnol., 3, 37-60. | spa |
dc.relation.references | Ramírez, J. (1969). Los Diapiros del Mar Caribe Colombiano. Actas I Congreso Colombiano de Geología 31–39. Bogotá. | spa |
dc.relation.references | Ramírez, J. (1975). “Historia de los Terremotos en Colombia”. 2da Ed. Instituto Geográfico Agustín Codazzi. Bogotá D.C. | spa |
dc.relation.references | Ramírez V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum Systems of the Guajira Basin, Northern Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin, Claudio Bartolini, Paul Mann. Volume 108. ISBN electronic:9781629812724. https://doi.org/10.1306/13531944M1083647 | spa |
dc.relation.references | Ratzov G., Sosson, M., Collot, J., Migeon, S., Michaud, F., López, E. & Le Gonidec, Y. (2009). Deslizamientos submarinos a lo largo del Margen Convergente del Norte de Ecuador - Sur de Colombia. Posible control tectónico. Collot J-Y, V. Sallares, and A. Pazmiño. Geologia y Geofisica Marina y Terrestre del Ecuador desde la costa continental hasta las islas Gapapagos, CNDM-INOCAR-IRD, PSE001-09, Guayaquil, Ecuador, pp.75-82 | spa |
dc.relation.references | Rincón-Martínez D., Mateus, D., Naranjo, J., Osorio, C., Malagón, F., Madero, H., Ortiz-Karpf, A., Hernández, C. & De Bedout, J. (2021). Geomorfología del Fondo Marino Profundo en la Región Sur del Caribe Colombiano. Ecopetrol; Entrelibros. ISBN: 978-958-9287-37-8. https://doi.org/10.29047/9789589287361 | spa |
dc.relation.references | Rincón-Martínez D., Ruge, S. & Silva, A. (2022). Seismic Analysis of the Geological Occurrence of Gas Hydrate in the Colombian Caribbean Offshore. Journal of South American Earth Sciences, Volume 116, 103800, ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2022.103800 | spa |
dc.relation.references | Rodríguez I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural Style and Evolution of the Offshore Portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and Adjacent part of the Colombian Basin, Marine and Petroleum Geology, Volume 125, 104862, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104862 | spa |
dc.relation.references | Romero-Otero G., Slatt, R., & Pirmez, C. (2015). Evolution of the Magdalena Deepwater Fan in a Tectonically Active Setting, Offshore Colombia, in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 675–708. https://doi.org/10.1306/13531953M1083656 | spa |
dc.relation.references | Rice, R., Corbett, E. & Bailey, R. (1969). Soil Slips Related to Vegetation, Topography and Soil in Southern California, Water Resour. Res., 5, 649-659. | spa |
dc.relation.references | Ricketts, B. D. (2019). Chapter 10 – Cordilleran Sedimentary Basins of Western Canada Record 180 Million Years of Terrane Accretion. In A. D. Miall (Ed.), The Sedimentary Basins of the United States and Canada (2nd ed., pp. 445–475). Elsevier. https://doi.org/10.1016/b978-0-444-63895-3.00010-3 | spa |
dc.relation.references | Ruiz, C., Davis, N., Bentham, P., Price, A. & Carvajal, D. (2000). Structure and Tectonic Evolution of The South Caribbean Basin, Southern Offshore Colombia: A Progressive Accretionary Prism. In: VII Simposio Bolivariano-Exploracion de las Cuencas Subandinas, p. 22. Caracas. | spa |
dc.relation.references | Sánchez J., Mann, P., Carvajal-Arenas, L., & Bernal-Olaya, R. (2019). Regional Transect Across the Western Caribbean Sea Based on Integration of Geologic, Seismic Reflection, Gravity, and Magnetic Data. AAPG Bulletin; 103 (2): 303–343. https://doi.org/10.1306/05111816516 | spa |
dc.relation.references | Santacana N. (2001). Análisis de la Susceptibilidad del Terreno a la Formación de Deslizamientos Superficiales y Grandes Deslizamientos Mediante el Uso de Sistemas de Información Geográfica: Aplicación a la Cuenca Alta del Río Llobregat. Universitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica. ISBN: 8469956566 | spa |
dc.relation.references | Servicio Geológico Colombiano, SGC. (2016). Guía Metodológica para Estudios de Amenaza, Vulnerabilidad y Riesgo por Movimientos en Masa. Colección de Guías y Manuales. Imprenta Nacional de Colombia. Primera Reimpresión. Bogotá, D. C. Pp. 182. | spa |
dc.relation.references | Servicio Geológico Colombiano, SGC. (2024). ¿Es Posible Hacer Geología Bajo los Océanos Colombianos? https://www2.SGC.gov.co/Noticias/Paginas/Es-posible-hacer-geologia-bajo-los-oceanos-colombianos.aspx | spa |
dc.relation.references | Scarselli N. (2020). Submarine Landslides – Architecture, Controlling Factors and Environments. A summary. In Regional Geology and Tectonics: Volume 1: Principles of Geologic Analysis (2nd Edition ed., pp. 417-439). Elsevier. https://doi.org/10.1016/B978-0-444-64134-2.00015-8 | spa |
dc.relation.references | Sedore P., Normandeau, A. & Maselli, V. (2024) Environmental Controls on the Generation of Submarine Landslides in Arctic Fjords: Insight from Pangnirtung Fjord, Baffin Island, Nunavut. Marine Geology. Volume 472. 107290. ISSN 0025-3227. https://doi.org/10.1016/j.margeo.2024.107290 | spa |
dc.relation.references | Shan Z., Fenfen, G., Lai, X. & Xiao, J. (2021). Assessment of Submarine Landslide Susceptibility in the Sea Area of Zhoushan. IOP Conference Series: Earth and Environmental Science, Volume 734, 3rd International Forum on Geoscience and Oceanography 12-14 March 2021, Suzhou, China: https://dx.doi.org/10.1088/1755-1315/734/1/012023 | spa |
dc.relation.references | Shanmugam, G. (2019). Slides, Slumps, Debris Flows, Turbidity Currents, and Bottom Currents. Elsevier. Encyclopedia of Ocean Sciences, 3rd Edition. pp 228-257. https://doi.org/10.1016/B978-0-12-409548-9.10884-X | spa |
dc.relation.references | Shipley, T., Houston, M., Buffler, R., Shaub, F., Ladd, J. & Worzel, J. (1979). Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises. AAPG (Am. Assoc. Pet. Geol.) Bull. 63, 2204–2213. | spa |
dc.relation.references | Smith D., Harrison, S., & Jordan, J. (2013). Sea Level Rise and Submarine Mass Failures on Open Continental Margins. Quaternary Science Reviews. Volume 82. Pages 93-103. ISSN 0277-3791. https://doi.org/10.1016/j.quascirev.2013.10.012. | spa |
dc.relation.references | Soeters, R. & van Westen, C. (1996) Slope Instability Recognition Analysis and Zonation. In: Turner K.T. and Schuster, R.L., Eds., Landslides: Investigation and Mitigation, Special Report No. 247, Transportation Research Board National Research Council, Washington DC, 129-177. | spa |
dc.relation.references | Stow, D. & Tabrez, A. (1998). Hemipelagites: Processes, Facies and Model. In: Stoker, M. S., Evans, D. & Cramp, A. (eds) Geological Processes on Continental Margins: Sedimentation, MassWasting and Stability. Geological Society, London, Special Publications, 129, 317-337 | spa |
dc.relation.references | Submarine Telecoms Forum. (2022). Mapa en Línea. SubTel Forum. https://subtelforum.com/online-map/ | spa |
dc.relation.references | Susanth S., Kurian, J., Twinkle, D., Bijesh, C. & Tyagi, A. (2021). Potential Submarine Landslide Zones off Chennai, Southeast Continental Margin of India. Regional Studies in Marine Science. Volume 45. 101832.ISSN 2352-4855. https://doi.org/10.1016/j.rsma.2021.101832 | spa |
dc.relation.references | Ter-Stepanian, G. (1977). Types of Compound and Complex Landslides. Bulletin of the International Association of Engineering Geology, 16, 72–74. https://doi.org/10.1007/BF02591452 | spa |
dc.relation.references | Trenkamp, R., Kellogg, J., Freymueller, J. & Mora H. (2002). Wide Plate Margin Deformation, Southern Central America and Northwestern South America, CASA GPS Observations. J. S. Am. Earth Sci. 15, 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4 | spa |
dc.relation.references | van Westen, C. (1993). Application of Geographical Information System to Landslide Hazard Zonation. ITC Publication No. 15, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede | spa |
dc.relation.references | van Westen, C., Rengers, N. & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3), 339-419. | spa |
dc.relation.references | van Westen, C., van, Rengers, N., Terlien, M., & Soeters, R. (1997) Prediction of the Occurrence of Slope Instability Phenomena through GIS Based Hazard Zonation. Geologische Rundschau, 86, 404-414. http://dx.doi.org/10.1007/s005310050149 | spa |
dc.relation.references | van Westen, C. (2013). Guidelines for the Generation of 1:50.000 Scale Landslide Inventory, Susceptibility Maps, and Qualitative Risk Maps, Illustrated with Case Studies of the Provinces ThANH Hoa and Nghe An. University of Twente. | spa |
dc.relation.references | Van Zuidam, R. (1985). Aerial Photointerpretation in Terrain Analysis and Geomorphological Mapping. International Institute for Aerospace Survey and Earth Science. ITC. 442p. Smiths Publishers. The Hague. The Netherlands. | spa |
dc.relation.references | Vanneste, M., Fredrik, C., Glimsdal, S., Bonnevie, C., Issler, D., Jan, T., Løvholt, F. & Nadim, F. (2013). Submarine Landslides and Their Consequences: What Do We Know, What Can We Do?. (Keynote Presentation and Paper), 2nd World Landslide Forum, Rome, Italy. 5. https://doi.org/10.1007/978-3-642-31427-8-1 | spa |
dc.relation.references | Vargas, C. & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103 (3), 2025–2046. https://doi.org/10.1785/0120120328 | spa |
dc.relation.references | Varnes, D. (1978). Landslide Types and Processes. En: R.L. Schuster y R.J. Krizek (eds) Landslides, Analysis and Control, Special Report 176: Transportation Research Board (pp. 11-33). National Academy of Sciences. | spa |
dc.relation.references | Veloza, G., Sytron, R., Taylor, M. & Mora, A. (2012). Open-Source Archive of Active Faults for Northwest South America: GSA Today, v. 22, p. 4–10. https://doi: 10.1130/GSAT-G156A.1 | spa |
dc.relation.references | Vernette, G., Mauffret, A., Bobier, C., Briceño L. & Gayet, J. (1992). Mud Diapirism, Fan Sedimentation and Strike-Slip Faulting, Caribbean Colombian Margin. Tectonophysics 202, 335–349. https://doi.org/10.1016/0040-1951(92)90118-P | spa |
dc.relation.references | Villota, H. (1991). Geomorfología Aplicada a Levantamientos Edafológicos y Zonificación Física de las Tierras. Instituto Geográfico “Agustín Codazzi”. Bogotá D.C. 110pp. | spa |
dc.relation.references | Vinnels, J., Butler, R., McCaffrey, W., & Paton, D. (2010). Depositional Processes Across the Sinú Accretionary Prism, Offshore Colombia. Marine and Petroleum Geology. Volume 27, Issue 4, pp. 794-809, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2009.12.008. | spa |
dc.relation.references | Watling, E. (1998). Disturbance of the Seabed by Mobile Fishing Gear: A Comparison to Forest Clearcutting. Conservation Biology. Volume 12, Issue 6, pp. 1180-1197. https://doi.org/10.1046/j.1523-1739.1998.0120061180.x. | spa |
dc.relation.references | Watts, A., & Masson, D. (1995). A Giant Landslide on the North Flank of Tenerife, Canary Islands. J. Geophys. Res. 100, 24 487–24 498. https://doi:10.1029/95JB02630 | spa |
dc.relation.references | Wilson, C., Long, D., & Bulat, J. (2004). The Morphology, Setting and Processes of the Afen Slide. Mar. Geol. 213, 149–167. https://doi:10.1016/j.margeo.2004.10.005 | spa |
dc.relation.references | Yan T. (1988). Recent Advances of Quantitative Prognoses of Landslides in China In: Bonnard C (Ed), Landslides. Proceedings of the 5th ISL, Lausanne. Vol. 2, Rotterdam: Balkema, p. 1263-1268. | spa |
dc.relation.references | Yin K. & Yan T. (1988). Statistical Prediction Models for Slope Instability of Metamorphosed Rocks. In: Bonnard C (Ed), Landslides. Proceedings of the 5th ISL, Lausanne. Vol. 2, Rotterdam: Balkema, p. 1269-1272. | spa |
dc.relation.references | Zhang L., Pan, M., & Li, Z-L. (2020). 3D Modeling of Deepwater Turbidite Lobes: A Review of the Research Status and Progress. Petroleum Science, 17, 317–333. https://doi.org/10.1007/s12182-019-00415-y | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | DESPRENDIMIENTOS DE TIERRA | spa |
dc.subject.lemb | Landslides | eng |
dc.subject.lemb | TOPOGRAFIA SUBMARINA | spa |
dc.subject.lemb | Submarine topography | eng |
dc.subject.lemb | ANALISIS POR SEDIMENTACION | spa |
dc.subject.lemb | Sedimentation analysis | eng |
dc.subject.lemb | EROSION COSTERA | spa |
dc.subject.lemb | Coast changes | eng |
dc.subject.lemb | ECOSISTEMAS MARINOS | spa |
dc.subject.lemb | Sea biotic communities | eng |
dc.subject.lemb | PROYECTOS DE PERFORACION EN AGUAS PROFUNDAS | spa |
dc.subject.lemb | Deep sea drilling project | eng |
dc.subject.lemb | ESTRATIGRAFIA | spa |
dc.subject.lemb | Geology, Stratigraphic | eng |
dc.subject.proposal | Susceptibilidad | spa |
dc.subject.proposal | Movimientos en Masa Submarinos | spa |
dc.subject.proposal | Métodos Bivariados | spa |
dc.subject.proposal | Unidades de Condición Única (UCU) | spa |
dc.subject.proposal | Susceptibility | eng |
dc.subject.proposal | Submarine Mass Movements | eng |
dc.subject.proposal | Bivariate Methods | eng |
dc.subject.proposal | Unique Condition Units (UCU) | eng |
dc.title | Estudio preliminar de susceptibilidad por deslizamientos submarinos en el Caribe colombiano | spa |
dc.title.translated | Preliminary study of susceptibility to submarine landslide in the colombian Caribbean | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1013655757.2025.pdf
- Tamaño:
- 36.68 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Civil - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: