Metodología para la determinación de parámetros de calidad del agua en cuerpos lénticos haciendo uso de imágenes multiespectrales de dron y aprendizaje computacional
dc.contributor.advisor | Martinez Martinez, Luis Joel | spa |
dc.contributor.author | Rugeles Martínez, Diego Joaquín | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001724441 | spa |
dc.date.accessioned | 2025-07-02T00:46:18Z | |
dc.date.available | 2025-07-02T00:46:18Z | |
dc.date.issued | 2025-05-23 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El uso de sensores remotos multiespectrales acoplados a aeronaves no tripuladas representa una alternativa ágil y económica para la estimación de parámetros de calidad del agua. Sin embargo, en zonas tropicales y en el contexto colombiano, el conocimiento sobre su modelamiento mediante algoritmos de aprendizaje automático sigue siendo limitado. Este estudio tiene como objetivo desarrollar una metodología para evaluar la calidad del agua en cuerpos lénticos utilizando imágenes multiespectrales obtenidas con UASy tres parámetros clave: turbidez, fosfatos y nitratos. Se empleó un dron DJI M300 RTK con el sensor RedEdge Micasense P para generar ortoimágenes multiespectrales sobre dos cuerpos de agua en Cundinamarca, Colombia. Además, se recolectaron 30 muestras espacializadas de los parámetros mencionados. Se calcularon índices espectrales de agua y vegetación, y mediante regresión por mínimos cuadrados parciales (PLS), se determinó la importancia de cada variable en la predicción. Posteriormente, se desarrollaron y compararon tres algoritmos de aprendizaje automático: SVR, RFR y GBR. Los resultados demostraron una asociación significativa entre la reflectancia multiespectral y los parámetros de calidad del agua, con los índices de agua y vegetación como las variables más influyentes. Entre los modelos evaluados, GBR mostró el mejor desempeño, con un ajuste óptimo en el entrenamiento y el menor RMSE en la validación. Estos hallazgos destacan el potencial del aprendizaje automático para la estimación espacial de la calidad del agua, lo que resulta clave para la gestión de los recursos hídricos y la conservación de los servicios ecosistémicos de los cuerpos de agua lénticos. (Texto tomado de la fuente). | spa |
dc.description.abstract | The use of unmanned aerial vehicles equipped with multispectral remote sensors provides a fast and cost-effective alternative for estimating water quality parameters. However, in tropical regions and within the Colombian context, knowledge about their modeling through machine learning algorithms remains limited. This study aims to develop a methodology for assessing water quality in lentic water bodies using multispectral drone imagery and three key parameters: turbidity, phosphates, and nitrates. A DJI M300 RTK drone equipped with the RedEdge Micasense P sensor was used to generate multispectral orthomosaics over two lentic water bodies in Cundinamarca, Colombia. Additionally, 30 spatially distributed samples of the mentioned parameters were collected. Water and vegetation spectral indices were calculated, and the importance of each variable in prediction was determined using Partial Least Squares (PLS) regression. Subsequently, three machine learning algorithms—SVR, RFR, and GBR—were developed and compared. The results demonstrated a significant association between multispectral reflectance and water quality parameters, with water and vegetation indices being the most influential variables. Among the evaluated models, GBR showed the best performance, with optimal training fit and the lowest RMSE in validation. These findings highlight the potential of machine learning for spatial estimation of water quality, which is essential for water resource management and the conservation of the ecosystem services provided by lentic water bodies. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Geomática | spa |
dc.description.researcharea | Geoinformación para el uso sostenible de los recursos naturales | spa |
dc.format.extent | xv, 72 páginas | spa |
dc.format.mimetype | application/epub+zip | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88266 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Geomática | spa |
dc.relation.references | Abella, J., & Martínez, M. (2013). CONTRIBUCIÓN DE UN AFLUENTE TRIBUTARIO A LA EUTROFIZACIÓN DEL LAGO DE TOTA (BOYACÁ, COLOMBIA) CONTRIBUTION OF A TRIBUTARY STREAM TO EUTROPHICATION OF LAKE TOTA (BOYACÁ, COLOMBIA) CONTRIBUIÇÃO DE AFLUENTES À EUTROFIZAÇÃO DO LAGO TOTA (BOYACÁ, COLÔMBIA). Revista Colombiana de Química, 41(2), 243–262. | spa |
dc.relation.references | Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2(2), 161–173. https://doi.org/10.1007/s40899-015-0014-7 | spa |
dc.relation.references | Buiteveld, H., Hakvoort, J., & Donze, M. (1994). The optical properties of pure water. Ocean Optics, XII, 174–183. | spa |
dc.relation.references | Cao, S., Danielson, B., Clare, S., Koenig, S., Campos-Vargas, C., & Sanchez-Azofeifa, A. (2019). Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 132–145. https://doi.org/10.1016/j.isprsjprs.2019.01.016 | spa |
dc.relation.references | Chen, B., Mu, X., Chen, P., Wang, B., Choi, J., Park, H., Xu, S., Wu, Y., & Yang, H. (2021). Machine learning-based inversion of water quality parameters in typical reach of the urban river by UAV multispectral data. Ecological Indicators, 133. https://doi.org/10.1016/j.ecolind.2021.108434 | spa |
dc.relation.references | Chen, J., Quan, W., Cui, T., & Song, Q. (2015). Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuarine, Coastal and Shelf Science, 155, 104–113. https://doi.org/10.1016/j.ecss.2015.01.018 | spa |
dc.relation.references | Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014–1015). https://doi.org/10.1126/science.1167755 | spa |
dc.relation.references | Cui, M., Sun, Y., Huang, C., & Li, M. (2022). Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing. Water (Switzerland), 14(1). https://doi.org/10.3390/w14010128 | spa |
dc.relation.references | De Keukelaere, L., Moelans, R., Knaeps, E., Sterckx, S., Reusen, I., De Munck, D., Simis, S. G. H., Constantinescu, A. M., Scrieciu, A., Katsouras, G., Mertens, W., Hunter, P. D., Spyrakos, E., & Tyler, A. (2023). Airborne Drones for Water Quality Mapping in Inland, Transitional and Coastal Waters—MapEO Water Data Processing and Validation. Remote Sensing, 15(5). https://doi.org/10.3390/rs15051345 | spa |
dc.relation.references | Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., Mcdowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. In Limnol. Oceanogr (Vol. 51, Issue 5). https://doi.org/https://doi.org/10.4319/lo.2006.51.5.2388 | spa |
dc.relation.references | Elton, D. (2016). Understanding the dielectric properties of water (1st ed., Vol. 1). Stony Brook University. | spa |
dc.relation.references | Gao, Y., Gao, J., Yin, H., Liu, C., Xia, T., Wang, J., & Huang, Q. (2015a). Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 151, 33–43. https://doi.org/10.1016/j.jenvman.2014.11.036 | spa |
dc.relation.references | Gao, Y., Gao, J., Yin, H., Liu, C., Xia, T., Wang, J., & Huang, Q. (2015b). Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Journal of Environmental Management, 151, 33–43. https://doi.org/10.1016/j.jenvman.2014.11.036 | spa |
dc.relation.references | Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582–3593. https://doi.org/10.1016/j.rse.2008.04.015 | spa |
dc.relation.references | Guevara, G., Lozano, P., Reinoso, G., & Villa, F. (2009). Horizontal and seasonal patterns of tropical zooplankton from the eutrophic Prado Reservoir (Colombia). Limnologica, 39(2), 128–139. https://doi.org/10.1016/j.limno.2008.03.001 | spa |
dc.relation.references | Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. In Progress in Aerospace Sciences (Vol. 91, pp. 99–131). Elsevier Ltd. https://doi.org/10.1016/j.paerosci.2017.04.003 | spa |
dc.relation.references | Khan, F., & Abid, A. (2005). Eutrophication: An Ecological Vision. In The Botanical Review (Vol. 71, Issue 4). | spa |
dc.relation.references | Li, Y., Zhang, Y., Shi, K., Zhu, G., Zhou, Y., Zhang, Y., & Guo, Y. (2017). Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Science of the Total Environment, 599–600, 1705–1717. https://doi.org/10.1016/j.scitotenv.2017.05.075 | spa |
dc.relation.references | McFeeters, S. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714 | spa |
dc.relation.references | Micasense. (2021). User Guide for MicaSense Sensors. https://support.micasense.com/hc/article_attachments/360100291434/User_Guide_for_MicaSense_Sensors__2_.pdf | spa |
dc.relation.references | Niu, C., Tan, K., Jia, X., & Wang, X. (2021). Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117534 | spa |
dc.relation.references | Ouma, Y. O., Waga, J., Okech, M., Lavisa, O., & Mbuthia, D. (2018). Estimation of Reservoir Bio-Optical Water Quality Parameters Using Smartphone Sensor Apps and Landsat ETM+: Review and Comparative Experimental Results. Journal of Sensors, 2018. https://doi.org/10.1155/2018/3490757 | spa |
dc.relation.references | Robert, E., Grippa, M., Kergoat, L., Pinet, S., Gal, L., Cochonneau, G., & Martinez, J. M. (2016). Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. International Journal of Applied Earth Observation and Geoinformation, 52, 243–251. https://doi.org/10.1016/j.jag.2016.06.016 | spa |
dc.relation.references | Satterwhite, M. B., Mitchell, H., Hemmer, T., & Leckie, J. D. (2003). Field Spectral Signatures of Snow, Ice, and Water. Algorithms and Technologies for Multiespectral and Ultraspectral Imagery , XI. https://doi.org/https://doi.org/10.1117/12.488363 | spa |
dc.relation.references | Sibanda, M., Mutanga, O., Chimonyo, V. G. P., Clulow, A. D., Shoko, C., Mazvimavi, D., Dube, T., & Mabhaudhi, T. (2021). Application of drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and opportunities in the global south. In Drones (Vol. 5, Issue 3). MDPI. https://doi.org/10.3390/drones5030084 | spa |
dc.relation.references | Thornton Robert H Kennedy A Dale Magatn, K. W., & Sauf, G. E. (1982). AMERICAN WATER RESOURCES ASSOCIATION. In WATER RESOURCES BULLETIN (Vol. 18, Issue 3). | spa |
dc.relation.references | Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Science of the Total Environment, 328(1–3), 195–206. https://doi.org/10.1016/j.scitotenv.2004.02.020 | spa |
dc.relation.references | Wetzel, R. (2001). Limnology Lake and River Ecosystems Third Edition. In Academic Press (Vol. 1). | spa |
dc.relation.references | Xiao, Y., Guo, Y., Yin, G., Zhang, X., Shi, Y., Hao, F., & Fu, Y. (2022). UAV Multispectral Image-Based Urban River Water Quality Monitoring Using Stacked Ensemble Machine Learning Algorithms—A Case Study of the Zhanghe River, China. Remote Sensing, 14(14). https://doi.org/10.3390/rs14143272 | spa |
dc.relation.references | Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., & Chen, F. (2022). A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081770 | spa |
dc.relation.references | Shen, M., Wang, S., Li, Y., Tang, M., & Ma, Y. (2021). Pattern of turbidity change in the middle reaches of the yarlung zangbo river, southern tibetan plateau, from 2007 to 2017. Remote Sensing, 13(2), 1–25. https://doi.org/10.3390/rs13020182 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Ambiente lentico | spa |
dc.subject.agrovoc | lentic environment | eng |
dc.subject.agrovoc | Aprendizaje automático | spa |
dc.subject.agrovoc | machine learning | eng |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Calidad del agua | spa |
dc.subject.proposal | UAS | spa |
dc.subject.proposal | Índices espectrales | spa |
dc.subject.proposal | Sensores multiespectrales | spa |
dc.subject.proposal | Teledetección | spa |
dc.subject.proposal | Drone | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Multispectral sensors | eng |
dc.subject.proposal | Remote sensing | eng |
dc.subject.proposal | Spectral indices | eng |
dc.subject.proposal | Water quality | eng |
dc.subject.wikidata | Imagen multiespectral | spa |
dc.subject.wikidata | multispectral image | eng |
dc.subject.wikidata | calidad del agua | spa |
dc.subject.wikidata | water quality | eng |
dc.title | Metodología para la determinación de parámetros de calidad del agua en cuerpos lénticos haciendo uso de imágenes multiespectrales de dron y aprendizaje computacional | spa |
dc.title.translated | Methodology for determining water quality parameters in lentic water bodies using multispectral drone imagery and machine learning | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015453735.2025.pdf
- Tamaño:
- 3.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Geomática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: