Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano.
dc.contributor.advisor | Espinosa Oviedo, Jairo José | |
dc.contributor.author | Berrío Castro, Ever Javier | |
dc.contributor.researchgroup | Grupo de Automática de la Universidad Nacional GAUNAL | spa |
dc.date.accessioned | 2021-09-13T16:10:11Z | |
dc.date.available | 2021-09-13T16:10:11Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, mapas | spa |
dc.description.abstract | La situación general del clima y las alteraciones medioambientales notorias en los últimos tiempos, han mostrado la necesidad de innovar en tecnologías que sean menos contaminantes o más eficientes. Esto ha llevado a que en los últimos años se incrementen los esfuerzos por desarrollar mejores sistemas energéticos, llegando a que cada vez más se instalen sistemas de fuentes renovables y renovables no convencionales, incluso llegando a superar, a nivel mundial, la capacidad instalada anual de las fuentes de generación convencionales como las que funcionan con combustibles fósiles. Por ejemplo, en el año 2019 las energías renovables representaron el 72% de las adiciones de capacidad total; además el 90% de la capacidad renovable instalada recientemente es solar o eólica [1]. En Colombia, de acuerdo con investigaciones realizadas por IRENA (International Renewable Energy Agency), en el año 2019 la capacidad renovable total instalada era de 12 375 MW, de las cuales 18 MW corresponden a energía eólica y 90 MW de energía solar fotovoltaica, que cuando se comparan con los 18 MW y 2 MW de capacidad instalada de energía eólica y solar respectivamente en el año 2016, hace evidente el crecimiento e interés por la energía solar fotovoltaica. Además la energía solar fotovoltaica fuera de Red fue de 1532 MW en 2018 y un estimado de 4636 MW para 2019 [1]. Sin duda el interés por las energías renovables cada vez es mayor, lo cual presenta retos como de estrategias de operación, estabilidad y almacenamiento de energía. Para acompañar y dar soporte a estos sistemas de energías renovables, sobre todo las no convencionales por su variabilidad y su carácter oscilatorio, aparece el hidrógeno como medio para el almacenamiento de energía; además que surge como un posible eficiente vector energético. Esta tesis se enfoca en el uso del hidrógeno como sistema de almacenamiento de energía eléctrica. Se realiza un análisis técnico económico para el almacenamiento y producción de hidrógeno a partir de energías solar fotovoltaica, se establecen las dinámicas para la estimación de los costos asociados y se analiza la existencia de economías de escala. También se realiza una comparación de este sistema cuando la energía a almacenar proviene directamente de la Red eléctrica y cómo esto influye en el costo nivelado de del hidrógeno (LCOH, por sus siglas en inglés). Basados en el análisis anterior, se determina un escenario que provee condiciones económicas óptimas para el almacenamiento de energía utilizando esta tecnología, además de hacer también la comparación utilizando un medio de almacenamiento basado en baterías. Por otro lado, también se analizan dos estrategias de operación para los sistemas de almacenamiento basados en hidrógeno (HESS, por sus siglas en inglés), la primera llamada estrategia convencional o estándar, la segunda llamada estrategia de recorte de pico o “peak shaving” como se denomina en inglés y se propone una tercera llamada estrategia híbrida que considera, además de otros factores, los pronósticos climáticos que se obtienen desde una base de datos. Con estas estrategias se busca la integración de los HESS a las redes o microrredes donde están conectados, cuando se requieren intercambios de energía eléctrica. Estas estrategias están basadas en reglas y en cada una hay condiciones de operación. Cada condición de operación está representada por un problema de programación lineal o afín, con sus objetivos y restricciones específicas. El flujo de energía se determina resolviendo el problema de optimización para cada intervalo de tiempo. (Texto tomado de la fuente) | spa |
dc.description.abstract | The general climate situation and the notorious environmental changes in recent times have shown the need to innovate in technologies that are less polluting or more efficient. This has led to increased efforts to develop better energy systems in recent years, leading to the installation of more and more systems from renewable and non-conventional renewable sources, even exceeding, worldwide, the annual installed capacity of conventional generation sources such as those that run on fossil fuels. For example, in 2019 renewable energies accounted for 72% of total capacity additions; besides 90% of the recently installed renewable capacity is solar or wind [1]. In Colombia, according to research carried out by IRENA (International Renewable Energy Agency), in 2019 the total installed renewable capacity was 12,375 MW, of which 18 MW correspond to wind energy and 90 MW of photovoltaic solar energy, which When compared to the 18 MW and 2 MW installed capacity of wind and solar energy respectively in 2016, the growth and interest in photovoltaic solar energy is evident. Furthermore, off-grid photovoltaic solar energy was 1532 MW in 2018 and an estimated 4636 MW for 2019 [1]. Undoubtedly, the interest in renewable energies is increasing, which presents challenges such as operating strategies, stability, and energy storage. To accompany and support these renewable energy systems, especially non-conventional ones due to their variability and their oscillatory nature, hydrogen appears as a means for storing energy; Furthermore, it emerges as a possible efficient energy vector. This thesis focuses on the use of hydrogen as an electrical energy storage system. A technical economic analysis is carried out for the storage and production of hydrogen from photovoltaic solar energy, the dynamics are established for the estimation of the associated costs and the existence of economies of scale is analyzed. A comparison of this system is also made when the energy to be stored comes directly from the electricity grid and how this influences the levelized cost of hydrogen (LCOH). Based on the previous analysis, a scenario is determined that provides optimal economic conditions for energy storage using this technology, in addition to making the comparison using a battery-based storage medium. On the other hand, two operating strategies for hydrogen-based storage systems (HESS) are also analyzed, the first called conventional or standard strategy, the second called peak shaving strategy and a third so-called hybrid strategy is proposed that considers, in addition to other factors, the climate forecasts obtained from a database. With these strategies we aim the integration of the HESS into the networks or microgrids where they are connected, when electrical energy exchanges are required. These strategies are based on rules and in each one there are operating conditions. Each operating condition is represented by a linear or affine programming problem, with its specific objectives and constraints. The energy flow is determined by solving the optimization problem for each time interval. | fra |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Fuentes alternativas de energía | spa |
dc.description.researcharea | Calidad de la Energía | spa |
dc.description.researcharea | Electrónica de Potencia | spa |
dc.format.extent | xviii, 105 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80165 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Automática | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | [1] IRENA, Renewable Capacity Statistics 2020. 2020. [2] H. Aki, I. Sugimoto, T. Sugai, M. Toda, M. Kobayashi, and M. Ishida, “Optimal operation of a photovoltaic generation-powered hydrogen production system at a hydrogen refueling station,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 14892–14904, 2018, doi: 10.1016/j.ijhydene.2018.06.077. [3] K. A. Kavadias, D. Apostolou, and J. K. Kaldellis, “Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network,” Appl. Energy, vol. 227, pp. 574–586, Oct. 2018, doi: 10.1016/j.apenergy.2017.08.050. [4] F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources,” Sol. Energy, vol. 78, no. 5, pp. 661–669, 2005, doi: 10.1016/j.solener.2004.09.003. [5] H. Lee, S. Ahn, W. Yoon, H. Seo, J. S. Hong, and Y. K. Go, “Design Principle and Loss Engineering for Photovoltaic − Electrolysis Cell System,” ACS OMEGA, 2017, doi: 10.1021/acsomega.7b00012. [6] A. Zerrahn, W. Schill, and C. Kemfert, “On the economics of electrical storage for variable renewable energy sources,” Eur. Econ. Rev., vol. 108, pp. 259–279, 2018, doi: 10.1016/j.euroecorev.2018.07.004. [7] L. Wiegler, “The Future of Hydrogen EIA 2019,” 2019. [Online]. Available: http://www.technologyreview.com/news/425492/the-future-of-hydrogen-cars/. [8] B. Woo and J. Chang, “Hydrogen Production via Water Electrolysis,” IEEE Electrif. Mag., pp. 19–25, 2018, doi: 10.1109/MELE.2017.2784632. [9] B. Johnston, M. C. Mayo, and A. Khare, “Hydrogen: The energy source for the 21st century,” Technovation, vol. 25, no. 6, pp. 569–585, 2005, doi: 10.1016/j.technovation.2003.11.005. [10] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable and Sustainable Energy Reviews, vol. 57. Elsevier, pp. 850–866, 2016, doi: 10.1016/j.rser.2015.12.112. [11] M. Moreno-Benito, P. Agnolucci, and L. G. Papageorgiou, “Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development,” Comput. Chem. Eng., vol. 102, pp. 110–127, 2017, doi: 10.1016/j.compchemeng.2016.08.005. [12] B. Wang, Y. Liang, J. Zheng, R. Qiu, M. Yuan, and H. Zhang, “An MILP model for the reformation of natural gas pipeline networks with hydrogen injection,” Int. J. Hydrogen Energy, vol. 43, no. 33, pp. 16141–16153, 2018, doi: 10.1016/j.ijhydene.2018.06.161. [13] S. A. Sherif, F. Barbir, and T. N. Veziroglu, “Wind energy and the hydrogen economy-review of the technology,” Sol. Energy, vol. 78, no. 5, pp. 647–660, 2005, doi: 10.1016/j.solener.2005.01.002. [14] K. A. Kavadias, D. Apostolou, and J. K. Kaldellis, “Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network,” Appl. Energy, no. January, pp. 0–1, 2017, doi: 10.1016/j.apenergy.2017.08.050. [15] Y. Zhang, P. E. Campana, A. Lundblad, and J. Yan, “Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system : Storage sizing and rule-based operation q,” Appl. Energy, vol. 201, pp. 397–411, 2017, doi: 10.1016/j.apenergy.2017.03.123. [16] T. E. S.A. and Hinicio, “Study on Early Business Cases for H2 in Energy Storage and More Broadly Power To H2 Applications,” EU Comm., no. June, p. 228, 2017, [Online]. Available: http://www.hinicio.com/inc/uploads/2017/07/P2H_Full_Study_FCHJU.pdf%0Ahttp://www.fch.europa.eu/sites/default/files/P2H_Full_Study_FCHJU.pdf%0Ahttp://www.hinicio.com/file/2018/06/P2H_Full_Study_FCHJU.pdf. [17] U.S. Department of Energy Hydrogen and Fuel Cells Program, “2018 Annual Merit Review and Peer Evaluation Report,” Washinton, DC., 2018. [18] W. Kreuter and H. Hofmann, “Electrolysis: the important energy transformer in a world of sustainable energy,” Int. J. Hydrogen Energy, vol. 23, no. 8, pp. 661–666, Aug. 1998, doi: 10.1016/S0360-3199(97)00109-2. [19] W. Kuckshinrichs, T. Ketelaer, and J. C. Koj, “Economic analysis of improved alkaline water electrolysis,” Front. Energy Res., vol. 5, no. FEB, 2017, doi: 10.3389/fenrg.2017.00001. [20] “Asociación Española del Hidrógeno - Aeh2.” https://www.aeh2.org/ (accessed Jan. 30, 2021). [21] W. Dönitz and E. Erdle, “High-temperature electrolysis of water vapor-status of development and perspectives for application,” Int. J. Hydrogen Energy, vol. 10, no. 5, pp. 291–295, Jan. 1985, doi: 10.1016/0360-3199(85)90181-8. [22] E. Flores, G. Tutor, F. Javier, and P. Lucena, “Trabajo Fin de Grado Grado en Ingeniería de las Tecnologías Industriales Estado del arte de electrolizadores de óxido sólido,” Universidad de Sevilla - España, 2020. [23] S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, Dec. 2019, doi: 10.1016/j.mset.2019.03.002. [24] J. O’Brien, Thermodynamic Considerations for Thermal Water Splitting Processes and High Temperature Electrolysis, vol. 8. 2008. [25] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” Journal of Power Sources, vol. 203. Elsevier, pp. 4–16, Apr. 01, 2012, doi: 10.1016/j.jpowsour.2011.12.019. [26] P. Moçoteguy and A. Brisse, “A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells,” International Journal of Hydrogen Energy, vol. 38, no. 36. Pergamon, pp. 15887–15902, Dec. 13, 2013, doi: 10.1016/j.ijhydene.2013.09.045. [27] J. Larminie and A. Dicks, Fuel Cell Systems Explained. 2003. [28] R. K. Akikur, R. Saidur, H. W. Ping, and K. R. Ullah, “Performance analysis of a co-generation system using solar energy and SOFC technology,” Energy Convers. Manag., vol. 79, pp. 415–430, Mar. 2014, doi: 10.1016/j.enconman.2013.12.036. [29] M. Serban, M. A. Lewis, C. L. Marshall, and R. D. Doctor, “Hydrogen Production by Direct Contact Pyrolysis of Natural Gas,” Energy & Fuels, vol. 17, no. 3, pp. 705–713, May 2003, doi: 10.1021/ef020271q. [30] D. Das, N. Khanna, and T. Nejat Veziroǧlu, “Recent developments in biological hydrogen production processes,” Chem. Ind. Chem. Eng. Q., vol. 14, no. 2, pp. 57–67, 2008, doi: 10.2298/CICEQ0802057D. [31] I. Dincer and A. S. Joshi, Solar Based Hydrogen Production Systems. 2013. [32] H. Balat and E. Kırtay, “Hydrogen from biomass – Present scenario and future prospects,” Int. J. Hydrogen Energy, vol. 35, no. 14, pp. 7416–7426, 2010, doi: https://doi.org/10.1016/j.ijhydene.2010.04.137. [33] M. A. Rosen, “Advances in hydrogen production by thermochemical water decomposition: A review,” Energy, vol. 35, no. 2, pp. 1068–1076, 2010, doi: https://doi.org/10.1016/j.energy.2009.06.018. [34] IDEAM, “Atlas Interactivo - Climatológico - IDEAM,” Atlas Climatológico de Colombia 1981 - 2010, 2015. http://atlas.ideam.gov.co/visorAtlasClimatologico.html (accessed Jun. 16, 2019). [35] I. Sansa, R. Villafafila, and N. M. Bellaaj, “Optimal sizing design of an isolated microgrid using loss of power supply probability,” in 2015 6th International Renewable Energy Congress, IREC 2015, 2015, pp. 1–7, doi: 10.1109/IREC.2015.7110941. [36] S. Ruiz Alvarez, “Metodología para el diseño de microrredes aisladas usando métodos de optimización numérica,” p. 90, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/56342/1/1035831711.2017.pdf. [37] C. H. Li, X. J. Zhu, G. Y. Cao, S. Sui, and M. R. Hu, “Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology,” Renew. Energy, vol. 34, no. 3, pp. 815–826, 2009, doi: 10.1016/j.renene.2008.04.018. [38] G. Zini and P. Tartarini, Solar Hydrogen Energy Systems. Springer, 2012. [39] D. DeSantis, B. James, and G. Saur, “H2A: Hydrogen Analysis Production Models | Hydrogen and Fuel Cells | NREL,” Central Hydrogen Production - Project Information, Sep. 19, 2019. https://www.nrel.gov/hydrogen/h2a-production-models.html (accessed Jan. 15, 2021). [40] O. V. Marchenko and S. V. Solomin, “Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9361–9370, 2017, doi: 10.1016/j.ijhydene.2017.02.076. [41] El Pais S.A, “El agua empezó a cotizarse en la bolsa de valores de Wall Street,” Dec. 08, 2020. [42] Geolcoe, “COSTOS NIVELADOS DE GENERACIÓN DE ELECTRICIDAD EN COLOMBIA.” http://www.geolcoe.siel.gov.co/advanced/1/3/166/169 (accessed Jan. 18, 2021). [43] “McPhy Electrolyzers.” https://mcphy.com/en/equipment-services/electrolyzers/large/?cn-reloaded=1 (accessed Jan. 25, 2021). [44] Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan, “Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden,” Energy Convers. Manag., vol. 133, pp. 249–263, 2017, doi: 10.1016/j.enconman.2016.11.060. [45] M. Bortolini, M. Gamberi, and A. Graziani, “Technical and economic design of photovoltaic and battery energy storage system,” Energy Convers. Manag., vol. 86, pp. 81–92, 2014, doi: https://doi.org/10.1016/j.enconman.2014.04.089. [46] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “Pvlib Python: a Python Package for Modeling Solar Energy Systems,” J. Open Source Softw., vol. 3, no. 29, p. 884, 2018, doi: 10.21105/joss.00884. [47] S. de M. A.-P. CORPAC, “Modelo GFS,” 2020. http://www.corpac.gob.pe/app/Meteorologia/modelos/gfs.php (accessed Jan. 03, 2021). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.lemb | Recursos energéticos | |
dc.subject.proposal | Hidrógeno | spa |
dc.subject.proposal | Almacenamiento | spa |
dc.subject.proposal | Energía | spa |
dc.subject.proposal | Electrólisis | spa |
dc.subject.proposal | Celda | spa |
dc.subject.proposal | Combustible | spa |
dc.subject.proposal | Vector | spa |
dc.subject.proposal | Verde | |
dc.subject.proposal | HESS | eng |
dc.subject.proposal | Hydrogen | eng |
dc.subject.proposal | Energy | eng |
dc.subject.proposal | Storage | eng |
dc.subject.proposal | Electrolysis | eng |
dc.subject.proposal | Green | eng |
dc.title | Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano. | spa |
dc.title.translated | Feasibility of the use of hydrogen as an electrical energy storage system in the colombian context. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017170031.2021.pdf
- Tamaño:
- 4.88 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Eléctrica - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: