Estudio preliminar de susceptibilidad por deslizamientos submarinos en el Caribe colombiano

dc.contributor.advisorÁvila Álvarez, Guillermo Eduardospa
dc.contributor.authorRodríguez Contador, David Stymanspa
dc.coverage.countryColombiaspa
dc.coverage.regionCórdobaspa
dc.date.accessioned2025-03-13T13:42:25Z
dc.date.available2025-03-13T13:42:25Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEn Colombia se han realizado múltiples estudios de estabilidad de laderas y análisis de susceptibilidad, amenaza y riesgo por procesos de remoción en masa en zonas continentales, pero son escasos los estudios de estabilidad en relieves submarinos. Con el fin de comprender mejor las condiciones generales de estabilidad en estos ambientes, en la presente investigación se realizó un estudio preliminar de susceptibilidad a deslizamientos submarinos en un sector denominado la Cuenca Sinú Offshore, frente a las costas del Caribe colombiano, donde se dispone de información base, ya que se proyecta la exploración de hidrocarburos en un área de 15.530 km². El estudio se lleva a cabo a una escala de 1:50.000 y tiene como base el modelo de elevación digital, la geología, la geomorfología y la densidad de fallas en la región. Ante la falta de información detallada, se desarrolló una cartografía geológica fundamentada en datos estratigráficos y estructurales, complementada con un análisis geomorfológico basado en estudios previos. Estas variables se integran para establecer relaciones estadísticas con factores condicionantes, permitiendo identificar áreas con mayor susceptibilidad a inestabilidad. Para la zonificación de susceptibilidad, se aplican los métodos bivariados de Peso de Evidencia y el Valor de Información, combinados con unidades de condición única. Se construyen cinco combinaciones de variables, validadas a través de curvas de éxito, y se selecciona la combinación que mejor coincida con el inventario de procesos. Finalmente, se definen los intervalos de susceptibilidad alta, media y baja mediante un análisis de distribución de frecuencias. Este estudio preliminar proporciona una base sólida para la zonificación de deslizamientos submarinos en la Cuenca Sinú Offshore (Texto tomado de la fuente).spa
dc.description.abstractIn Colombia, multiple studies of slope stability and analysis of susceptibility, hazard and risk due to landslide processes have been carried out in continental areas, but stability studies in submarine reliefs are scarce. In order to better understand the general stability conditions in these environments, a preliminary study of susceptibility to submarine landslides was carried out in a sector called the Sinu Offshore Basin, off the Colombian Caribbean coast, where baseline information is available, since hydrocarbon exploration is planned in an area of 15,530 km². The study is carried out at a scale of 1:50,000 and is based on the digital elevation model, geology, geomorphology and fault density in the region. In the absence of detailed information, geological mapping was developed based on stratigraphic and structural data, complemented by a geomorphological analysis based on previous studies. These variables are integrated to establish statistical relationships with conditioning factors, allowing the identification of areas with greater susceptibility to instability. For susceptibility zoning, the bivariate methods of Weight of Evidence and Information Value are applied, combined with single condition units. Five combinations of variables are constructed, validated through success curves, and the combination that best matches the process inventory is selected. Finally, high, medium and low susceptibility intervals are defined through a frequency distribution analysis. This preliminary study provides a solid basis for the zoning of submarine landslides in the Sinú Offshore Basin.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería - Geotecniaspa
dc.description.researchareaAnálisis de Confiabilidad y Riesgos Asociados al Entorno Geotécnicospa
dc.format.extent184 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87648
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAchour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V. & Bendaud, E. (2017). Landslide Susceptibility Mapping Using Analytic Hierarchy Process and Information Value Methods Along a Highway Road Section in Constantine, Algeria. Arab J Geosci 10, 194. https://doi.org/10.1007/s12517-017-2980-6spa
dc.relation.referencesAlmacenamientoIT. (2021). Las Inundaciones de los Ríos Pueden Causar Daños en los Cables Submarinos. ITUser. https://almacenamientoit.ituser.es/noticias-y-actualidad/2021/06/las-inundaciones-de-los-rios-pueden-causar-danos-en-los-cables-submarinosspa
dc.relation.referencesAristizábal, E., López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la Amenaza por Movimientos en Masa Detonados por Lluvias para una Región de los Andes Colombianos Estimando la Probabilidad Espacial, Temporal, y Magnitud. Boletín de Geología, 41(3), 85-105. https://doi:10.18273/revbol.v41n3-2019004spa
dc.relation.referencesAvdievitch N. & Coe J. (2022) Submarine Landslide Susceptibility Mapping in Recently Deglaciated Terrain, Glacier Bay, Alaska. Frontiers in Earth Science. 10:821188. https://doi.org/10.3389/feart.2022.821188spa
dc.relation.referencesAlfaro E. & Holz M. (2014a). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin, Marine and Petroleum Geology, Volume 57, pp. 294-311, ISSN 0264-8172, https://doi.org/10.1016/j.marpetgeo.2014.06.002spa
dc.relation.referencesAlfaro E. & Holz M. (2014b). Review of the chronostratigraphic charts in the Sinú-San Jacinto basin based on new seismic stratigraphic interpretations, Journal of South American Earth Sciences, Volume 56, pp. 139-169, ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2014.09.004spa
dc.relation.referencesAnadarko y Aquabiosfera (2014). Plan de Manejo Ambiental Específico para el Pozo Calasú 1, Área de Perforación Exploratoria Marina Fuerte Norte (Caribe Colombiano). Bogotá, D.C.spa
dc.relation.referencesAntolínez H., Mosquera, J., Toledo, M. & Duarte, L. (2009). Caracterización Estratigráfica Conceptual del Sistema Costa-Afuera del Paleo-Abanico del Magdalena, Caribe Colombiano. X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas held in Cartagena, Colombia. ACGP.spa
dc.relation.referencesBernal–Olaya, R., Sánchez, J., Mann, P. & Murphy., M. (2015). Along–strike Crustal Thickness Variations of the Subducting Caribbean Plate Produces Two Distinctive Styles of Thrusting in the Offshore South Caribbean Deformed Belt, Colombia. In: Bartolini, C. y Mann, P. (editors), Petroleum Geology and Potential of the Colombian Caribbean Margin. American Association of Petroleum Geologists, Memoir 108, p. 295–322. https://doi.org/10.1306/13531941M1083645spa
dc.relation.referencesBonham-Carter, G., & Agterberg, F. (1990). Application of a Microcomputer-based Geographic Information System to Mineral-Potential Mapping. Microcomputer Applications in Geology 2, 49–74. https://doi:10.1016/b978-0-08-040261-1.50012-xspa
dc.relation.referencesBryn, P., Berg, K., Forsberg, C., Solheim, A., & Kvalstad, T. (2005). Explaining the Storegga Slide. Mar Petrol Geol 22(1–2):11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003spa
dc.relation.referencesCadena A. F., Romero, G., & Slatt, R. (2015). Application of Stratigraphic Grade Concepts to Understand Basin-Fill Processes and Deposits in an Active Margin Setting, Magdalena Submarine Fan and Associated Foldand-Thrust Belts, Offshore Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin. 108, 323-344. https://doi.org/10.1306/13531942M1083646spa
dc.relation.referencesCardona A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramírez, V., Valencia, V., Rincón, D., Vervoort, J. & Zapata, S. (2012). From Arc-Continent Collision to Continuous Convergence, Clues from Paleogene Conglomerates Along the Southern Caribbean–South America Plate Boundary. Tectonophysics 580, 58–87. https://doi.org/10.1016/j.tecto.2012.08.039spa
dc.relation.referencesCarlton B., Vanneste, M., Forsberg, C. F., Knudsen, S., Løvholt, F., Kvalstad, T., Holm, S., Kjennbakken, H., Adeel, M., Degago, S., & Haflidason, H. (2018). Geohazard assessment related to submarine instabilities in Bjørnafjorden, Norway. Geological Society, London, Special Publications, SP477.39. https://doi.org/10.1144/SP477.39spa
dc.relation.referencesCarrara A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui,V., & Reichenbach, P. (1991) GIS Techniques and Statistical Models in Evaluating Landslide Hazard. Earth Surf Proc Landforms 16:427–445spa
dc.relation.referencesCarrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P.. (1995). GIS Technology in Mapping Landslide Hazard. In A. Carrara, & F. Guzzetti, Geographical Information Systems in Assessing Natural Hazards (vol. 5, pp. 135-175). Dordrecht: Kluwer Academic Publisher. https://doi:10.1007/978-94-015-8404-3_8spa
dc.relation.referencesCarvajal J. (2008). Primeras aproximaciones a la estandarización de la geomorfología en Colombia, Bogotá, 29 pp.spa
dc.relation.referencesCarvajal J. (2012). Propuesta de Estandarización de la Cartografía Geomorfológica de Colombia. Colección Guías y Manuales. Servicio Geológico Colombiano. Bogotá, D. C. Pp. 1 – 84.spa
dc.relation.referencesCarvajal J. (2017). Volcanismo de Lodo del Caribe Central Colombiano. Colección Guías y Manuales. Servicio Geológico Colombiano. Bogotá, D. C. PP. 1 – 89.spa
dc.relation.referencesCarvajal-Arenas L., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology. Volume 121,104511. ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104511spa
dc.relation.referencesCediel F., Shaw, F. & Cáceres, C. (2003). Tectonic Assembly of the Andean Block. In: Bartolini, C., Buffler, R.T., Blickwede, J. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, vol. 79. American Association of Petroleum Geologists Memoir, pp. 815–848.spa
dc.relation.referencesChen, T., Niu, R., & Jia, X. (2016). A Comparison of Information Value and Logistic Regression Models in Landslide Susceptibility Mapping by Using GIS. Environ Earth Sci 75, 867. https://doi.org/10.1007/s12665-016-5317-yspa
dc.relation.referencesChung, C. F. & Fabbri, A. (1999). Probabilistic Prediction Models for Landslide Hazard Mapping, Photogrammetric Engineering & Remote Sensing 65(12), 1389–1399.spa
dc.relation.referencesClare, M., Chaytor, J., Dabson, O., Gamboa, D., Georgiopoulou, A., Eady, H., Hunt, J., Jackson, C., Katz, O., Krastel, S., León, R., Micallef, A., Moernaut, J., Moriconi, R., Moscardelli, L., Mueller C., Normandeau, A., Patacci, M., Steventon M., Urlaub, M., Völker, D., Wood, L. & Jobe, Z.. (2018). A Consistent Global Approach for the Morphometric Characterization of Subaqueous Landslides. Geological Society, London, Special Publications, 477(1). SP477.15. https://doi.org/10.1144/SP477.15spa
dc.relation.referencesComisión Colombiana del Océano (2016). Morfología del Océano. Enciclopedia Marítima de Colombia. Sistema de Información Nacional Oceánico y Costero. http://sinoc.cco.gov.co/index.php/ciencias-naturales/oceanografia/64-enciclopedia-maritima-de-colombia/ciencias-naturales/oceanografia/47-morfologia-del-oceano.htmlspa
dc.relation.referencesCrandell, D., Miller, C., Glicken, H., Christiansen, R. & Newhall, C. (1984). Catastrophic Debris Avalanche from an Ancestral Mount Shasta Volcano, California, in Geology of the Upper Cretaceous Hornbrook Formation, Oregon and California, edited by T. H. Nilsen, pp. 197-201, Soc. of Econ. Paleontol. and Mineral., Tulsa, Okla.spa
dc.relation.referencesCruden, D.M. & Varnes, D.J. (1996). Landslide Types and Processes. En: R.L Schuster y A.K. Turner, Landslides: Investigation and Mitigation (pp. 36-75). Transportation Research Board. http://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdfspa
dc.relation.referencesDahal, R., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008). Predictive Modelling of Rainfall-Induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-Evidence. Geomorphology, 102(3-4), 496-510.spa
dc.relation.referencesDai C., Lee, C., Li, J. & Xu, Z. (2001). Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hong Kong. 40(3), 381–391. https://doi.org/10.1007/s002540000163.spa
dc.relation.referencesDatacenterDynamics. (2024). Reparado Frente a las Costas de África Occidental el Cable submarino WACS Después de los Daños Sufridos por un Deslizamiento de Tierra. DataCenter Dynamics. https://www.datacenterdynamics.com/es/noticias/reparado-frente-a-las-costas-de-africa-occidental-el-cable-submarino-wacs-despues-los-danos-sufridos-por-un-deslizamiento-de-tierraspa
dc.relation.referencesDávila J. (2011). Diccionario Geológico. Arth Grouting S.A.C. 901 pp. Perú.spa
dc.relation.referencesDingle, R. V. (1977). The Anatomy of a Large Submarine Slump on a Sheared Continental Margin (Southeast Africa), J. Geol. Soc. London, 134, 293-310.spa
dc.relation.referencesDott, R.H. (1963) Dynamics of subaqueous gravity depositional processes. AAPG Bull., 47,104-128.spa
dc.relation.referencesDugan, B., & Flemings, P., (2000). Overpressure and Fluid flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 289:288–291, https://doi:10.1126/science.289.5477.288.spa
dc.relation.referencesDuque-Caro, H. (1979). Major Structural Elements and Evolution of Northwestern Colombia. Geological and Geophysical Investigations of Continental Margins. In: Watkins, J.S., Montadert, L., Dickerson, P.W. (Eds.), Geological and Geophysical Investigations of Continental Margins. American Association of Petroleum Geologist Memoir, vol. 29, pp. 239–351.spa
dc.relation.referencesDuque-Caro, H. (1990). The Chocol Block in the Northwestern Corner of South America: Structural, Tectonostratigraphy and Paleogeographic Implications. J. S. Am. Earth Sci. 3 (1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-Wspa
dc.relation.referencesDyer A., Mark-Moser, M., Duran, R. & Bauer, J. (2024). Offshore Application of Landslide Susceptibility Mapping Using Gradient-boosted Decision Trees: a Gulf of Mexico Case Study. Nat Hazards. https://doi.org/10.1007/s11069-024-06492-6spa
dc.relation.referencesEasterbrook, D. (1993). Surface Processes and Landforms. MacMillan Publ. Company, New York, 520 ppspa
dc.relation.referencesEcopetrol S.A. (2010a) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Sur en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 220 pp.spa
dc.relation.referencesEcopetrol S.A. (2010a) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Sur en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 220 pp.spa
dc.relation.referencesEcopetrol S.A. (2010b) Estudio de Impacto Ambiental para el Área de Perforación Exploratoria Marina Fuerte Norte en el Caribe Colombiano. Capítulo 3: Caracterización Ambiental. Bogotá D.C. 187 pp.spa
dc.relation.referencesEl Heraldo. (2017). Buscan el Origen del Microtsunami entre los Cables Submarinos del Caribe. El Heraldo. https://www.elheraldo.co/nacional/2017/07/25/buscan-el-origen-del-microtsunami-entre-los-cables-submarinos-del-caribespa
dc.relation.referencesErcanoglu, M. & Gokceoglu, C. (2002) Assessment of Landslide Susceptibility for a Landslide-Prone Area (North of Yenice, NW Turkey) by Fuzzy Approach. Env Geol 41, 720–730 https://doi.org/10.1007/s00254-001-0454-2.spa
dc.relation.referencesErcilla, G. (2002). The Magdalena Turbidite System (Caribbean Sea): Present-Day Morphology and Architecture Model: Marine Geology, v. 185, p. 303–318.spa
dc.relation.referencesEscalona A., & Mann P. (2011) Tectonics, Basin Subsidence Mechanisms, and Paleogeography of the Caribbean-South American Plate Boundary Zone. Marine and Petroleum Geology. Volume 28, Issue 1. pp 8-39. ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2010.01.016.spa
dc.relation.referencesEsri. (s.f.) How Aspect Works. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-aspect-works.htmspa
dc.relation.referencesEvans, N., Huang, S. & King, J. (1999). The Natural Terrain Landslide Study, Phases I and II. GEO Report No 73. The Government of the Hong Kong Special Administrative Region.spa
dc.relation.referencesFigueroa H. (2022) El Caribe, con Enorme Potencial de Gas Costa Afuera. El Universal. https://www.eluniversal.com.co/economica/2022/07/15/el-caribe-con-enorme-potencial-de-gas-costa-afuera/spa
dc.relation.referencesFlinch, J., (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. In: Bartolini, C., Buffler, R.T., Blickwede, J. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics, vol. 79. American Association of Petroleum Geologists Memoir, pp. 776–796. https://doi.org/10.1306/M79877C35spa
dc.relation.referencesFlinch, J., Amaral, J., Doulcet, A., & Mouly, B. (2003). Structure of the Offshore Sinu Accretionary Wedge. Northern Colombia. In: 8th Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, pp. 76–83. Cartagena (Colombia).spa
dc.relation.referencesFredericksen, R., Jensen, A., & Westerberg, H. (1992). The distribution of the Scleractinian Coral Lophelia Pertusa Around the Faroe Islands and the Relation to Internal Tidal Mixing. Sarsia, 77(2), 157–171. https://doi.org/10.1080/00364827.1992.10413502spa
dc.relation.referencesFreiwald, A. Hühnerbach, V., Lindberg, B., Wilson, J., & Campbell, J. (2002). The Sula Reef Complex, Norwegian Shelf. Facies 47, 179–200. https://doi.org/10.1007/BF02667712spa
dc.relation.referencesFreiwald, A., Helge, J., Grehan, A., Koslow, T. & Murray, J. (2004). Cold-water Coral Reefs. UNEP-WCMC, Cambridge, UK. 86 pp.spa
dc.relation.referencesFrey-Martínez, J. (2010). 3D Seismic Interpretation of Mass Transport Deposits: Implications for Basin Analysis and Geohazard Evaluation. En: D. C. Mosher et al., Submarine Mass Movements and Their Consequences, 553-568. https://doi.org/10.1007/978-90-481-3071-9_45spa
dc.relation.referencesGalindo, P. & Lonegan, L. (2013). Evolution of the Bahia Basin: Evidence for Vertical -Axis Block Rotation and Basin Inversion at the Caribbean Plate Margin Offshore Northern Colombia. In: American Association of Petroleum Geologists International Conference and Exhibition. Cartagena (Colombia).spa
dc.relation.referencesGEBCO. (2023) Gridded Bathymetry Data GEBCO_2023. [Archivo: DEM] https://www.GEBCO.net/data_and_products/gridded_bathymetry_data/spa
dc.relation.referencesGee, M. Masson, D., Watts, A. & Allen, P. (1999). The Saharan Debris Flow: An Insight into the Mechanics of Long Runout Debris Flows. Sedimentology 46, 317–335. https://doi:10.1046/j.13653091.1999.00215.xspa
dc.relation.referencesGokceoglu C. & Aksoy H (1996) Landslide Susceptibility Mapping of the Slopes in the Residual Soils of the Mengen Region (Turkey) by Deterministic Stability Analyses and Image Processing Techniques. Eng Geol 44:147–161.spa
dc.relation.referencesGómez, J, Nivia, A., Montes, N., Jiménez, D., Tejada, M., Sepúlveda, M., Osorio, J., Gaona, T., Diederix, H., Uribe, H. & Mora, M.. (2007) Mapa Geológico de Colombia Escala 1:1.000.000. Instituto Colombiano de Geología y Minería.spa
dc.relation.referencesHaflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Fredrick, C., Berg, Kjell & Masson, D. (2004). The Storegga Slide: Architecture, Geometry and Slide Development. Mar. Geol. 213, 201–234. https://doi:10.1016/j.margeo.2004.10.007spa
dc.relation.referencesHampton, M. & Lee, H. (1996). Submarine Landslides. Reviews of Geophysics, 34(1), 1-58.spa
dc.relation.referencesHernández-Quiroz, M., Ruiz-Meza, D., Rojo-Callejas, F., & Ponce de León-Hill, C.. (2018). Determinación de la Distribución de Contaminantes Emergentes en Agua Intersticial en Sedimentos de Humedal Mediante la Optimización y Validación de un Método Analítico. Rev. Int. Contam. Ambie. 35 (2) 407-419. https:// doi: 10.20937/rica.2019.35.02.12spa
dc.relation.referencesIdárraga-García J. & Vargas C. (2014). Morphological Expression of Submarine Landslides in the Accretionary Prism of the Caribbean Continental Margin of Colombia. In: Krastel, S., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-00972-8_35spa
dc.relation.referencesInnocenti C., Battaglini, L., D’Angelo, S., & Fiorentino, A. (2020). Submarine landslides: mapping the susceptibility in European seas. Quarterly Journal of Engineering Geology and Hydrogeology; 54 (1): qjegh2020–027. https://doi.org/10.1144/qjegh2020-027spa
dc.relation.referencesINVEMAR (2008). Monitoreo biológico de macrofauna bentónica en el golfo de Morrosquillo. Informe Técnico Final (ITF) realizado para la Ecopetrol S.A. – Gerencia de Oleoductos. Instituto de Investigaciones Marinas y Costeras INVEMAR. Coordinación de Servicios Científicos. 131pp.spa
dc.relation.referencesJakob M. (2000) The Impacts of Logging on Landslide Activity at Clayoquot Sound, British Columbia. Catena 38:279–300spa
dc.relation.referencesJenks G. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.spa
dc.relation.referencesJenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. Dover Publications, New York, 281 p.spa
dc.relation.referencesLeón R. & Somoza L. (2011). GIS-based mapping for marine geohazards in seabed fluid leakage areas (Gulf of Cadiz, Spain). Mar Geophys Res 32, 207–223. https://doi.org/10.1007/s11001-011-9135-zspa
dc.relation.referencesLeslie S., Cordon, I. & López-Gamundi O. (2012). Pleistocene to Recent Channel / Levee System from the Slope of the Magdalena Fan. 11th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. European Association of Geoscientists y Engineers. pp: cp-330-00094. ISSN:2214-4609. https://doi.org/10.3997/2214-4609-pdb.330.109spa
dc.relation.referencesLehner, P., Doust, H., Bakker, G., Allenbach, P., & Gueneau, J. (1983). Active Caribbean Margin of South America. Am. Assoc. Pet. Geol. Stud. Geol. 15, 342111–342128.spa
dc.relation.referencesLiu X., Wang, Y., Zhang, H & Guo, X. (2023). Susceptibility of Typical Marine Geological Disasters: An Overview. Geoenvironmental Disasters Vol. 10. N° 1. https://doi.org/10.1186/s40677-023-00237-6spa
dc.relation.referencesLocat, J. & Lee, H. (2005). Subaqueous Debris Flows. In: Debris-Flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_9spa
dc.relation.referencesLondoño J., Schiek, C., & Biegert, E.. (2015). Basement Architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin. https://doi.org/10.1306/13531932M1083639spa
dc.relation.referencesLonergan, L., Jamin, N., Jackson, C., & Johnson, H. (2013). U-Shaped Slope Gully Systems and Sediment Waves on the Passive Margin of Gabon (West Africa). Marine Geology, 337, 80-97. https://doi.org/10.1016/j.margeo.2013.02.001spa
dc.relation.referencesLópez E., Schiek, C., & Biegert, E. (2022). Detachment Levels of Colombian Caribbean Mud Volcanoes. Ecopetrol. Ciencia, Tecnologia y Futuro Vol 12, Num 2, pp 49-77. https://doi.org/10.29047/01225383.401spa
dc.relation.referencesLópez-Cabrera F., Puga-Bernabéu, A., Webster, J., & Beaman, R. (2016). Análisis morfométrico de los deslizamientos submarinos en el sector central del margen de la Gran Barrera de Arrecifes, Noreste de Australia / Morphometric analysis of the submarine landslides in the central Great Barrier Reef margin, north-eastern Australia. Geogaceta, 60. pp. 43-46.spa
dc.relation.referencesLugo J. (2011) Diccionario Geomorfológico. Geografía para el Siglo XXI. Instituto de Geografía Unam. ISBN: 970-32-2965-4. 479 pp.spa
dc.relation.referencesLyle M. (2016) Deep-sea Sediments. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_53spa
dc.relation.referencesMaharaj R., (1993) Landslide Processes and Landslide Susceptibility Analysis from an Upland Watershed: A Case Study from St. Andrew, Jamaica, West Indies. Eng Geol 34:53–79.spa
dc.relation.referencesMantilla-Pimiento, A. (2007). Crustal Structure of the Southwestern Colombian Caribbean Margin. PhD Thesis. Friedrich-Schiller-University Jena, p. 121.spa
dc.relation.referencesMartínez-García P., Comas, M., Soto, J. & Lonergan, L. (2009). Deslizamientos Submarinos Recientes en la Cresta de Alborán (Mar de Alborán). GEOGACETA N°47. Sociedad Geológica de España.spa
dc.relation.referencesMartinez-Martos, M., Galindo-Zaldivar, J., Lobo, F., Pedrera, A., Ruano, P., Lopez-Chicano, M. & Ortega-Sánchez, M.. (2016) Buried Marine–cut Terraces and Submerged Marine–Built Terraces: The Carchuna-Calahonda Coastal Area (Southeast Iberian Peninsula). Geomorphology 264:29–40spa
dc.relation.referencesMartinez J., Castillo, J., Ortiz-Karpf, A., Rendon, L., Mosquera, J. C., & Vega, V. (2015). Deep Water Untested Oil-play in the Magdalena Fan, Caribbean Colombian Basin, in C. Bartolini and P. Mann, eds., Petroleum Geology and Potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 729–748. https://doi.org/10.1306/13531955M1083658spa
dc.relation.referencesMarín D., Niño, H., Ramírez, V., Ojeda, G., Torres, V. & Niño, F. (2010). Imaging and Imagining Transitional Sedimentary Environments: A Paleogeographic Reconstruction of Northern Colombia. Search and Discovery Article #10281. Poster presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana.spa
dc.relation.referencesMasson, D. (1996). Catastrophic Collapse of the Fank of El Hierro About 15,000 Years Ago, and the History of Large Fank Collapses in the Canary Islands. Geology 24, 231–234. https://doi:10.1130/00917613(1996)024!0231:CCOTVIO2.3.CO;2spa
dc.relation.referencesMasson, D., Watts, A., Gee, M., Urgeles, R., Mitchell, N., Le Bas, T., & Canals, M. (2002). Slope Failures on the Flanks of the Western Canary Islands. Earth Sci. Rev. 57, 1–35. http://doi:10.1016/S0012-8252(01)00069-1spa
dc.relation.referencesMasson D., Harbitz, C., Wynn, R., Pedersen, G., & Lovholt, F.. (2006). Submarine Landslides: Processes, Triggers and Hazard Prediction. Phil. Trans. R. Soc. A.3642009–2039. http://doi.org/10.1098/rsta.2006.1810spa
dc.relation.referencesMateus D., Prieto, J., Murphy, W. & Naranjo, J. (2021). Identification of Submarine Landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) Using Seismic Investigations. The Leading Edge 40: 914–922. https://doi.org/10.1190/tle40120914.1spa
dc.relation.referencesMateus D., Prieto, J., Murphy, W. & Naranjo, J. Rincón, D., Hernández, C., Madero, H., Mora, A. & Acuña-Uribe, M. (2023). Submarine Landslide Susceptibility Assessment Along the Southern Convergent Margin of the Colombian Caribbean. The Leading Edge. https://doi.org/10.1190/tle42050344.1spa
dc.relation.referencesMendoza M. & Domínguez L. (2005). Guía para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos. Serie: Atlas Nacional de Riesgos. CENAPRED. México. Pp 207 – 280.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2016). Política para la Gestión Sostenible del Suelo. Bogotá D.C., 94 pp. ISBN: 978-958-8901-24-4spa
dc.relation.referencesMinisterio de Tecnologías de la Información y las Comunicaciones -MinTIC-. (2015). Colombia ya tiene Nueve Cables Submarinos de Fibra Óptica. Gobierno de Colombia. https://mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/8920:Colombia-ya-tiene-nueve-cables-submarinos-de-fibra-opticaspa
dc.relation.referencesMinster, J. & Jordan, T. (1978). Present-Day Plate Motions. J. Geophys. Res. 83 (B11), 5331–5354. https://doi.org/10.1029/JB083iB11p05331spa
dc.relation.referencesMoore, J., Clauge, D., Holcomb, R., Lipman, P., Normark, W. & Torresan, M. (1989). Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94,17 465–17 484. https://doi.org/10.1029/JB094iB12p17465spa
dc.relation.referencesMora, S. & Vahrson, W. (1994). Macrozonation Methodology for Landslide Hazard Determination. Bulleting of the Association of Engineering and Geologist, 31(1), 49-58.spa
dc.relation.referencesMoscardelli, L., Wood, L. & Mann, P. (2006) Mass-transport complexes and associated processes in the Offshore Area of Trinidad and Venezuela. AAPG Bull., 90, 1059–1088. https://doi.org/1306/02210605052spa
dc.relation.referencesMoscardelli, L. & Wood, L. (2008). New Classification System for Mass Transport Complexes in Offshore Trinidad. Basin Research, 20(1), 73–98. https://doi.org/10.1111/j.13652117.2007.00340.xspa
dc.relation.referencesMountjoy J. & Micallef A. (2018). Submarine Landslides. In: Submarine Geomorphology., ed. by Micallef A., Krastel S. and Savini A. Springer, Cham, pp. 235-250, 16 pp. https://doi.org/10.1007/978-3-319-57852-1_13spa
dc.relation.referencesNagarajan R, Roy, A., Vinod Kumar, R, Mukherjee, A. & Khire, M. (2000). Landslide Hazard Susceptibility Mapping Based on Terrain and Climatic Factors for Tropical Monsoon Regions. Bull Eng Geol Environ 58:275–287. https://doi.org/10.1007/s100649900032spa
dc.relation.referencesNaranjo-Vesga J, Ortiz-Karpf, A., Wood, L., Jobe, Z., Paniagua-Arroyave, J. F., Shumaker, L., Mateus-Tarazona, D. & Galindo, P. (2020). Regional Controls in the Distribution and Morphometry of Deep-water Gravitational Deposits Along a Convergent Tectonic Margin. Southern Caribbean of Colombia. Marine and Petroleum Geology, Volume 121, 104639, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104639.spa
dc.relation.referencesNaranjo-Vesga J, Paniagua-Arroyave, J., Ortiz-Karpf A., Jobe, Z., Wood, L., Galindo, P., Shumaker, L. & Mateus-Tarazona, D. (2022). Controls on Submarine Canyon Morphology Along a Convergent Tectonic Margin. The Southern Caribbean of Colombia, Marine and Petroleum Geology, Volume 137, 105493, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2021.105493.spa
dc.relation.referencesNardin, T.R., Hein, F.J., Gorsline, D.S. & Edwards, B.D. (1979) A review of mass movement processes, sediment, and acoustic characteristics and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. Spec. Publ. – Soc. Economic Paleontologists Mineralogists, 27, 61–73.spa
dc.relation.referencesOrtiz-Karpf A., Hodgson, D. M., Jackson, C. A.-L., & McCaffrey, W. D. (2017). Influence of Seabed Morphology and Substrate Composition on Mass-Transport Flow Processes and Pathways: Insights from the Magdalena Fan, Offshore Colombia. Journal of Sedimentary Research, 87, 189-209. https://doi.org/10.2110/jsr.2017.10spa
dc.relation.referencesPindell, J. & Kennan, L. (2007). Cenozoic Kinematics and Dynamics of Oblique Collision Between Two Convergent Plate Margins: The Caribbean-South America Collision in Eastern Venezuela. In: Trinidad and Barbados. Perkins Research Conference, pp. 458–553. Houston. https://doi.org/10.5724/gcs.07.27.0458spa
dc.relation.referencesPrior, D., & Coleman J. (1978). Disintegrative Retrogressive Landslides on Very-Low-Angle Subaqueous Slopes, Mississippi Delta, Mar. Geotechnol., 3, 37-60.spa
dc.relation.referencesRamírez, J. (1969). Los Diapiros del Mar Caribe Colombiano. Actas I Congreso Colombiano de Geología 31–39. Bogotá.spa
dc.relation.referencesRamírez, J. (1975). “Historia de los Terremotos en Colombia”. 2da Ed. Instituto Geográfico Agustín Codazzi. Bogotá D.C.spa
dc.relation.referencesRamírez V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum Systems of the Guajira Basin, Northern Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin, Claudio Bartolini, Paul Mann. Volume 108. ISBN electronic:9781629812724. https://doi.org/10.1306/13531944M1083647spa
dc.relation.referencesRatzov G., Sosson, M., Collot, J., Migeon, S., Michaud, F., López, E. & Le Gonidec, Y. (2009). Deslizamientos submarinos a lo largo del Margen Convergente del Norte de Ecuador - Sur de Colombia. Posible control tectónico. Collot J-Y, V. Sallares, and A. Pazmiño. Geologia y Geofisica Marina y Terrestre del Ecuador desde la costa continental hasta las islas Gapapagos, CNDM-INOCAR-IRD, PSE001-09, Guayaquil, Ecuador, pp.75-82spa
dc.relation.referencesRincón-Martínez D., Mateus, D., Naranjo, J., Osorio, C., Malagón, F., Madero, H., Ortiz-Karpf, A., Hernández, C. & De Bedout, J. (2021). Geomorfología del Fondo Marino Profundo en la Región Sur del Caribe Colombiano. Ecopetrol; Entrelibros. ISBN: 978-958-9287-37-8. https://doi.org/10.29047/9789589287361spa
dc.relation.referencesRincón-Martínez D., Ruge, S. & Silva, A. (2022). Seismic Analysis of the Geological Occurrence of Gas Hydrate in the Colombian Caribbean Offshore. Journal of South American Earth Sciences, Volume 116, 103800, ISSN 0895-9811, https://doi.org/10.1016/j.jsames.2022.103800spa
dc.relation.referencesRodríguez I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural Style and Evolution of the Offshore Portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and Adjacent part of the Colombian Basin, Marine and Petroleum Geology, Volume 125, 104862, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2020.104862spa
dc.relation.referencesRomero-Otero G., Slatt, R., & Pirmez, C. (2015). Evolution of the Magdalena Deepwater Fan in a Tectonically Active Setting, Offshore Colombia, in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 675–708. https://doi.org/10.1306/13531953M1083656spa
dc.relation.referencesRice, R., Corbett, E. & Bailey, R. (1969). Soil Slips Related to Vegetation, Topography and Soil in Southern California, Water Resour. Res., 5, 649-659.spa
dc.relation.referencesRicketts, B. D. (2019). Chapter 10 – Cordilleran Sedimentary Basins of Western Canada Record 180 Million Years of Terrane Accretion. In A. D. Miall (Ed.), The Sedimentary Basins of the United States and Canada (2nd ed., pp. 445–475). Elsevier. https://doi.org/10.1016/b978-0-444-63895-3.00010-3spa
dc.relation.referencesRuiz, C., Davis, N., Bentham, P., Price, A. & Carvajal, D. (2000). Structure and Tectonic Evolution of The South Caribbean Basin, Southern Offshore Colombia: A Progressive Accretionary Prism. In: VII Simposio Bolivariano-Exploracion de las Cuencas Subandinas, p. 22. Caracas.spa
dc.relation.referencesSánchez J., Mann, P., Carvajal-Arenas, L., & Bernal-Olaya, R. (2019). Regional Transect Across the Western Caribbean Sea Based on Integration of Geologic, Seismic Reflection, Gravity, and Magnetic Data. AAPG Bulletin; 103 (2): 303–343. https://doi.org/10.1306/05111816516spa
dc.relation.referencesSantacana N. (2001). Análisis de la Susceptibilidad del Terreno a la Formación de Deslizamientos Superficiales y Grandes Deslizamientos Mediante el Uso de Sistemas de Información Geográfica: Aplicación a la Cuenca Alta del Río Llobregat. Universitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica. ISBN: 8469956566spa
dc.relation.referencesServicio Geológico Colombiano, SGC. (2016). Guía Metodológica para Estudios de Amenaza, Vulnerabilidad y Riesgo por Movimientos en Masa. Colección de Guías y Manuales. Imprenta Nacional de Colombia. Primera Reimpresión. Bogotá, D. C. Pp. 182.spa
dc.relation.referencesServicio Geológico Colombiano, SGC. (2024). ¿Es Posible Hacer Geología Bajo los Océanos Colombianos? https://www2.SGC.gov.co/Noticias/Paginas/Es-posible-hacer-geologia-bajo-los-oceanos-colombianos.aspxspa
dc.relation.referencesScarselli N. (2020). Submarine Landslides – Architecture, Controlling Factors and Environments. A summary. In Regional Geology and Tectonics: Volume 1: Principles of Geologic Analysis (2nd Edition ed., pp. 417-439). Elsevier. https://doi.org/10.1016/B978-0-444-64134-2.00015-8spa
dc.relation.referencesSedore P., Normandeau, A. & Maselli, V. (2024) Environmental Controls on the Generation of Submarine Landslides in Arctic Fjords: Insight from Pangnirtung Fjord, Baffin Island, Nunavut. Marine Geology. Volume 472. 107290. ISSN 0025-3227. https://doi.org/10.1016/j.margeo.2024.107290spa
dc.relation.referencesShan Z., Fenfen, G., Lai, X. & Xiao, J. (2021). Assessment of Submarine Landslide Susceptibility in the Sea Area of Zhoushan. IOP Conference Series: Earth and Environmental Science, Volume 734, 3rd International Forum on Geoscience and Oceanography 12-14 March 2021, Suzhou, China: https://dx.doi.org/10.1088/1755-1315/734/1/012023spa
dc.relation.referencesShanmugam, G. (2019). Slides, Slumps, Debris Flows, Turbidity Currents, and Bottom Currents. Elsevier. Encyclopedia of Ocean Sciences, 3rd Edition. pp 228-257. https://doi.org/10.1016/B978-0-12-409548-9.10884-Xspa
dc.relation.referencesShipley, T., Houston, M., Buffler, R., Shaub, F., Ladd, J. & Worzel, J. (1979). Seismic Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises. AAPG (Am. Assoc. Pet. Geol.) Bull. 63, 2204–2213.spa
dc.relation.referencesSmith D., Harrison, S., & Jordan, J. (2013). Sea Level Rise and Submarine Mass Failures on Open Continental Margins. Quaternary Science Reviews. Volume 82. Pages 93-103. ISSN 0277-3791. https://doi.org/10.1016/j.quascirev.2013.10.012.spa
dc.relation.referencesSoeters, R. & van Westen, C. (1996) Slope Instability Recognition Analysis and Zonation. In: Turner K.T. and Schuster, R.L., Eds., Landslides: Investigation and Mitigation, Special Report No. 247, Transportation Research Board National Research Council, Washington DC, 129-177.spa
dc.relation.referencesStow, D. & Tabrez, A. (1998). Hemipelagites: Processes, Facies and Model. In: Stoker, M. S., Evans, D. & Cramp, A. (eds) Geological Processes on Continental Margins: Sedimentation, MassWasting and Stability. Geological Society, London, Special Publications, 129, 317-337spa
dc.relation.referencesSubmarine Telecoms Forum. (2022). Mapa en Línea. SubTel Forum. https://subtelforum.com/online-map/spa
dc.relation.referencesSusanth S., Kurian, J., Twinkle, D., Bijesh, C. & Tyagi, A. (2021). Potential Submarine Landslide Zones off Chennai, Southeast Continental Margin of India. Regional Studies in Marine Science. Volume 45. 101832.ISSN 2352-4855. https://doi.org/10.1016/j.rsma.2021.101832spa
dc.relation.referencesTer-Stepanian, G. (1977). Types of Compound and Complex Landslides. Bulletin of the International Association of Engineering Geology, 16, 72–74. https://doi.org/10.1007/BF02591452spa
dc.relation.referencesTrenkamp, R., Kellogg, J., Freymueller, J. & Mora H. (2002). Wide Plate Margin Deformation, Southern Central America and Northwestern South America, CASA GPS Observations. J. S. Am. Earth Sci. 15, 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4spa
dc.relation.referencesvan Westen, C. (1993). Application of Geographical Information System to Landslide Hazard Zonation. ITC Publication No. 15, International Institute for Geo-Information Science and Earth Observation (ITC), Enschedespa
dc.relation.referencesvan Westen, C., Rengers, N. & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3), 339-419.spa
dc.relation.referencesvan Westen, C., van, Rengers, N., Terlien, M., & Soeters, R. (1997) Prediction of the Occurrence of Slope Instability Phenomena through GIS Based Hazard Zonation. Geologische Rundschau, 86, 404-414. http://dx.doi.org/10.1007/s005310050149spa
dc.relation.referencesvan Westen, C. (2013). Guidelines for the Generation of 1:50.000 Scale Landslide Inventory, Susceptibility Maps, and Qualitative Risk Maps, Illustrated with Case Studies of the Provinces ThANH Hoa and Nghe An. University of Twente.spa
dc.relation.referencesVan Zuidam, R. (1985). Aerial Photointerpretation in Terrain Analysis and Geomorphological Mapping. International Institute for Aerospace Survey and Earth Science. ITC. 442p. Smiths Publishers. The Hague. The Netherlands.spa
dc.relation.referencesVanneste, M., Fredrik, C., Glimsdal, S., Bonnevie, C., Issler, D., Jan, T., Løvholt, F. & Nadim, F. (2013). Submarine Landslides and Their Consequences: What Do We Know, What Can We Do?. (Keynote Presentation and Paper), 2nd World Landslide Forum, Rome, Italy. 5. https://doi.org/10.1007/978-3-642-31427-8-1spa
dc.relation.referencesVargas, C. & Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103 (3), 2025–2046. https://doi.org/10.1785/0120120328spa
dc.relation.referencesVarnes, D. (1978). Landslide Types and Processes. En: R.L. Schuster y R.J. Krizek (eds) Landslides, Analysis and Control, Special Report 176: Transportation Research Board (pp. 11-33). National Academy of Sciences.spa
dc.relation.referencesVeloza, G., Sytron, R., Taylor, M. & Mora, A. (2012). Open-Source Archive of Active Faults for Northwest South America: GSA Today, v. 22, p. 4–10. https://doi: 10.1130/GSAT-G156A.1spa
dc.relation.referencesVernette, G., Mauffret, A., Bobier, C., Briceño L. & Gayet, J. (1992). Mud Diapirism, Fan Sedimentation and Strike-Slip Faulting, Caribbean Colombian Margin. Tectonophysics 202, 335–349. https://doi.org/10.1016/0040-1951(92)90118-Pspa
dc.relation.referencesVillota, H. (1991). Geomorfología Aplicada a Levantamientos Edafológicos y Zonificación Física de las Tierras. Instituto Geográfico “Agustín Codazzi”. Bogotá D.C. 110pp.spa
dc.relation.referencesVinnels, J., Butler, R., McCaffrey, W., & Paton, D. (2010). Depositional Processes Across the Sinú Accretionary Prism, Offshore Colombia. Marine and Petroleum Geology. Volume 27, Issue 4, pp. 794-809, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2009.12.008.spa
dc.relation.referencesWatling, E. (1998). Disturbance of the Seabed by Mobile Fishing Gear: A Comparison to Forest Clearcutting. Conservation Biology. Volume 12, Issue 6, pp. 1180-1197. https://doi.org/10.1046/j.1523-1739.1998.0120061180.x.spa
dc.relation.referencesWatts, A., & Masson, D. (1995). A Giant Landslide on the North Flank of Tenerife, Canary Islands. J. Geophys. Res. 100, 24 487–24 498. https://doi:10.1029/95JB02630spa
dc.relation.referencesWilson, C., Long, D., & Bulat, J. (2004). The Morphology, Setting and Processes of the Afen Slide. Mar. Geol. 213, 149–167. https://doi:10.1016/j.margeo.2004.10.005spa
dc.relation.referencesYan T. (1988). Recent Advances of Quantitative Prognoses of Landslides in China In: Bonnard C (Ed), Landslides. Proceedings of the 5th ISL, Lausanne. Vol. 2, Rotterdam: Balkema, p. 1263-1268.spa
dc.relation.referencesYin K. & Yan T. (1988). Statistical Prediction Models for Slope Instability of Metamorphosed Rocks. In: Bonnard C (Ed), Landslides. Proceedings of the 5th ISL, Lausanne. Vol. 2, Rotterdam: Balkema, p. 1269-1272.spa
dc.relation.referencesZhang L., Pan, M., & Li, Z-L. (2020). 3D Modeling of Deepwater Turbidite Lobes: A Review of the Research Status and Progress. Petroleum Science, 17, 317–333. https://doi.org/10.1007/s12182-019-00415-yspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDESPRENDIMIENTOS DE TIERRAspa
dc.subject.lembLandslideseng
dc.subject.lembTOPOGRAFIA SUBMARINAspa
dc.subject.lembSubmarine topographyeng
dc.subject.lembANALISIS POR SEDIMENTACIONspa
dc.subject.lembSedimentation analysiseng
dc.subject.lembEROSION COSTERAspa
dc.subject.lembCoast changeseng
dc.subject.lembECOSISTEMAS MARINOSspa
dc.subject.lembSea biotic communitieseng
dc.subject.lembPROYECTOS DE PERFORACION EN AGUAS PROFUNDASspa
dc.subject.lembDeep sea drilling projecteng
dc.subject.lembESTRATIGRAFIAspa
dc.subject.lembGeology, Stratigraphiceng
dc.subject.proposalSusceptibilidadspa
dc.subject.proposalMovimientos en Masa Submarinosspa
dc.subject.proposalMétodos Bivariadosspa
dc.subject.proposalUnidades de Condición Única (UCU)spa
dc.subject.proposalSusceptibilityeng
dc.subject.proposalSubmarine Mass Movementseng
dc.subject.proposalBivariate Methodseng
dc.subject.proposalUnique Condition Units (UCU)eng
dc.titleEstudio preliminar de susceptibilidad por deslizamientos submarinos en el Caribe colombianospa
dc.title.translatedPreliminary study of susceptibility to submarine landslide in the colombian Caribbeaneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013655757.2025.pdf
Tamaño:
36.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Civil - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: