Modelo de valoración de contratos en Derivex

dc.contributor.advisorVelásquez Henao, Juan David
dc.contributor.authorArango londoño, Adriana
dc.contributor.orcidArango londoño, Adriana [0000-0001-8919-7548]spa
dc.contributor.orcidVelásquezspa
dc.contributor.researchgroupBig Data y Data Analyticsspa
dc.coverage.countryColombia
dc.date.accessioned2023-05-30T17:00:28Z
dc.date.available2023-05-30T17:00:28Z
dc.date.issued2023-05-28
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractDesde el año 1994 el mercado eléctrico colombiano opera bajo una nueva estructura que permitió la apertura al Mercado Eléctrico Mayorista en Colombia (MEM) y la creación de la Bolsa de Energía. Esta reestructuración creó un ambiente competitivo en el que los agentes se enfrentan a nuevos desafíos por las nuevas reglas del mercado y se exponen a la incertidumbre asociada al precio futuro de la electricidad que se caracteriza por tener una alta volatilidad. Con el fin de mitigar la exposición al riesgo de los agentes del mercado se crean los mercados de derivados eléctricos que cuentan con una estructura similar a la de los mercados financieros. Colombia no es ajeno a esta situación y en el 2010 se crea el Mercado de Derivados Estandarizados de Commodities Energéticos Derivex, en el cual se pueden negociar contratos de futuros de electricidad que comprometen a las partes a cumplir sus obligaciones de compra o venta en una fecha futura a un precio establecido. Diferentes aproximaciones se han desarrollado en la teoría financiera para valorar los contratos de futuros; sin embargo, estas metodologías no pueden ser aplicadas en los mercados eléctricos por la complejidad que exhibe la serie de precios de la electricidad la cual determina la decisión de comprar o vender el contrato. En consecuencia, los agentes del mercado no cuentan con un soporte teórico para construir una estrategía de cobertura que les permita mitigar los riesgos asociados a las fluctuaciones del precio de la electricidad y maximizar sus beneficios económicos. Este trabajo presenta un modelo de valoración para los contratos de futuros de Derivex compuesto por un modelo de árboles de decisión y un modelo de simulación del precio de la electricidad en la Bolsa de Energía. Los resultados obtenidos demuestran que es posible realizar el cubrimiento del riesgo de la Bolsa de energía a partir del modelo propuesto. El modelo desarrollado permite incorporar las expectativas del analista sobre el crecimiento de la demanda y la evolución de la hidrología. (Texto tomado de la fuente)spa
dc.description.abstractSince 1994, the electricity market in Colombia operates under a new structure that allowed the opening of the Wholesale Electricity Market (WEM) and the creation of the spot market. This restructure created a competitive environment in which agents face new challenges due to new market rules, and are exposed to the uncertainty associated with the future price of electricity, which is characterized by high volatility. In order to mitigate the risk exposure of market agents, electricity derivatives markets are created, counting with a structure similar to that of financial markets. Colombia is not unfamiliar with this situation and in 2010 the Standardized Derivatives Market of Energy Commodities DERIVEX was created, in which electricity futures contracts can be negotiated, committing the parties to fulfill their purchase and sale obligations on an agreed date and price. Different approaches were developed in financial theory to value futures contracts; however, these methodologies cannot be applied in the electricity markets due to the complexity exhibited by the series of electricity prices, which determines the decision to buy or sell the contract. Consequently, market agents do not have theoretical support to build a hedging strategy that allows them to mitigate the risks associated with fluctuations in the price of electricity and maximize their economic benefits. This paper presents a valuation model for Derivex futures contracts composed of a decision tree model and a simulation model of the price of electricity on the spot market. The results obtained show that it is possible to hedge the risk of the electricity spot market from the proposed model. The developed model allows incorporating the analyst's expectations regarding demand growth and the evolution of hydrology.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAnalítica en mercados de energíaspa
dc.format.extentxiv, 89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83913
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.references[1] N. Singh, S. R. Mohanty, and S. Dev, “Short term electricity price forecast based on environmentally adapted generalized neuron,” Energy, vol. 125, pp. 127–139, 2017, doi: 10.1016/j.energy.2017.02.094.spa
dc.relation.references[2] “Power System Economics: Designing Markets for Electricity | Wiley,” Wiley.com. https://www.wiley.com/en-spa
dc.relation.references[3] A. Khosravi, S. Nahavandi, and D. Creighton, “A neural network-GARCH-based method for construction of Prediction Intervals,” Electr. Power Syst. Res., vol. 96, pp. 185–193, 2013, doi: 10.1016/j.epsr.2012.11.007.spa
dc.relation.references[4] M. Gürtler and T. Paulsen, “Forecasting performance of time series models on electricity spot markets: a quasi-meta-analysis,” Int. J. Energy Sect. Manag., vol. 12, no. 1, pp. 103–129, 2018, doi: 10.1108/IJESM-06-2017-0004.spa
dc.relation.references[5] A. Khosravi, S. Nahavandi, and D. Creighton, “Quantifying uncertainties of neural network-based electricity price forecasts,” Appl. Energy, vol. 112, pp. 120–129, 2013, doi: 10.1016/j.apenergy.2013.05.075.spa
dc.relation.references[6] P. Di and I. Perin, “An ambit stochastic approach to pricing electricity forward contracts: The case of the German Energy Market,” J. Probab. Stat., vol. 2015, 2015, doi: 10.1155/2015/626020.spa
dc.relation.references[7] M. Shafie-khah, M. P. Moghaddam, and M. K. Sheikh-El-Eslami, “Price forecasting of day-ahead electricity markets using a hybrid forecast method,” Energy Convers. Manag., vol. 52, no. 5, pp. 2165–2169, May 2011, doi: 10.1016/j.enconman.2010.10.047.spa
dc.relation.references[8] H. Xiong and R. Mamon, “A higher-order Markov chain-modulated model for electricity spot-price dynamics,” Appl. Energy, vol. 233–234, pp. 495–515, 2019, doi: 10.1016/j.apenergy.2018.09.039.spa
dc.relation.references[9] G. G. P. Murthy, V. Sedidi, A. K. Panda, and B. N. Rath, “Forecasting electricity prices in deregulated wholesale spot electricity market: A review,” Int. J. Energy Econ. Policy, vol. 4, no. 1, pp. 32–42, 2014.spa
dc.relation.references[10] J.-M. Hu and J.-Z. Wang, “Forecasting day-ahead electricity price using a hybrid improved approach,” J. Electr. Eng. Technol., vol. 12, no. 6, pp. 2166–2176, 2017, doi: 10.5370/JEET.2017.12.6.2166.spa
dc.relation.references[11] K. B. Sahay, “One hour ahead price forecast of Ontario electricity market by using ANN,” in 2015 International Conference on Energy Economics and Environment (ICEEE), Mar. 2015, pp. 1–6. doi: 10.1109/EnergyEconomics.2015.7235102.spa
dc.relation.references[12] H. Mosbah and M. El-Hawary, “Hourly Electricity Price Forecasting for the Next Month Using Multilayer Neural Network,” Can. J. Electr. Comput. Eng., vol. 39, no. 4, pp. 283–291, 2016, doi: 10.1109/CJECE.2016.2586939.spa
dc.relation.references[13] J.-L. Zhang, Y.-J. Zhang, D.-Z. Li, Z.-F. Tan, and J.-F. Ji, “Forecasting day-ahead electricity prices using a new integrated model,” Int. J. Electr. Power Energy Syst., vol. 105, pp. 541–548, Feb. 2019, doi: 10.1016/j.ijepes.2018.08.025.spa
dc.relation.references[14] A. Aghajani, R. Kazemzadeh, and A. Ebrahimi, “Short-term prediction of market-clearing price of electricity in the presence of wind power plants by a hybrid intelligent system,” Neural Comput. Appl., May 2018, doi: 10.1007/s00521-018-3544-8.spa
dc.relation.references[15] T. Niimura, “Forecasting Techniques for Deregulated Electricity Market Prices - Extended Survey,” in 2006 IEEE PES Power Systems Conference and Exposition, Oct. 2006, pp. 51–56. doi: 10.1109/PSCE.2006.296248.spa
dc.relation.references[16] M. M. G. Zapata and C. M. Ochoa, “Modelación De La Volatilidad De Los Precios De La Energía Eléctrica En Colombia,” Rev. Ing. Univ. Medellín, vol. 7, no. 12, pp. 87–114, 2008, Accessed: Jun. 05, 2019. [Online]. Available: http://www.redalyc.org/articulo.oa?id=75011517005spa
dc.relation.references[17] K. Maciejowska and R. Weron, “Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships,” Comput. Stat., vol. 30, no. 3, pp. 805–819, 2015, doi: 10.1007/s00180-014-0531-0.spa
dc.relation.references[18] G. P. Girish and S. Vijayalakshmi, “Spot Electricity Price Dynamics of Indian Electricity Market,” in Advances in Computer Science and its Applications, H. Y. Jeong, M. S. Obaidat, N. Y. Yen, and J. J. (Jong H. Park, Eds., in Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2014, pp. 1129–1135.spa
dc.relation.references[19] J. Pokora, “Hybrid arima and support vector regression in short-term electricity price forecasting,” Acta Univ. Agric. Silvic. Mendel. Brun., vol. 65, no. 2, pp. 699–708, 2017, doi: 10.11118/actaun201765020699.spa
dc.relation.references[20] H. Izadpanah, G. R. Yousefi, and S. M. Kaviri, “Asset and risk management for a wind farm in a competitive electricity market,” in 2013 21st Iranian Conference on Electrical Engineering (ICEE), May 2013, pp. 1–6. doi: 10.1109/IranianCEE.2013.6599765.spa
dc.relation.references[21] J. Kettunen, A. Salo, and D. W. Bunn, “Optimization of electricity retailer’s contract portfolio subject to risk preferences,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 117–128, 2010, doi: 10.1109/TPWRS.2009.2032233.spa
dc.relation.references[22] M. Liu and F. F. Wu, “Framework for generation risk management in electricity markets,” Dianli Xitong ZidonghuaAutomation Electr. Power Syst., vol. 28, no. 13, pp. 1–6, 2004.spa
dc.relation.references[23] M. Liu and F. F. Wu, “Risk management in a competitive electricity market,” in Analytical Methods for Energy Diversity and Security, 2008, pp. 247–262. doi: 10.1016/B978-0-08-056887-4.00012-3.spa
dc.relation.references[24] K. He, C. Xie, S.-M. Guu, L. Yu, and K. K. Lai, “Multi scale risk measurement in electricity market: A wavelet based value at risk approach,” J. Southeast Univ. Engl. Ed., vol. 24, no. SUPPL., pp. 54–59, 2008.spa
dc.relation.references[25] K. Andriosopoulos and N. Nomikos, “Risk management in the energy markets and value-at-risk modelling: A hybrid approach,” Eur. J. Finance, vol. 21, no. 7, pp. 548–574, 2015, doi: 10.1080/1351847X.2013.862173.spa
dc.relation.references[26] J. Wang, Y. Li, and S. Zhang, “CVaR-based electricity purchase model for power supply company,” Dianli Zidonghua Shebei Electr. Power Autom. Equip., vol. 28, no. 2, pp. 19–23, 2008.spa
dc.relation.references[27] H. Hailun, Y. Zheng, and H. Yunhe, “A novel CVaR based portfolio optimization model for LDC electricity procurement,” presented at the 2008 Joint International Conference on Power System Technology POWERCON and IEEE Power India Conference, POWERCON 2008, 2008. doi: 10.1109/ICPST.2008.4745232.spa
dc.relation.references[28] A. Hatami, H. Seifi, and M. K. Sheikh-El-Eslami, “A stochastic-based decision-making framework for an electricity retailer: Time-of-use pricing and electricity portfolio optimization,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 1808–1816, 2011, doi: 10.1109/TPWRS.2010.2095431.spa
dc.relation.references[29] D. Feng, D. Gan, J. Zhong, and Y. Ni, “Supplier asset allocation in a pool-based electricity market,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1129–1138, 2007, doi: 10.1109/TPWRS.2007.901282.spa
dc.relation.references[30] M. Liu and F. F. Wu, “Correlation matrices estimation in energy portfolio optimization,” presented at the IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, 2008. doi: 10.1109/PES.2008.4596170.spa
dc.relation.references[31] D. Feng, D. Gan, and J. Zhong, “Supplier multi-trading strategy: A stochastic programming approach,” presented at the IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, 2008. doi: 10.1109/PES.2008.4596119.spa
dc.relation.references[32] P. Tang and A. Callan, “Contract optimisation and market operation - A generator’s perspective,” presented at the CIGRE International Symposium Guilin 2009: Operation and Development of Power System in the New Context, 2009.spa
dc.relation.references[33] J. F. RodrÍguez, “Hedging swing options,” Int. J. Theor. Appl. Finance, vol. 14, no. 2, pp. 295–312, 2011, doi: 10.1142/S021902491100636X.spa
dc.relation.references[34] F. Martínez-álvarez, A. Troncoso, G. Asencio-Cortés, and J. C. Riquelme, “A survey on data mining techniques applied to electricity-related time series forecasting,” Energies, vol. 8, no. 11, pp. 13162–13193, 2015, doi: 10.3390/en81112352.spa
dc.relation.references[35] H. Daneshi and A. Daneshi, “Price forecasting in deregulated electricity markets - A bibliographical survey,” presented at the 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, 2008, pp. 657–661. doi: 10.1109/DRPT.2008.4523487.spa
dc.relation.references[36] G. J. Osório, J. C. O. Matias, and J. P. S. Catalão, “Electricity prices forecasting by a hybrid evolutionary-adaptive methodology,” Energy Convers. Manag., vol. 80, pp. 363–373, 2014, doi: 10.1016/j.enconman.2014.01.063.spa
dc.relation.references[37] S. K. Aggarwal, L. M. Saini, and A. Kumar, “Electricity price forecasting in deregulated markets: A review and evaluation,” Int. J. Electr. Power Energy Syst., vol. 31, no. 1, pp. 13–22, 2009, doi: 10.1016/j.ijepes.2008.09.003.spa
dc.relation.references[38] P. M. R. Bento, J. A. N. Pombo, M. R. A. Calado, and S. J. P. S. Mariano, “A bat optimized neural network and wavelet transform approach for short-term price forecasting,” Appl. Energy, vol. 210, pp. 88–97, Jan. 2018, doi: 10.1016/j.apenergy.2017.10.058.spa
dc.relation.references[39] S. K. Aggarwal, L. M. Saini, and A. Kumar, “Short term price forecasting in deregulated electricity markets: A review of statistical models and key issues,” Int. J. Energy Sect. Manag., vol. 3, no. 4, pp. 333–358, 2009, doi: 10.1108/17506220911005731.spa
dc.relation.references[40] A. Aggarwal and M. M. Tripathi, “A novel hybrid approach using wavelet transform, time series time delay neural network, and error predicting algorithm for day-ahead electricity price forecasting,” presented at the 2017 6th International Conference on Computer Applications in Electrical Engineering - Recent Advances, CERA 2017, 2018, pp. 199–204. doi: 10.1109/CERA.2017.8343326.spa
dc.relation.references[41] F. Wang et al., “Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting,” Int. J. Electr. Power Energy Syst., vol. 105, pp. 529–540, Feb. 2019, doi: 10.1016/j.ijepes.2018.08.039.spa
dc.relation.references[42] S. S. Reddy, C.-M. Jung, and K. J. Seog, “Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique,” Front. Energy, vol. 10, no. 1, pp. 105–113, 2016, doi: 10.1007/s11708-016-0393-y.spa
dc.relation.references[43] M. Cerjan, I. Krželj, M. Vidak, and M. Delimar, “A literature review with statistical analysis of electricity price forecasting methods,” presented at the IEEE EuroCon 2013, 2013, pp. 756–763. doi: 10.1109/EUROCON.2013.6625068.spa
dc.relation.references[44] X. Yan and N. A. Chowdhury, “Mid-term electricity market clearing price forecasting utilizing hybrid support vector machine and auto-regressive moving average with external input,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 64–70, Dec. 2014, doi: 10.1016/j.ijepes.2014.05.037.spa
dc.relation.references[45] Guang Li, Chen-Ching Liu, J. Lawarree, M. Gallanti, and A. Venturini, “State-of-the-art of electricity price forecasting,” in International Symposium CIGRE/IEEE PES, 2005., Oct. 2005, pp. 110–119. doi: 10.1109/CIGRE.2005.1532733.spa
dc.relation.references[46] A. Ghanbari, S. F. Ghaderi, and M. A. Azadeh, “Adaptive Neuro-Fuzzy Inference System vs. Regression based approaches for annual electricity load forecasting,” in 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), Feb. 2010, pp. 26–30. doi: 10.1109/ICCAE.2010.5451534.spa
dc.relation.references[47] E. Raviv, K. E. Bouwman, and D. van, “Forecasting day-ahead electricity prices: Utilizing hourly prices,” Energy Econ., vol. 50, pp. 227–239, 2015, doi: 10.1016/j.eneco.2015.05.014.spa
dc.relation.references[48] J. Carpio, J. Juan, and D. López, “Multivariate Exponential Smoothing and Dynamic Factor Model Applied to Hourly Electricity Price Analysis,” Technometrics, vol. 56, no. 4, pp. 494–503, Oct. 2014, doi: 10.1080/00401706.2013.860920.spa
dc.relation.references[49] F. Lisi and M. M. Pelagatti, “Component estimation for electricity market data: Deterministic or stochastic?,” Energy Econ., vol. 74, pp. 13–37, Aug. 2018, doi: 10.1016/j.eneco.2018.05.027.spa
dc.relation.references[50] H. Ebrahimian, S. Barmayoon, M. Mohammadi, and N. Ghadimi, “The price prediction for the energy market based on a new method,” Econ. Res.-Ekon. Istraživanja, vol. 31, no. 1, pp. 313–337, Jan. 2018, doi: 10.1080/1331677X.2018.1429291.spa
dc.relation.references[51] C. Ballester and D. Furió, “Impact of Wind Electricity Forecasts on Bidding Strategies,” Sustainability, vol. 9, no. 8, p. 1318, Aug. 2017, doi: 10.3390/su9081318.spa
dc.relation.references[52] V. S, G. G p, K. Singhania, and E. N. Vincent, “Is Indian Spot Electricity Price Series Stationary?,” Energy Procedia, vol. 138, pp. 1067–1072, Oct. 2017, doi: 10.1016/j.egypro.2017.10.114.spa
dc.relation.references[53] H. S. Sandhu, L. Fang, and L. Guan, “Forecasting day-ahead price spikes for the Ontario electricity market,” Electr. Power Syst. Res., vol. 141, pp. 450–459, Dec. 2016, doi: 10.1016/j.epsr.2016.08.005.spa
dc.relation.references[54] S. K. Dash, R. Bisoi, and P. K. Dash, “A hybrid functional link dynamic neural network and evolutionary unscented Kalman filter for short-term electricity price forecasting,” Neural Comput. Appl., vol. 27, no. 7, pp. 2123–2140, 2016, doi: 10.1007/s00521-015-2011-z.spa
dc.relation.references[55] A. K. Rout, R. Bisoi, and P. K. Dash, “A low complexity evolutionary computationally efficient recurrent Functional link Neural Network for time series forecasting,” in 2015 IEEE Power, Communication and Information Technology Conference (PCITC), Oct. 2015, pp. 576–582. doi: 10.1109/PCITC.2015.7438230.spa
dc.relation.references[56] L. Zhou, B. Wang, Z. Wang, F. Wang, and M. Yang, “Seasonal classification and RBF adaptive weight based parallel combined method for day-ahead electricity price forecasting,” in 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Feb. 2018, pp. 1–5. doi: 10.1109/ISGT.2018.8403372.spa
dc.relation.references[57] K. Sarada and V. Bapiraju, “Comparison of day-ahead price forecasting in energy market using Neural Network and Genetic Algorithm,” in 2014 International Conference on Smart Electric Grid (ISEG), Sep. 2014, pp. 1–5. doi: 10.1109/ISEG.2014.7005607.spa
dc.relation.references[58] R. Beigaite and T. Krilavičius, “Electricity price forecasting for Nord Pool data,” presented at the CEUR Workshop Proceedings, 2017, pp. 37–42.spa
dc.relation.references[59] R. Beigaite and T. Krilavičius, “Electricity price forecasting for nord pool data using recurrent neural networks,” presented at the CEUR Workshop Proceedings, 2018, pp. 75–78.spa
dc.relation.references[60] R. Bisoi, P. K. Dash, and P. P. Das, “Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine,” Neural Comput. Appl., Aug. 2018, doi: 10.1007/s00521-018-3652-5.spa
dc.relation.references[61] N. A. Shrivastava, A. Khosravi, and B. K. Panigrahi, “Prediction Interval Estimation of Electricity Prices Using PSO-Tuned Support Vector Machines,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 322–331, Apr. 2015, doi: 10.1109/TII.2015.2389625.spa
dc.relation.references[62] A. Bello, J. Reneses, A. Muñoz, and A. Delgadillo, “Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques,” Int. J. Forecast., vol. 32, no. 3, pp. 966–980, 2016, doi: 10.1016/j.ijforecast.2015.06.002.spa
dc.relation.references[63] M. Burger, B. Klar, A. Müller, and G. Schindlmayr, “A spot market model for pricing derivatives in electricity markets,” Quant. Finance, vol. 4, no. 1, pp. 109–122, Feb. 2004, doi: 10.1088/1469-7688/4/1/010.spa
dc.relation.references[64] C. Redl, R. Haas, C. Huber, and B. Böhm, “Price formation in electricity forward markets and the relevance of systematic forecast errors,” Energy Econ., vol. 31, no. 3, pp. 356–364, 2009, Accessed: Jul. 03, 2019. [Online]. Available: https://econpapers.repec.org/article/eeeeneeco/v_3a31_3ay_3a2009_3ai_3a3_3ap_3a356-364.htmspa
dc.relation.references[65] J. D. Velásquez, C. J. Franco, and Y. Olaya, “Predicción de los precios promedios mensuales de contratos despachados en el mercado mayorista de electricidad en Colombia usando máquinas de vectores de soporte,” Cuad. Adm., vol. 23, no. 40, 2010.spa
dc.relation.references[66] M. Bierbrauer, C. Menn, S. T. Rachev, and S. Trück, “Spot and derivative pricing in the EEX power market,” J. Bank. Finance, vol. 31, no. 11, pp. 3462–3485, 2007, doi: 10.1016/j.jbankfin.2007.04.011.spa
dc.relation.references[67] J. D. Velásquez, V. Gil, and C. J. Franco, “An Overview of the Colombian Market for Standarized Derivatives of Energy Commodities,” IEEE Lat. Am. Trans., vol. 13, no. 7, pp. 2176–2182, 2015, doi: 10.1109/TLA.2015.7273774.spa
dc.relation.references[68] Isaac. Dyner, Carlos Jaime. Franco, and Santiago. Arango, El mercado mayorista de electricidad colombiano, Primera edición. Medellín: Centro de complejidad Ceiba, 2008.spa
dc.relation.references[69] XM, “Informes operación del SIN y administración del mercado.” 2021. [Online]. Available: https://www.xm.com.co/corporativo/Paginas/Nuestra-empresa/informes-anuales.aspxspa
dc.relation.references[70] F. Gutiérrez and J. A. Dracup, “An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Niño–Southern Oscillation indicators,” J. Hydrol., vol. 246, no. 1, pp. 181–196, Jun. 2001, doi: 10.1016/S0022-1694(01)00373-0.spa
dc.relation.references[71] J. D. Velasquez, I. Dyner, and C. J. Franco, “Modeling the Effect of Macroclimatic Events on River Inflows in the Colombian Electricity Market,” IEEE Lat. Am. Trans., vol. 14, no. 10, pp. 4287–4292, 2016, doi: 10.1109/TLA.2016.7786307.spa
dc.relation.references[72] NOAA, “ENSO: Recent Evolution, Current Status and Predictions.” 2017. [Online]. Available: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdfspa
dc.relation.references[73] N. A. Shrivastava and B. K. Panigrahi, “A hybrid wavelet-ELM based short term price forecasting for electricity markets,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 41–50, Feb. 2014, doi: 10.1016/j.ijepes.2013.08.023.spa
dc.relation.references[74] C. A. Giraldo-Prieto, G. J. González Uribe, C. Vesga Bermejo, and D. C. Ferreira Herrera, “Coberturas financieras con derivados y su incidencia en el valor de mercado en empresas colombianas que cotizan en Bolsa,” Contad. Adm., vol. 62, no. 5, pp. 1553–1571, Dec. 2017, doi: 10.1016/j.cya.2017.04.008.spa
dc.relation.references[75] J. Benavides, Á. Cadena, J. J. González, C. Hidalgo, and A. Piñeros, Mercado eléctrico en Colombia: Transición hacia una arquitectura descentralizada. 2018. Accessed: Jun. 25, 2019. [Online]. Available: http://www.repository.fedesarrollo.org.co/handle/11445/3694spa
dc.relation.references[76] G. S. S. Marín and J. P. Robayo, “Los precios forward sobre electricidad. ¿Determinados racionalmente por los agentes del mercado colombiano?,” AD-Minist., no. 18, pp. 77–99, 2011, Accessed: Nov. 21, 2021. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6251514spa
dc.relation.references[77] I. Dyner, E. Larsen, and C. J. Franco, “Games for electricity traders: Understanding risk in a deregulated industry,” Energy Policy, vol. 37, no. 2, pp. 465–471, 2009, doi: 10.1016/j.enpol.2008.09.075.spa
dc.relation.references[78] A. Pérez and J. Carabalí, “Un modelo sobre competencia en mercados de electricidad: contratos bilaterales en Colombia,” Rev. Desarro. Soc., Feb. 2021, doi: 10.13043/DYS.87.5.spa
dc.relation.references[79] J. Barrientos Marín, M. Toro Martínez, J. Barrientos Marín, and M. Toro Martínez, “ON THE FUNDAMENTALS OF ELECTRIC ENERGY PRICE: EMPIRICAL EVIDENCE FOR COLOMBIA,” Rev. Econ. Caribe, no. 19, pp. 33–59, Jun. 2017, Accessed: May 28, 2019. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S2011-21062017000100033&lng=en&nrm=iso&tlng=esspa
dc.relation.references[80] J. Barrientos-Marín and M. T. Martínez, “Análisis de los fundamentales del precio de la energía eléctrica: evidencia empírica para Colombia,” Econ. Caribe, no. 19, pp. 33–59, 2017, Accessed: Oct. 31, 2021. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6143169spa
dc.relation.references[81] BVC and XM S.A, “Estudio de Factibilidad Nuevo Mercado de Derivados Estandarizados sobre Commodities Energéticos.” 2009. [Online]. Available: http://www.derivex.com.co/accionistas/Asamblea%20de%20Constitucion/Indice/Documentos_Asamblea/9_Estudio%20de%20Factibilidad%20DERIVEX.pdfspa
dc.relation.references[82] Derivex, “Circular única del Mercado de derivados de commodities energéticos Derivex.” Oct. 31, 2021.spa
dc.relation.references[83] Comisión de regulación de Energía y Gas, “Resolución 114 de 2018.” Aug. 02, 2018. Accessed: Nov. 06, 2021. [Online]. Available: www.http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/e1aa2bca619f4f6e05258305007463d1/$FILE/Creg114-2018.pdfspa
dc.relation.references[84] CRCC S.A, “Reglamento de funcionamiento. Cámara de riesgo central de contraparte de Colombia S.A. CRCC S.A.” 2017.spa
dc.relation.references[85] R. Mariño, C. León, and C. Cadena, “Las entidades de contrapartida central en la mitigación del riesgo de contraparte y de liquidez: El caso de los derivados cambiarios en Colombia,” Borradores Econ., vol. 1101, 2020.spa
dc.relation.references[86] C. B. Hunzinger and C. C. A. Labuschagne, “The Cox, Ross and Rubinstein tree model which includes counterparty credit risk and funding costs,” North Am. J. Econ. Finance, vol. 29, pp. 200–217, Jul. 2014, doi: 10.1016/j.najef.2014.06.002.spa
dc.relation.references[87] R. Huisman and R. Mahieu, “Regime jumps in electricity prices,” Energy Econ., vol. 25, no. 5, pp. 425–434, Sep. 2003, doi: 10.1016/S0140-9883(03)00041-0.spa
dc.relation.references[88] Y. C. C. Martinez and L. B. Valencia, “Portfolio theory based approach to risk management in electricity markets: Colombian case study,” in IEEE Systems and Information Engineering Design Symposium, 2003, Apr. 2003, pp. 35–40. doi: 10.1109/SIEDS.2003.158001.spa
dc.relation.references[89] F. Azevedo, Z. A. Vale, and A. A. do Vale, “Decision-support tool for the establishment of contracts in the electricity market,” in 2003 IEEE Bologna Power Tech Conference Proceedings, Jun. 2003, p. 6 pp. Vol.1-. doi: 10.1109/PTC.2003.1304154.spa
dc.relation.references[90] F. Azevedo, Z. A. Vale, and A. A. Vale, “Hedging using futures and options contracts in the electricity market,” Renew. Energy Power Qual. J., vol. 1, no. 1, pp. 496–501, 2003, doi: 10.24084/repqj01.407.spa
dc.relation.references[91] A. Pritchard, “Statistical Bibliography or Bibliometrics?,” Journal of Documentation, vol. 25, pp. 348–349, 1969.spa
dc.relation.references[92] S. Morris, C. DeYong, Z. Wu, S. Salman, and D. Yemenu, “DIVA: A visualization system for exploring document databases for technology forecasting,” Comput. Ind. Eng., vol. 43, no. 4, pp. 841–862, 2002, doi: 10.1016/S0360-8352(02)00143-2.spa
dc.relation.references[93] T. T. Chen and L. Q. Xie, “Identifying critical focuses in research domains,” in Ninth International Conference on Information Visualisation (IV’05), Jul. 2005, pp. 135–142. doi: 10.1109/IV.2005.59.spa
dc.relation.references[94] M. J. Cobo, A. G. López‐Herrera, E. Herrera‐Viedma, and F. Herrera, “Science mapping software tools: Review, analysis, and cooperative study among tools,” J. Am. Soc. Inf. Sci. Technol., vol. 62, no. 7, pp. 1382–1402, Jul. 2011, doi: 10.1002/asi.21525.spa
dc.relation.references[95] N. J. van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, Aug. 2010, doi: 10.1007/s11192-009-0146-3.spa
dc.relation.references[96] M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.spa
dc.relation.references[97] L. Cadavid and K. Salazar-Serna, “sustainability Mapping the Research Landscape for the Motorcycle Market Policies: Sustainability as a Trend-A Systematic Literature Review,” Sustainability, vol. 13, p. 10813, Sep. 2021, doi: 10.3390/su131910813.spa
dc.relation.references[98] Q. Zhang, X. Wang, and J. Wang, “Electricity purchasing and selling risk decision for power supplier under real-time pricing,” Dianli Xitong ZidonghuaAutomation Electr. Power Syst., vol. 34, no. 3, pp. 22-27+43, 2010.spa
dc.relation.references[99] Q. Zhang and X. Wang, “Hedge contract characterization and risk-constrained electricity procurement,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1547–1558, 2009, doi: 10.1109/TPWRS.2009.2021233.spa
dc.relation.references[100] Y. Xiao, X. Wang, C. Du, and S. Liu, “Hedging against uncertainties for wind power producer with block futures contracts,” presented at the IEEE Power and Energy Society General Meeting, 2015. doi: 10.1109/PESGM.2015.7285850.spa
dc.relation.references[101] Z. Wu, X. Wang, Y. Xiao, Y. Zhang, T. Yang, and C. Xue, “Risk management strategy and model for photovoltaic suppliers based on bilateral contracts,” presented at the China International Conference on Electricity Distribution, CICED, 2016. doi: 10.1109/CICED.2016.7576081.spa
dc.relation.references[102] F. Azevedo and Z. A. Vale, “A short-term risk management tool applied to OMEL electricity market using Particle Swarm Optimization,” presented at the 2008 5th International Conference on the European Electricity Market, EEM, 2008. doi: 10.1109/EEM.2008.4579039.spa
dc.relation.references[103] F. Azevedo, Z. A. Vale, and P. B. de Moura Oliveira, “A decision-support system based on particle swarm optimization for multiperiod hedging in electricity markets,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 995–1003, 2007, doi: 10.1109/TPWRS.2007.901463.spa
dc.relation.references[104] F. Azevedo and Z. A. Vale, “Optimal short-term contract allocation using particle swarm optimization,” WSEAS Trans. Inf. Sci. Appl., vol. 2, no. 5, pp. 552–558, 2005.spa
dc.relation.references[105] F. Azevedo and Z. A. Vale, “Short-term price forecast from risk management point of view,” presented at the Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, ISAP’05, 2005, pp. 111–116. doi: 10.1109/ISAP.2005.1599249.spa
dc.relation.references[106] F. Azevedo and Z. A. Vale, “Forecasting electricity prices with historical statistical information using neural networks and clustering techniques,” presented at the 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, 2006, pp. 44–50. doi: 10.1109/PSCE.2006.296247.spa
dc.relation.references[107] M. Liu and F. F. Wu, “Managing price risk in a multimarket environment,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1512–1519, 2006, doi: 10.1109/TPWRS.2006.882455.spa
dc.relation.references[108] M. Liu and F. F. Wu, “Portfolio optimization in electricity markets,” Electr. Power Syst. Res., vol. 77, no. 8, pp. 1000–1009, 2007, doi: 10.1016/j.epsr.2006.08.025.spa
dc.relation.references[109] M. Liu and F. Wu, “Effect of Financial Hedging in Portfolio Selection in Electricity Markets,” HKIE Trans. Hong Kong Inst. Eng., vol. 17, no. 2, pp. 34–40, 2010, doi: 10.1080/1023697X.2010.10668194.spa
dc.relation.references[110] M. Liu and F. F. Wu, “Trading strategy of generation companies in electricity market,” Zhongguo Dianji Gongcheng XuebaoProceedings Chin. Soc. Electr. Eng., vol. 28, no. 25, pp. 111–117, 2008.spa
dc.relation.references[111] H. Algarvio and F. Lopes, “Risk Management and Bilateral Contracts in Multi-agent Electricity Markets,” Commun. Comput. Inf. Sci., vol. 430, pp. 279–308, 2014, doi: 10.1007/978-3-319-07767-3_27.spa
dc.relation.references[112] H. Algarvio, F. Lopes, and J. Santana, “Bilateral contracting in multi-agent energy markets: Forward contracts and risk management,” Commun. Comput. Inf. Sci., vol. 524, pp. 260–269, 2015, doi: 10.1007/978-3-319-19033-4_22.spa
dc.relation.references[113] F. Lopes, H. Algarvio, and J. Santana, “Agent-based simulation of electricity markets: Risk management and contracts for difference,” Underst. Complex Syst., no. 9783319463308, pp. 207–225, 2017, doi: 10.1007/978-3-319-46331-5_10.spa
dc.relation.references[114] A. Nasir, K. Shaukat, I. A. Hameed, S. Luo, T. M. Alam, and F. Iqbal, “A Bibliometric Analysis of Corona Pandemic in Social Sciences: A Review of Influential Aspects and Conceptual Structure,” IEEE Access, vol. 8, pp. 133377–133402, 2020, doi: 10.1109/ACCESS.2020.3008733.spa
dc.relation.references[115] P. Mathuria and R. Bhakar, “Large consumer’s purchase portfolio optimization in electricity market,” presented at the 2016 IEEE 6th International Conference on Power Systems, ICPS 2016, 2016. doi: 10.1109/ICPES.2016.7584115.spa
dc.relation.references[116] J. Hanly, “Risk management and hedging approaches in energy markets,” in Handbook of Energy Finance: Theories, Practices and Simulations, 2020, pp. 651–667. doi: 10.1142/9789813278387_0026.spa
dc.relation.references[117] Y. Cai, Q. Chen, and W. Zhang, “Credit and risk management of electricity transaction: A real case based on Guangdong electricity market rules,” presented at the Proceedings - 2020 5th Asia Conference on Power and Electrical Engineering, ACPEE 2020, 2020, pp. 994–999. doi: 10.1109/ACPEE48638.2020.9136388.spa
dc.relation.references[118] A.-S. Chen, M. T. Leung, S. Pan, and C.-Y. Chou, “Financial hedging in energy market by cross-learning machines,” Neural Comput. Appl., vol. 32, no. 14, pp. 10321–10335, 2020, doi: 10.1007/s00521-019-04572-4.spa
dc.relation.references[119] H. Liu, X. Chen, and J. Xie, “Optimal Bidding Strategy for Electricity Sales Company Considering Contract for Difference and Risk,” presented at the 2019 3rd IEEE Conference on Energy Internet and Energy System Integration: Ubiquitous Energy Network Connecting Everything, EI2 2019, 2019, pp. 2155–2160. doi: 10.1109/EI247390.2019.9062253.spa
dc.relation.references[120] T. L. D. Huynh, M. Shahbaz, M. A. Nasir, and S. Ullah, “Financial modelling, risk management of energy instruments and the role of cryptocurrencies,” Ann. Oper. Res., 2020, doi: 10.1007/s10479-020-03680-y.spa
dc.relation.references[121] A. Varnavskiy, U. Gruzina, A. Rot, A. Buryakova, E. Sebechenko, and V. Trubnikov, “Prospects and Limitations of the Use of Blockchain-Options for the Supply of Electricity,” Stud. Comput. Intell., vol. 887, pp. 95–110, 2020, doi: 10.1007/978-3-030-40417-8_6.spa
dc.relation.references[122] M. R. Cogollo and J. D. Velasquez, “Methodological Advances in Artificial Neural Networks for Time Series Forecasting,” IEEE Lat. Am. Trans., vol. 12, no. 4, pp. 764–771, Jun. 2014, doi: 10.1109/TLA.2014.6868881.spa
dc.relation.references[123] K. Ignatieva and S. Trück, “Modeling spot price dependence in Australian electricity markets with applications to risk management,” Comput. Oper. Res., vol. 66, pp. 415–433, 2016, doi: 10.1016/j.cor.2015.07.019.spa
dc.relation.references[124] M. Maenhoudt and G. Deconinck, “Strategic Offering to Maximize Day-Ahead Profit by Hedging Against an Infeasible Market Clearing Result,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 854–862, Mar. 2014, doi: 10.1109/TPWRS.2013.2286005.spa
dc.relation.references[125] T. Pinto and F. Falcão-Reis, “Strategic participation in competitive electricity markets: Internal versus sectorial data analysis,” Int. J. Electr. Power Energy Syst., vol. 108, pp. 432–444, 2019, doi: 10.1016/j.ijepes.2019.01.011.spa
dc.relation.references[126] E. J. Anderson, X. Hu, and D. Winchester, “Forward contracts in electricity markets: The Australian experience,” Energy Policy, vol. 35, no. 5, pp. 3089–3103, May 2007, doi: 10.1016/j.enpol.2006.11.010.spa
dc.relation.references[127] S. Bhattacharya, A. Gupta, K. Kar, and A. Owusu, “Hedging strategies for risk reduction through weather derivatives in renewable energy markets,” in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Nov. 2015, pp. 1190–1195. doi: 10.1109/ICRERA.2015.7418597.spa
dc.relation.references[128] S. Adamson, T. Noe, and G. Parker, “Efficiency of financial transmission rights markets in centrally coordinated periodic auctions,” Energy Econ., vol. 32, no. 4, pp. 771–778, Jul. 2010, doi: 10.1016/j.eneco.2010.03.006.spa
dc.relation.references[129] C. Pirrong and M. Jermakyan, “The price of power: The valuation of power and weather derivatives,” J. Bank. Finance, vol. 32, no. 12, pp. 2520–2529, 2008, doi: 10.1016/j.jbankfin.2008.04.007.spa
dc.relation.references[130] C. L. Anderson and M. Davison, “The Application of Cash-Flow-at-Risk to Risk Management in a Deregulated Electricity Market,” Hum. Ecol. Risk Assess. Int. J., vol. 15, no. 2, pp. 253–269, Apr. 2009, doi: 10.1080/10807030902761148.spa
dc.relation.references[131] J. I. Peña and R. Rodriguez, “Default supply auctions in electricity markets: Challenges and proposals,” Energy Policy, vol. 122, pp. 142–151, 2018, doi: 10.1016/j.enpol.2018.07.031.spa
dc.relation.references[132] D. Xiao and H. Chen, “Stochastic up to Congestion Bidding Strategy in the Nodal Electricity Markets Considering Risk Management,” IEEE Access, vol. 8, pp. 202428–202438, 2020, doi: 10.1109/ACCESS.2020.3015025.spa
dc.relation.references[133] F. Azevedo, Z. A. Vale, P. B. M. Oliveira, and H. M. Khodr, “A long-term risk management tool for electricity markets using swarm intelligence,” Electr. Power Syst. Res., vol. 80, no. 4, pp. 380–389, Apr. 2010, doi: 10.1016/j.epsr.2009.10.002.spa
dc.relation.references[134] N. Jovanović, J. García-González, J. Barquín, and S. Cerisola, “Electricity market short-term risk management via risk-adjusted probability measures,” IET Gener. Transm. Distrib., vol. 11, no. 10, pp. 2599–2607, 2017, doi: 10.1049/iet-gtd.2016.1731.spa
dc.relation.references[135] F.-J. Heredia, J. Cifuentes-Rubiano, and C. Corchero, “Stochastic optimal generation bid to electricity markets with emissions risk constraints,” J. Environ. Manage., vol. 207, pp. 432–443, 2018, doi: 10.1016/j.jenvman.2017.11.010.spa
dc.relation.references[136] S. S. Oren and Y. Oum, “Managing risk under a fixed price load following obligation for electricity service,” presented at the IEEE PES General Meeting, PES 2010, 2010. doi: 10.1109/PES.2010.5589689.spa
dc.relation.references[137] B. A. Souhir, B. Heni, and B. Lotfi, “Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes,” Energy Econ., vol. 80, pp. 635–655, 2019, doi: 10.1016/j.eneco.2019.02.001.spa
dc.relation.references[138] B. Tranberg, R. T. Hansen, and L. Catania, “Managing volumetric risk of long-term power purchase agreements,” Energy Econ., vol. 85, 2020, doi: 10.1016/j.eneco.2019.104567.spa
dc.relation.references[139] M. J. Stevenson, L. F. M. Do Amaral, and M. Peat, “Risk management and the role of spot price predictions in the Australian retail electricity market,” Stud. Nonlinear Dyn. Econom., vol. 10, no. 3, 2006, doi: 10.2202/1558-3708.1383.spa
dc.relation.references[140] J. Huang, Y. Xue, Z. Y. Dong, and K. P. Wong, “An efficient probabilistic assessment method for electricity market risk management,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1485–1493, 2012, doi: 10.1109/TPWRS.2012.2183900.spa
dc.relation.references[141] C. Klüppelberg, T. Meyer-Brandis, and A. Schmidt, “Electricity spot price modelling with a view towards extreme spike risk,” Quant. Finance, vol. 10, no. 9, pp. 963–974, 2010, doi: 10.1080/14697680903150496.spa
dc.relation.references[142] R. I. Brik and A. Roncoroni, “Static mitigation of volumetric risk,” J. Energy Mark., May 2016, Accessed: Nov. 23, 2021. [Online]. Available: https://www.risk.net/node/2457758spa
dc.relation.references[143] F. E. Benth, L. Di Persio, and S. Lavagnini, “Stochastic modeling of wind derivatives in energy markets,” Risks, vol. 6, no. 2, 2018, doi: 10.3390/risks6020056.spa
dc.relation.references[144] K. W. Park, “Risk management and derivatives in korea electricity markets,” presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), 2003, pp. 915–920. doi: 10.1016/S14746670(17)34590-1.spa
dc.relation.references[145] W. Liu, J. Shang, W. Zhou, F. Wen, and Z. Lin, “Evaluation of value-at-risk in electricity markets based on multifractal theory,” Dianli Xitong ZidonghuaAutomation Electr. Power Syst., vol. 37, no. 7, pp. 48–54, 2013, doi: 10.7500/AEPS201206172.spa
dc.relation.references[146] A. T. Carrasquilla, J. F. R. García, and J. O. P. Robayo, “Sub-optimal allocation under VaR constraints in electricity markets,” Rev. Econ. Rosario, vol. 19, no. 2, pp. 201–220, 2016, doi: 10.12804/revistas.urosario.edu.co/economia/a.5625.spa
dc.relation.references[147] Q. Zhang and X. Wang, “Customer electricity purchasing risk decision under real-time pricing,” presented at the 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, 2009. doi: 10.1109/PSCE.2009.4839934.spa
dc.relation.references[148] J. Cabero, M. J. Ventosa, S. Cerisola, and Á. Baíllo, “Modeling risk management in oligopolistic electricity markets: A benders decomposition approach,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 263–271, 2010, doi: 10.1109/TPWRS.2009.2036788.spa
dc.relation.references[149] D. Chin and A. Siddiqui, “Capacity expansion and forward contracting in a duopolistic power sector,” Comput. Manag. Sci., vol. 11, no. 1–2, pp. 57–86, 2014, doi: 10.1007/s10287-013-0166-6.spa
dc.relation.references[150] F. Gökgöz and M. E. Atmaca, “Financial optimization in the Turkish electricity market: Markowitz’s mean-variance approach,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 357–368, 2012, doi: 10.1016/j.rser.2011.06.018.spa
dc.relation.references[151] Y.-K. Wu, “Intelligent management and hedging strategy on energy contracts in competitive electricity markets,” Int. J. Power Energy Syst., vol. 30, no. 3, pp. 213–218, 2010, doi: 10.2316/Journal.203.2010.3.203-4616.spa
dc.relation.references[152] D. Feng, D. Gan, J. Zhong, and Y. Ni, “Efficient frontier analysis for the GenCo multi-trading strategy: Part one Model analysis,” Dianli Xitong ZidonghuaAutomation Electr. Power Syst., vol. 31, no. 13, pp. 29–35, 2007.spa
dc.relation.references[153] F. Azevedo, Z. A. Vale, and P. B. de Moura Oliveira, “A decision-support system based on particle swarm optimization for multiperiod hedging in electricity markets,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 995–1003, 2007, doi: 10.1109/TPWRS.2007.901463.spa
dc.relation.references[154] F. Azevedo, Z. A. Vale, and P. B. M. Oliveira, “Long-term Price Range Forecast Applied to Risk Management Using Regression Models,” in 2007 International Conference on Intelligent Systems Applications to Power Systems, Nov. 2007, pp. 1–6. doi: 10.1109/ISAP.2007.4441656.spa
dc.relation.references[155] J. A. Díaz Contreras, G. I. Macías Villalba, and E. Luna González, “Estrategia de cobertura con productos derivados para el mercado energético colombiano,” Estud. Gerenciales, vol. 30, no. 130, pp. 55–64, Jan. 2014, doi: 10.1016/j.estger.2014.02.008.spa
dc.relation.references[156] A. T. Carrasquilla, J. F. R. García, and J. Pantoja, “Estrategia de cobertura a través de contratos a plazo en mercados eléctricos,” Acad. Rev. Latinoam. Adm., no. 50, pp. 148–157, 2012, Accessed: Jun. 25, 2019. [Online]. Available: http://www.redalyc.org/articulo.oa?id=71624352010spa
dc.relation.references[157] K. Maradey-Angarita, J. O. Pantoja-Robayo, A. Trespalacios-Carrasquilla, K. Maradey-Angarita, J. O. Pantoja-Robayo, and A. Trespalacios-Carrasquilla, “Analysis of the financial margins required to hedge risks in electric power futures markets,” Ecos Econ., vol. 21, no. 45, pp. 67–105, Dec. 2017, doi: 10.17230/ecos.2017.45.4.spa
dc.relation.references[158] J. Barrientos, E. Rodas, E. Velilla, M. Lopera, and F. Villada, “A model for forecasting electricity prices in Colombia,” Lect. Econ., no. 77, pp. 91–127, Dec. 2012, Accessed: May 28, 2019. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-25962012000200003&lng=en&nrm=iso&tlng=esspa
dc.relation.references[159] E. U. Gaviria and A. T. Carrasquilla, “Contraste de modelos estocásticos para el precio de la energía en Colombia,” Rev. Fac. Cienc., vol. 3, no. 1, pp. 41–55, Jan. 2014, Accessed: May 29, 2019. [Online]. Available: https://revistas.unal.edu.co/index.php/rfc/article/view/49524spa
dc.relation.references[160] O. H. N, J. D. Velásquez, and I. Dyner, “Modelos ARIMA y estructural de la serie de precios promedio de los contratos en el Mercado Mayorista de Energía Eléctrica en Colombia,” Energética, no. 34, pp. 5–10, 2005, Accessed: Jun. 05, 2019. [Online]. Available: http://www.redalyc.org/articulo.oa?id=147019373001spa
dc.relation.references[161] A. A. A. Monica, S. B. Botero, and H. H. B. Jaime, “Financial anomalies in the electricity market: Empirical analysis of spot prices,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–7. doi: 10.23919/CISTI.2018.8398640.spa
dc.relation.references[162] A. Muñoz-Santiago, J. Urquijo-Vanstrahlengs, A. Castro-Otero, and J. Lombana, “Pronóstico del precio de la energía en Colombia utilizando modelos ARIMA con IGARCH,” Rev. Econ. Rosario, vol. 20, no. 1, p. 36, Oct. 2017, doi: 10.12804/revistas.urosario.edu.co/economia/a.6152.spa
dc.relation.references[163] F. Villada, D. R. Cadavid, and J. D. Molina, “Electricity price forecasting using artificial neural networks,” Rev. Fac. Ing., no. 44, pp. 111–118, 2008.spa
dc.relation.references[164] F. Villada, E. García, and J. D. Molina, “Electricity price forecasting using neurofuzzy networks,” Inf. Tecnol., vol. 22, no. 6, pp. 111–120, 2011, doi: 10.4067/S0718-07642011000600012.spa
dc.relation.references[165] A. P. Agudelo, J. M. López-Lezama, and E. Velilla, “Forecasting Electricity Stock Price by Means of a Nonlinear Autoregressive Neural Model with Exogenous Inputs,” Inf. Tecnológica, vol. 26, no. 6, pp. 99–108, 2015, doi: 10.4067/S0718-07642015000600012.spa
dc.relation.references[166] H. Juan David Velásquez, C. Carlos Jaime Franco, and M. Yris Olaya, “Forecasting average monthly prices for colombian wholesale electricity market contracts,” Cuad. Adm., vol. 23, no. 40, pp. 321–337, 2010.spa
dc.relation.references[167] J. B. Marín, E. T. Orozco, and E. Velilla, “Forecasting electricity price in Colombia: A comparison between neural network, ARMA process and hybrid models,” Int. J. Energy Econ. Policy, vol. 8, no. 3, pp. 97–106, 2018.spa
dc.relation.references[168] N. J. H. Bueno, M. de los Á. P. Calderón, Y. A. M. Maldonado, and A. O. Castro, “Determination of Models of Simple Regression and Multivariate Analysis for the Forecast of the Electricity Price in Colombia at 2030,” Int. J. Energy Econ. Policy, vol. 8, no. 5, pp. 202–211, Sep. 2018, Accessed: Jun. 05, 2019. [Online]. Available: https://www.econjournals.com/index.php/ijeep/article/view/6415spa
dc.relation.references[169] D. Tobón-Orozco et al., “LONG-TERM SEASONAL FORWARDS IN ELECTRICITY GENERATION MARKETS: AN APPLICATION TO COLOMBIA,” Cuad. Econ., vol. 37, no. 74, pp. 287–313, Dec. 2018, doi: 10.15446/cuad.econ.v37n74.54299.spa
dc.relation.references[170] J. C. H. Jhon C. Hull, Introducción a los Mercados futuros y opciones, 6Ed. Prentice, Hall, 2008.spa
dc.relation.references[171] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” J. Polit. Econ., vol. 81, no. 3, pp. 637–654, May 1973, doi: 10.1086/260062.spa
dc.relation.references[172] F. Venegas, Riesgos financieros y económicos, Segunda. CENGAGE Learning, 2008.spa
dc.relation.references[173] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified approach,” J. Financ. Econ., vol. 7, no. 3, pp. 229–263, Sep. 1979, doi: 10.1016/0304-405X(79)90015-1.spa
dc.relation.references[174] A. M. Calle Fernández and V. M. Tamayo Bustamante, “Decisiones de inversión a través de opciones reales,” Estud. Gerenciales, vol. 25, no. 111, pp. 107–126, Apr. 2009, doi: 10.1016/S0123-5923(09)70073-7.spa
dc.relation.references[175] A. Bello, J. Reneses, and A. Muñoz, “Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case,” Energies, vol. 9, no. 3, p. 193, Mar. 2016, doi: 10.3390/en9030193.spa
dc.relation.references[176] E. S. Schwartz, “The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging,” J. Finance, vol. 52, no. 3, pp. 923–73, 1997, Accessed: Jun. 24, 2019. [Online]. Available: https://econpapers.repec.org/article/blajfinan/v_3a52_3ay_3a1997_3ai_3a3_3ap_3a923-73.htmspa
dc.relation.references[177] D. Pilipovic, Energy Risk: Valuing and Managing Energy Derivatives, Second. McGraw-Hill, 2007.spa
dc.relation.references[178] V. Canazza, Guang Li, Chen Ching Liu, D. Lucarella, and A. Venturini, “An Intelligent System For Price Forecasting Accuracy Assessment,” in Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, Nov. 2005, pp. 92–99. doi: 10.1109/ISAP.2005.1599246.spa
dc.relation.references[179] V. Gonzalez, J. Contreras, and D. W. Bunn, “Forecasting Power Prices Using a Hybrid Fundamental-Econometric Model,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 363–372, Feb. 2012, doi: 10.1109/TPWRS.2011.2167689.spa
dc.relation.references[180] M. G. Khajeh, A. Maleki, M. A. Rosen, and M. H. Ahmadi, “Electricity price forecasting using neural networks with an improved iterative training algorithm,” Int. J. Ambient Energy, vol. 39, no. 2, pp. 147–158, 2018, doi: 10.1080/01430750.2016.1269674.spa
dc.relation.references[181] B. Uniejewski and R. Weron, “Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models,” Energies, vol. 11, no. 8, p. 2039, Aug. 2018, doi: 10.3390/en11082039.spa
dc.relation.references[182] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look into the future,” Int. J. Forecast., vol. 30, no. 4, pp. 1030–1081, 2014, doi: 10.1016/j.ijforecast.2014.08.008.spa
dc.relation.references[183] X. Yan and N. A. Chowdhury, “Mid-term electricity market clearing price forecasting: A multiple SVM approach,” Int. J. Electr. Power Energy Syst., vol. 58, pp. 206–214, Jun. 2014, doi: 10.1016/j.ijepes.2014.01.023.spa
dc.relation.references[184] P. Mandal, T. Senjyu, N. Urasaki, T. Funabashi, and A. K. Srivastava, “Short-Term Price Forecasting for Competitive Electricity Market,” in 2006 38th North American Power Symposium, Sep. 2006, pp. 137–141. doi: 10.1109/NAPS.2006.360135.spa
dc.relation.references[185] L. Wu and M. Shahidehpour, “A Hybrid Model for Day-Ahead Price Forecasting,” IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1519–1530, Aug. 2010, doi: 10.1109/TPWRS.2009.2039948. [186] I. Shah, H. Bibi, S. Ali, L. Wang, and Z. Yue, “Forecasting One-Day-Ahead Electricity Pricesspa
dc.relation.references[186] I. Shah, H. Bibi, S. Ali, L. Wang, and Z. Yue, “Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using Parametric and Nonparametric Approaches,” IEEE Access, vol. 8, pp. 123104–123113, 2020, doi: 10.1109/ACCESS.2020.3007189.spa
dc.relation.references[187] M. A. Boyacioglu and D. Avci, “An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange,” Expert Syst. Appl., vol. 37, no. 12, pp. 7908–7912, 2010, doi: 10.1016/j.eswa.2010.04.045.spa
dc.relation.references[188] Z. Yang, L. Ce, and L. Lian, “Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods,” Appl. Energy, vol. 190, pp. 291–305, 2017, doi: 10.1016/j.apenergy.2016.12.130.spa
dc.relation.references[189] R. T. Clement, Making Hard Decisions: An Introduction to Decision Analysis, 2nd ed. United States of America: Duxbury, 1997.spa
dc.relation.references[190] J. Barrientos, E. Rodas, E. Velilla, M. Lopera, and F. Villada, “Modelo para el pronóstico del precio de la energía eléctrica en Colombia,” Lect. Econ., no. 77, pp. 91–127, Dec. 2012, Accessed: Aug. 30, 2018. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-25962012000200003&lng=en&nrm=iso&tlng=esspa
dc.relation.references[191] G. Poveda and Ó. J. Mesa, “Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre la hidrología de Colombia,” Tecnol. Cienc. Agua, vol. 11, no. 1, Art. no. 1, 1996, Accessed: Nov. 02, 2021. [Online]. Available: http://www.revistatyca.org.mx/index.php/tyca/article/view/765spa
dc.relation.references[192] UPME, “Plan de Expansión de Referencia Generación-Transimisión 2015-2029.” 2015. [Online]. Available: https://www1.upme.gov.co/Paginas/Plan-Expansion-2015-2029.aspxspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembElectricidad - Aspectos económicos
dc.subject.lembElectricity - Industry
dc.subject.lembElectricidad - Industria
dc.subject.proposalDerivexeng
dc.subject.proposalPrecio spot de la electricidadspa
dc.subject.proposalSimulación numéricaspa
dc.subject.proposalGestión de riesgosspa
dc.subject.proposalElectricity spot priceeng
dc.subject.proposalNumerical simulationeng
dc.subject.proposalManagement riskeng
dc.titleModelo de valoración de contratos en Derivexspa
dc.title.translatedValuation model for contracts in Derivexeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.036.598.990.2023.pdf
Tamaño:
2.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: