Metodología para la determinación de parámetros de calidad del agua en cuerpos lénticos haciendo uso de imágenes multiespectrales de dron y aprendizaje computacional

dc.contributor.advisorMartinez Martinez, Luis Joelspa
dc.contributor.authorRugeles Martínez, Diego Joaquínspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001724441spa
dc.date.accessioned2025-07-02T00:46:18Z
dc.date.available2025-07-02T00:46:18Z
dc.date.issued2025-05-23
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl uso de sensores remotos multiespectrales acoplados a aeronaves no tripuladas representa una alternativa ágil y económica para la estimación de parámetros de calidad del agua. Sin embargo, en zonas tropicales y en el contexto colombiano, el conocimiento sobre su modelamiento mediante algoritmos de aprendizaje automático sigue siendo limitado. Este estudio tiene como objetivo desarrollar una metodología para evaluar la calidad del agua en cuerpos lénticos utilizando imágenes multiespectrales obtenidas con UASy tres parámetros clave: turbidez, fosfatos y nitratos. Se empleó un dron DJI M300 RTK con el sensor RedEdge Micasense P para generar ortoimágenes multiespectrales sobre dos cuerpos de agua en Cundinamarca, Colombia. Además, se recolectaron 30 muestras espacializadas de los parámetros mencionados. Se calcularon índices espectrales de agua y vegetación, y mediante regresión por mínimos cuadrados parciales (PLS), se determinó la importancia de cada variable en la predicción. Posteriormente, se desarrollaron y compararon tres algoritmos de aprendizaje automático: SVR, RFR y GBR. Los resultados demostraron una asociación significativa entre la reflectancia multiespectral y los parámetros de calidad del agua, con los índices de agua y vegetación como las variables más influyentes. Entre los modelos evaluados, GBR mostró el mejor desempeño, con un ajuste óptimo en el entrenamiento y el menor RMSE en la validación. Estos hallazgos destacan el potencial del aprendizaje automático para la estimación espacial de la calidad del agua, lo que resulta clave para la gestión de los recursos hídricos y la conservación de los servicios ecosistémicos de los cuerpos de agua lénticos. (Texto tomado de la fuente).spa
dc.description.abstractThe use of unmanned aerial vehicles equipped with multispectral remote sensors provides a fast and cost-effective alternative for estimating water quality parameters. However, in tropical regions and within the Colombian context, knowledge about their modeling through machine learning algorithms remains limited. This study aims to develop a methodology for assessing water quality in lentic water bodies using multispectral drone imagery and three key parameters: turbidity, phosphates, and nitrates. A DJI M300 RTK drone equipped with the RedEdge Micasense P sensor was used to generate multispectral orthomosaics over two lentic water bodies in Cundinamarca, Colombia. Additionally, 30 spatially distributed samples of the mentioned parameters were collected. Water and vegetation spectral indices were calculated, and the importance of each variable in prediction was determined using Partial Least Squares (PLS) regression. Subsequently, three machine learning algorithms—SVR, RFR, and GBR—were developed and compared. The results demonstrated a significant association between multispectral reflectance and water quality parameters, with water and vegetation indices being the most influential variables. Among the evaluated models, GBR showed the best performance, with optimal training fit and the lowest RMSE in validation. These findings highlight the potential of machine learning for spatial estimation of water quality, which is essential for water resource management and the conservation of the ecosystem services provided by lentic water bodies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxv, 72 páginasspa
dc.format.mimetypeapplication/epub+zipspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88266
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAbella, J., & Martínez, M. (2013). CONTRIBUCIÓN DE UN AFLUENTE TRIBUTARIO A LA EUTROFIZACIÓN DEL LAGO DE TOTA (BOYACÁ, COLOMBIA) CONTRIBUTION OF A TRIBUTARY STREAM TO EUTROPHICATION OF LAKE TOTA (BOYACÁ, COLOMBIA) CONTRIBUIÇÃO DE AFLUENTES À EUTROFIZAÇÃO DO LAGO TOTA (BOYACÁ, COLÔMBIA). Revista Colombiana de Química, 41(2), 243–262.spa
dc.relation.referencesBhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2(2), 161–173. https://doi.org/10.1007/s40899-015-0014-7spa
dc.relation.referencesBuiteveld, H., Hakvoort, J., & Donze, M. (1994). The optical properties of pure water. Ocean Optics, XII, 174–183.spa
dc.relation.referencesCao, S., Danielson, B., Clare, S., Koenig, S., Campos-Vargas, C., & Sanchez-Azofeifa, A. (2019). Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 132–145. https://doi.org/10.1016/j.isprsjprs.2019.01.016spa
dc.relation.referencesChen, B., Mu, X., Chen, P., Wang, B., Choi, J., Park, H., Xu, S., Wu, Y., & Yang, H. (2021). Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data. Ecological Indicators, 133. https://doi.org/10.1016/j.ecolind.2021.108434spa
dc.relation.referencesChen, J., Quan, W., Cui, T., & Song, Q. (2015). Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuarine, Coastal and Shelf Science, 155, 104–113. https://doi.org/10.1016/j.ecss.2015.01.018spa
dc.relation.referencesConley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014–1015). https://doi.org/10.1126/science.1167755spa
dc.relation.referencesCui, M., Sun, Y., Huang, C., & Li, M. (2022). Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing. Water (Switzerland), 14(1). https://doi.org/10.3390/w14010128spa
dc.relation.referencesDe Keukelaere, L., Moelans, R., Knaeps, E., Sterckx, S., Reusen, I., De Munck, D., Simis, S. G. H., Constantinescu, A. M., Scrieciu, A., Katsouras, G., Mertens, W., Hunter, P. D., Spyrakos, E., & Tyler, A. (2023). Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sensing, 15(5). https://doi.org/10.3390/rs15051345spa
dc.relation.referencesDowning, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., Mcdowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. In Limnol. Oceanogr (Vol. 51, Issue 5). https://doi.org/https://doi.org/10.4319/lo.2006.51.5.2388spa
dc.relation.referencesElton, D. (2016). Understanding the dielectric properties of water (1st ed., Vol. 1). Stony Brook University.spa
dc.relation.referencesGao, Y., Gao, J., Yin, H., Liu, C., Xia, T., Wang, J., & Huang, Q. (2015a). Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 151, 33–43. https://doi.org/10.1016/j.jenvman.2014.11.036spa
dc.relation.referencesGao, Y., Gao, J., Yin, H., Liu, C., Xia, T., Wang, J., & Huang, Q. (2015b). Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 151, 33–43. https://doi.org/10.1016/j.jenvman.2014.11.036spa
dc.relation.referencesGitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015spa
dc.relation.referencesGuevara, G., Lozano, P., Reinoso, G., & Villa, F. (2009). Horizontal and seasonal patterns of tropical zooplankton from the eutrophic Prado Reservoir (Colombia). Limnologica, 39(2), 128–139. https://doi.org/10.1016/j.limno.2008.03.001spa
dc.relation.referencesHassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. In Progress in Aerospace Sciences (Vol. 91, pp. 99–131). Elsevier Ltd. https://doi.org/10.1016/j.paerosci.2017.04.003spa
dc.relation.referencesKhan, F., & Abid, A. (2005). Eutrophication: An Ecological Vision. In The Botanical Review (Vol. 71, Issue 4).spa
dc.relation.referencesLi, Y., Zhang, Y., Shi, K., Zhu, G., Zhou, Y., Zhang, Y., & Guo, Y. (2017). Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Science of the Total Environment, 599–600, 1705–1717. https://doi.org/10.1016/j.scitotenv.2017.05.075spa
dc.relation.referencesMcFeeters, S. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714spa
dc.relation.referencesMicasense. (2021). User Guide for MicaSense Sensors. https://support.micasense.com/hc/article_attachments/360100291434/User_Guide_for_MicaSense_Sensors__2_.pdfspa
dc.relation.referencesNiu, C., Tan, K., Jia, X., & Wang, X. (2021). Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117534spa
dc.relation.referencesOuma, Y. O., Waga, J., Okech, M., Lavisa, O., & Mbuthia, D. (2018). Estimation of Reservoir Bio-Optical Water Quality Parameters Using Smartphone Sensor Apps and Landsat ETM+: Review and Comparative Experimental Results. Journal of Sensors, 2018. https://doi.org/10.1155/2018/3490757spa
dc.relation.referencesRobert, E., Grippa, M., Kergoat, L., Pinet, S., Gal, L., Cochonneau, G., & Martinez, J. M. (2016). Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. International Journal of Applied Earth Observation and Geoinformation, 52, 243–251. https://doi.org/10.1016/j.jag.2016.06.016spa
dc.relation.referencesSatterwhite, M. B., Mitchell, H., Hemmer, T., & Leckie, J. D. (2003). Field Spectral Signatures of Snow, Ice, and Water. Algorithms and Technologies for Multiespectral and Ultraspectral Imagery , XI. https://doi.org/https://doi.org/10.1117/12.488363spa
dc.relation.referencesSibanda, M., Mutanga, O., Chimonyo, V. G. P., Clulow, A. D., Shoko, C., Mazvimavi, D., Dube, T., & Mabhaudhi, T. (2021). Application of drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and opportunities in the global south. In Drones (Vol. 5, Issue 3). MDPI. https://doi.org/10.3390/drones5030084spa
dc.relation.referencesThornton Robert H Kennedy A Dale Magatn, K. W., & Sauf, G. E. (1982). AMERICAN WATER RESOURCES ASSOCIATION. In WATER RESOURCES BULLETIN (Vol. 18, Issue 3).spa
dc.relation.referencesWang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Science of the Total Environment, 328(1–3), 195–206. https://doi.org/10.1016/j.scitotenv.2004.02.020spa
dc.relation.referencesWetzel, R. (2001). Limnology Lake and River Ecosystems Third Edition. In Academic Press (Vol. 1).spa
dc.relation.referencesXiao, Y., Guo, Y., Yin, G., Zhang, X., Shi, Y., Hao, F., & Fu, Y. (2022). UAV Multispectral Image-Based Urban River Water Quality Monitoring Using Stacked Ensemble Machine Learning Algorithms—A Case Study of the Zhanghe River, China. Remote Sensing, 14(14). https://doi.org/10.3390/rs14143272spa
dc.relation.referencesYang, H., Kong, J., Hu, H., Du, Y., Gao, M., & Chen, F. (2022). A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081770spa
dc.relation.referencesShen, M., Wang, S., Li, Y., Tang, M., & Ma, Y. (2021). Pattern of turbidity change in the middle reaches of the yarlung zangbo river, southern tibetan plateau, from 2007 to 2017. Remote Sensing, 13(2), 1–25. https://doi.org/10.3390/rs13020182spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocAmbiente lenticospa
dc.subject.agrovoclentic environmenteng
dc.subject.agrovocAprendizaje automáticospa
dc.subject.agrovocmachine learningeng
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalCalidad del aguaspa
dc.subject.proposalUASspa
dc.subject.proposalÍndices espectralesspa
dc.subject.proposalSensores multiespectralesspa
dc.subject.proposalTeledetecciónspa
dc.subject.proposalDroneeng
dc.subject.proposalMachine learningeng
dc.subject.proposalMultispectral sensorseng
dc.subject.proposalRemote sensingeng
dc.subject.proposalSpectral indiceseng
dc.subject.proposalWater qualityeng
dc.subject.wikidataImagen multiespectralspa
dc.subject.wikidatamultispectral imageeng
dc.subject.wikidatacalidad del aguaspa
dc.subject.wikidatawater qualityeng
dc.titleMetodología para la determinación de parámetros de calidad del agua en cuerpos lénticos haciendo uso de imágenes multiespectrales de dron y aprendizaje computacionalspa
dc.title.translatedMethodology for determining water quality parameters in lentic water bodies using multispectral drone imagery and machine learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015453735.2025.pdf
Tamaño:
3.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: