Erosión Corrosión de recubrimientos ternarios de carburos de Vanadio-Niobio depositados mediante la técnica TRD sobre aceros AISI H13 y AISI D2

dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.advisorPiamba Tulcán, Oscar Edwin
dc.contributor.authorVallejo Bastidas, Fabio Fernando
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.date.accessioned2022-09-28T01:27:19Z
dc.date.available2022-09-28T01:27:19Z
dc.date.issued2014-10-21
dc.descriptionfotografías a blanco y negro, fotografías a color, gráficas, ilustraciones, tablasspa
dc.description.abstractEn esta investigación se evaluó la resistencia a la erosión, corrosión y erosión-corrosión de los aceros AISI D2 y AISI H13 sin recubrir y con recubrimientos binarios de NbC, VC y ternarios de VxNbyCz, producidos a través de la técnica de deposición por difusión termorreactiva (TRD). Los tratamientos TRD se llevaron a cabo en una mezcla de sales fundida que consta de bórax, ferroaleación: ferro-niobio, ferro-vanadio (Fe-Nb, Fe-V) y aluminio a una temperatura de 1293 K durante 4 horas, usando un horno de calentamiento por resistencia. La estructura cristalográfica de los recubrimientos se evaluó mediante difracción de rayos X (XRD), la morfología se observó mediante microscopia electrónica de barrido (SEM),microscopia óptica de sección trasversal y microscopia de escaneo láser confocal (CLSM). El comportamiento frente a la erosión corrosión de los recubrimientos fue estudiado usando el procedimiento indicado en la norma ASTM G119-09, mediante una celda de impacto tipo Jet para ángulos de impacto de 30 y 90 ° con velocidades de flujo de 11,5 m/s y 9,5 m/s. El efecto erosivo se obtuvo mediante la acción de un chorro de agua con partículas de SiO2 entre 200 y 300μm de tamaño, el efecto corrosivo se obtuvo mediante la acción del chorro con una solución electrolítica de 3,5% NaCl, el efecto sinérgico de erosión-corrosión se estudió a través de la acción del chorro de agua al 3,5% de NaCl con el 10% en peso de partículas de SiO2. Los patrones de difracción de rayos X mostraron que la capa ternaria (VNbC2) se orientó preferentemente a lo largo de la dirección [200] con una estructura cúbica centrada en la cara (FCC).La microscopía óptica mostró que los recubrimientos crecieron de manera homogénea con un espesor regular. Los estudios de erosión-corrosión indicaron una fuerte reducción en el efecto sinérgico sobre el recubrimiento para ambos aceros frente a los aceros sin recubrir. El efecto erosivo hizo la mayor contribución para los recubrimientos de carburo de niobio (NbC). La velocidad de pérdida total de material por E/C para el acero sin recubrir y los recubrimientos fue superior al efecto de erosión pura. (Texto tomado de la fuente)spa
dc.description.abstractIn this research the erosion, corrosion and corrosion-erosion behavior of AISI D2 and AISI H13 steel for the bare steel and in addition with binary VC and NbC coatings and ternary VNbC2 coatings, produced by the Thermoreactive Deposition/Diffusion Process (TRD) was evaluated. The TRD treatments were carried out by mixture of molten salts, consisting of borax, ferroalloy: Ferro-niobium, Ferro-vanadium (Fe-Nb, Fe-V) and aluminum at 1293 °K for 4 hours, using a resistance-heating furnace. The crystallographic structure of the coatings was evaluated using X-ray diffraction (XRD), the morphology was observed by scanning electron microscopy (SEM), light microscopy of cross-section and confocal laser scanning microscopy (CLSM). The erosion-corrosion behavior of the coatings was studied following the procedure described by ASTM G119-09 standard by a jet impingement cell type for impact angles of 30 and 90 ° with speeds of 11,5 m/s and 9,5 m/s. The erosive effect was obtained by action of a water jet with SiO2 particles between 200 and 300μm in size. The corrosive effect was obtained by the action of the jet with an electrolyte solution of 3.5% NaCl. The synergistic effect of erosion-corrosion was studied by the water jet action with an electrolyte solution to 3.5% NaCl and 10% by weight of SiO2 particles. The patterns of X-ray diffraction showed that the ternary coatings (VNbC2) was preferentially oriented along the direction [200] with a Face Centered Cubic structure (FCC).The optical microscopy showed that the coatings uniformly grew with a regular thickness. The erosion-corrosion studies indicated a strong reduction in the synergistic effect on the coating for both steels versus bare steels. The erosive effect made the largest contribution to NbC coatings. The total loss rate of material by E/C for bare steel and coatings was superior to the effect of pure erosioneng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaIngeniería de Superficiesspa
dc.description.researchareaIngeniería de fabricación y materialesspa
dc.description.sponsorshipUniversidad Nacional de Colombia sede Bogotáspa
dc.format.extentxxi, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82335
dc.language.isospaspa
dc.publisherUniversidad Nacional De Colombia sede Bogotáspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. Neville, F. Reza, S. Chiovelli, and T. Revega, “Erosion–corrosion behaviour of WC-based MMCs in liquid–solid slurries,” Wear, vol. 259, no. 1–6, pp. 181–195, Jul. 2005.spa
dc.relation.referencesASTM Standards, “ASTM G119 − 09 Standard Guide for Determining Synergism Between Wear and Corrosion,” ASTM Int., pp. 1–7, 2012.spa
dc.relation.referencesD. López, N. A. Falleiros, and A. P. Tschiptschin, “Corrosion–erosion behaviour of austenitic and martensitic high nitrogen stainless steels,” Wear, vol. 263, no. 1–6, pp. 347–354, Sep. 2007.spa
dc.relation.referencesK. D. Efird, “Jet Impingement Testing For Flow Accelerated Corrosion,” Nace Int., no. 00052, p. 26, 2000.spa
dc.relation.referencesM. M. Stack and G. H. Abdulrahman, “Mapping erosion–corrosion of carbon steel in oil–water solutions: Effects of velocity and applied potential,” Wear, vol. 274–275, pp. 401–413, Jan. 2012.spa
dc.relation.referencesP. J. Blau, T. H. Kosel, and J. E. Miller, ASM Handbook, Vol. 18: Friction, Lubrication, and Wear Technology. ASM International Handbook Committee, 1992.spa
dc.relation.referencesH. M. Clark, “Particle velocity and size effects in laboratory slurry erosion measurements OR… do you know what your particles are doing?,” Tribol. Int., vol. 35, no. 10, pp. 617–624, Oct. 2002.spa
dc.relation.referencesR. Malka, “Erosion–corrosion and synergistic effects in disturbed liquid-particle flow,” College of Engineering and Technology of Ohio University, Thesis, 2005.spa
dc.relation.referencesM. M. Stack, Y. Purandare, and P. Hovsepian, “Impact angle effects on the erosion–corrosion of superlattice CrN/NbN PVD coatings,” Surf. Coatings Technol., vol. 188–189, pp. 556–565, Nov. 2004.spa
dc.relation.referencesY. I. Oka, S. Mihara, and T. Yoshida, “Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact,” Wear, vol. 267, no. 1–4, pp. 129–135, Jun. 2009.spa
dc.relation.referencesY. P. Purandare, M. M. Stack, and P. E. Hovsepian, “Velocity effects on erosion–corrosion of CrN/NbN ‘superlattice’ PVD coatings,” Surf. Coatings Technol., vol. 201, no. 1–2, pp. 361–370, Sep. 2006.spa
dc.relation.referencesD. López, J. P. Congote, J. R. Cano, a. Toro, and a. P. Tschiptschin, “Effect of particle velocity and impact angle on the corrosion–erosion of AISI 304 and AISI 420 stainless steels,” Wear, vol. 259, no. 1–6, pp. 118–124, Jul. 2005.spa
dc.relation.referencesY. I. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, “The impact angle dependence of erosion damage caused by solid particle impact,” Wear, vol. 203–204, pp. 573–579, Mar. 1997.spa
dc.relation.referencesF. E. Castillejo, “Recubrimientos de Carburos Ternarios Depositados con la Técnica TRD.,” Universidad Nacional de Colombia, Tesis Doctoral, Medellín, 2013.spa
dc.relation.referencesC. K. N. Oliveira, R. M. M. Riofano, and L. C. Casteletti, “Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels,” Surf. Coatings Technol., vol. 200, no. 16–17, pp. 5140–5144, Apr. 2006.spa
dc.relation.referencesC. K. N. Oliveira, C. L. Benassi, and L. C. Casteletti, “Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1880–1885, Oct. 2006.spa
dc.relation.referencesT. Arai, H. Fujita, Y. Sugimoto, and Y. Ohta, “Vanadium Carbonitride Coating by Immersing into LowTemperature Salt Bath,” Heat Treat. Surf. Eng., pp. 49–53, 1988.spa
dc.relation.referencesZ. B. Zheng, Y. G. Zheng, X. Zhou, S. Y. He, W. H. Sun, and J. Q. Wang, “Determination of the critical flow velocities for erosion–corrosion of passive materials under impingement by NaCl solution containing sand,” Corros. Sci., vol. 88, pp. 187–196, Nov. 2014.spa
dc.relation.referencesJ. a. Alegría-Ortega, L. M. Ocampo-Carmona, F. a. Suárez-Bustamante, and J. J. Olaya-Flórez, “Erosion–corrosion wear of Cr/CrN multi-layer coating deposited on AISI-304 stainless steel using the unbalanced magnetron (UBM) sputtering system,” Wear, vol. 290–291, pp. 149–153, Jun. 2012.spa
dc.relation.referencesY. Purandare, M. M. Stack, and P. Hovsepian, “A study of the erosion–corrosion of PVD CrN/NbN superlattice coatings in aqueous slurries,” Wear, vol. 259, no. 1–6, pp. 256–262, Jul. 2005.spa
dc.relation.referencesY. Zheng, Z. Yao, X. Wei, and W. Ke, “The synergistic effect between erosion and corrosion in acidic slurry medium,” Wear, vol. 186–187, pp. 555–561, Aug. 1995.spa
dc.relation.referencesG. T. Burstein and K. Sasaki, “Effect of impact angle on the slurry erosion–corrosion of 304L stainless steel,” Wear, vol. 240, no. 1–2, pp. 80–94, May 2000.spa
dc.relation.referencesH. Payán, W. Aperador, A. Vargas, F. Correa, and L. Vélez, “Estudio de la Sinergia Corrosión-Erosión de Recubrimientos Duros de TiN Y CrN Obtenidos Sobre Acero AISI 1045,” Rev. Colomb. Física, vol. 41, no. 1, pp. 41–43, 2009.spa
dc.relation.referencesF. Castillejo, D. Marulanda, and J. Olaya, “Estudio de recubrimientos de carburos ternarios de Niobio-Vanadio producidos sobre acero D2 usando la técnica de deposición por difusión termorreactiva,” Rev. Lat. Met. Mat., vol. 34, no. 2, pp. 230–239, 2014.spa
dc.relation.referencesF. Castillejo, D. Marulanda, O. Rodriguez, and J. Olaya, “Electrical furnace for producing carbide coatings using the thermoreactive deposition / diffusion technique,” Dyna, vol. 78, no. 170, pp. 192–197, 2011.spa
dc.relation.referencesF. E. Castillejo, D. M. Marulanda, and J. J. Olaya, “Production and characterization of niobium carbide coatings produced on tool steels by thermoreactive deposition / diffusion,” Ingeniare. Rev. Chil. Ing., vol. 22, no. 2, pp. 189–195, 2014.spa
dc.relation.referencesD. B. Varas, F. Castillejo, and D. Marulanda, “Deposición de Carburo de Niobio por la Técnica de Deposición / Difusión Termorreactiva ( TRD ) en Aceros de Bajo Carbono,” INGE@UAN, vol. 2, no. 3, pp. 56–58, 2011.spa
dc.relation.referencesF. E. Castillejo, Nieto and J. J. Olaya, “Recubrimientos De VC Y NbC Producidos por DRT: Tecnnología Económica, Eficiente Y Ambientalmente Limpia,” Cienc. e Ing. Neogranadina, vol. 22, pp. 95–103, 2012.spa
dc.relation.referencesF. E. Castillejo, D. M. Marulanda, J. J. Olaya, and J. E. Alfonso, “Wear and corrosion resistance of niobium-chromium carbide coatings on AISI D2 produced through TRD,” Surf. Coatings Technol., vol. 254, pp. 104–111, 2014.spa
dc.relation.referencesA. Caceres, “Corrosión Erosión de recubrimientos de Nitruro de Niobio, NbN.,” Universidad Nacional De Colombia, Medellín, Tesis, 2007.spa
dc.relation.referencesJ. A. Alegría, “Influencia de la velocidad en la erosión- corrosión de un recubrimiento multicapas de Cr/CrN depositado sobre acero 440C por el sistema de AC-PVD,” Universidad Nacional De Colombia, Medellín, Tesis, 2012.spa
dc.relation.referencesD. Lopez and D. López, “Mecanismos de corrosión-erosión en aceros inoxidables, Influencia de variables hidrodinámicas y de la aplicación de recubrimientos de TiN,” Universidad Nacional De Colombia, Medellín, Tesis, 2004.spa
dc.relation.referencesD. López, C. Sánchez, and A. Toro, “Corrosion–erosion behavior of TiN-coated stainless steels in aqueous slurries,” Wear, vol. 258, no. 1–4, pp. 684–692, Jan. 2005.spa
dc.relation.referencesD. López, N. A. Falleiros, and A. P. Tschiptschin, “Corrosion–erosion behaviour of austenitic and martensitic high nitrogen stainless steels,” Wear, vol. 263, no. 1–6, pp. 347–354, Sep. 2007.spa
dc.relation.referencesC. K. N. Oliveira, R. M. Muñoz Riofano, and L. C. Casteletti, “Formation of carbide layers on AISI H13 and D2 steels by treatment in molten borax containing dissolved both Fe–Nb and Fe–Ti powders,” Mater. Lett., vol. 59, no. 14–15, pp. 1719–1722, Jun. 2005.spa
dc.relation.referencesM. Aghaie-Khafri and F. Fazlalipour, “Vanadium carbide coatings on die steel deposited by the thermo-reactive diffusion technique,” J. Phys. Chem. Solids, vol. 69, no. 10, pp. 2465–2470, Oct. 2008.spa
dc.relation.referencesM. Aghaie-Khafri and F. Fazlalipour, “Kinetics of V(N,C) coating produced by a duplex surface treatment,” Surf. Coatings Technol., vol. 202, no. 17, pp. 4107–4113, May 2008.spa
dc.relation.referencesX. S. Fan, Z. G. Yang, C. Zhang, Y. D. Zhang, and H. Q. Che, “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique,” Surf. Coatings Technol., vol. 205, no. 2, pp. 641–646, Oct. 2010.spa
dc.relation.referencesX. S. Fan, Z. G. Yang, C. Zhang, and Y. D. Zhang, “Thermo-reactive deposition processed vanadium carbide coating: growth kinetics model and diffusion mechanism,” Surf. Coatings Technol., vol. 208, pp. 80–86, Sep. 2012.spa
dc.relation.referencesM. M. Stack and T. M. Abd El Badia, “Mapping erosion-corrosion of WC/Co-Cr based composite coatings: Particle velocity and applied potential effects,” Surf. Coatings Technol., vol. 201, pp. 1335–1347, 2006.spa
dc.relation.referencesM. . Stack, J. . James, and Q. Lu, “Erosion–corrosion of chromium steel in a rotating cylinder electrode system: some comments on particle size effects,” Wear, vol. 256, no. 5, pp. 557–564, Mar. 2004.spa
dc.relation.referencesC. G. Telfer, M. M. Stack, and B. D. Jana, “Particle concentration and size effects on the erosion-corrosion of pure metals in aqueous slurries,” Tribol. Int., vol. 53, pp. 35–44, Sep. 2012.spa
dc.relation.referencesY. P. Purandare, a. P. Ehiasarian, M. M. Stack, and P. E. Hovsepian, “CrN/NbN coatings deposited by HIPIMS: A preliminary study of erosion–corrosion performance,” Surf. Coatings Technol., vol. 204, no. 8, pp. 1158–1162, Jan. 2010.spa
dc.relation.referencesR. Malka, S. Nešić, and D. a. Gulino, “Erosion–corrosion and synergistic effects in disturbed liquid-particle flow,” Wear, vol. 262, no. 7–8, pp. 791–799, Mar. 2007.spa
dc.relation.referencesM. M. Stack and N. Pungwiwat, “Erosion–corrosion mapping of Fe in aqueous slurries: some views on a new rationale for defining the erosion–corrosion interaction,” Wear, vol. 256, no. 5, pp. 565–576, Mar. 2004.spa
dc.relation.referencesM. M. Ã. Stack and G. H. Abdulrahman, “Tribology International Mapping erosion-corrosion of carbon steel in oil exploration conditions : Some new approaches to characterizing mechanisms and synergies,” Tribiology Int., vol. 43, no. 7, pp. 1268–1277, 2010.spa
dc.relation.referencesH. W. Wang and M. M. Stack, “Corrosion of PVD TiN coatings under simultaneous erosion in sodium carbonate/bicarbonate buffered slurries,” Surf. Coatings Technol., vol. 105, no. 1–2, pp. 141–146, Jun. 1998.spa
dc.relation.referencesY. P. Purandare, M. M. Stack, and P. E. Hovsepian, “Velocity effects on erosion–corrosion of CrN/NbN ‘superlattice’ PVD coatings,” Surf. Coatings Technol., vol. 201, no. 1–2, pp. 361–370, Sep. 2006.spa
dc.relation.referencesM. M. Stack, S. Zhou, and R. C. Newman, “Identification of transitions in erosion-corrosion regimes in aqueous environments,” Wear, vol. 186–187, pp. 523–532, Aug. 1995.spa
dc.relation.referencesB. D. Jana and M. M. Stack, “Modelling impact angle effects on erosion–corrosion of pure metals: Construction of materials performance maps,” Wear, vol. 259, no. 1–6, pp. 243–255, Jul. 2005.spa
dc.relation.referencesM. . Stack and H. . Wang, “Simplifying the erosion–corrosion mechanism map for erosion of thin coatings in aqueous slurries,” Wear, vol. 233–235, pp. 542–551, Dec. 1999.spa
dc.relation.referencesT. Arai, G. Baker, and C. Bates, ASM Handbook, Vol. 4: Heat Treating. ASM International, 1991.spa
dc.relation.referencesT. Arai, “Carbide Coating Process by Use of Molten Borax Bath in Japan,” Carbide Coat. Process by Use Molten Borax Bath Japan, vol. 18, pp. 15–22, 1979.spa
dc.relation.referencesT. Arai and N. Komatsu, “Carbide Coating Process by Use of Salt Bath and its Application to Metal Forming Dies,” Proc. 18th Int. Mach. Tool Des. Res. Conf., pp. 225–231, 1977.spa
dc.relation.referencesT. Arai, J. Endo, and H. Takeda, “Chromizing and Boriding by Use of a Fluidized Bed,” Proc. Int. Congr. 5th Heat Treat. Mater. Conf., pp. 1335–1341, 1986.spa
dc.relation.referencesT. Arai and H. Oikawa, “Nitride and Carbide Formation onto Ceramics by Molten Salt Dipping Method,” Proc. Int. Inst. Sci. Sinter. Symp., pp. 1385– 1390, 1987.spa
dc.relation.referencesN. Axén, S. Hogmark, and S. Jacobson, “Friction and Wear Measurement Techniques,” in Modern Tribology Handbook, CRC Press LLC, Section Book, 2000.spa
dc.relation.referencesJ. Stokes, “Surface Engineering and Wear,” in The Theory and Application of the HVOF (High Velocity Oxy-Fuel) Thermal Spray Process, Dublin: Dublin City University, 2008, pp. 1–14.spa
dc.relation.referencesP. L. Menezes, M. Nosonovsky, S. V Kailas, and M. R. Lovell, “Friction And Wear,” in Tribology for Scientists and Engineers, New York, NY: Springer New York, 2013, pp. 43–91.spa
dc.relation.referencesASTM Standards, “ASTM G3-89 Standard Practice for Conventions Applicable to Electrochemical Measurements,” ASTM Int., no. Reapproved 2010, pp. 1–9, 2012.spa
dc.relation.referencesASTM Standards, ASTM G59-97 Standard Test Method For Conducting Potentiodynamic Polarization Resistance Measurements, vol. 97, no. Reapproved. 2014, pp. 12–15.spa
dc.relation.referencesJ. R. Galvele and G. S. Duffó, Degradación de Materiales Corrosión, Segunda Ed. Buenos Aires: Editorial Instituto Sabato,Libro, 2006.spa
dc.relation.referencesD. A. Jones, Principles And Prevention Of Corrosion, Second. New York, NY: Prentice-Hall, Inc., 1996.spa
dc.relation.referencesD. López, “Sinergismo Erosión-Corrosión en un Acero Inoxidable Martensítico AISI 410,” Dyna, vol. 159, pp. 53–60, 2009.spa
dc.relation.referencesH. Jiménez, E. Restrepo, and a. Devia, “Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD,” Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1594–1601, Oct. 2006.spa
dc.relation.referencesC. Aguilar, D. Guzman, and C. Iglesias, “Análisis De Perfiles De Difracción De Rayos X de Dos Materiales Metálicos,” Rev. Latinoam. Metal. Y Mater., vol. 33, no. 1, pp. 15–32, 2011.spa
dc.relation.referencesV. Mote, Y. Purushotham, and B. Dole, “Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles,” J. Theor. Appl. Phys., vol. 6, no. 1, p. 6, 2012.spa
dc.relation.referencesG. Martinez Lozano, “Análisis de Parámetros microestructurales: tamaño de cristalita y microdeformación de Compuestos Tipo Hidrotalcita de Cobalto,” Instituto politécnico Nacional,Tesis, 2007.spa
dc.relation.referencesR. Palma, a. Sepúlveda, a. Zúñiga, E. Donoso, M. J. Dianez, and J. M. Criado, “Caracterización microestructural de aleaciones base cobre obtenidas mediante molienda reactiva,” Rev. Metal., vol. 46, no. 3, pp. 197–205, Aug. 2010.spa
dc.relation.referencesR. E. Van Gierken and A. A. Markowicz, Handbook of X-Ray Spectrometry, Second Edition, Revised and Expanded, Second Edi. New York, NY: Marcel Dekker. Inc, Libro, 2001.spa
dc.relation.referencesJ. M. Hollas, Modern Spectroscopy, Fourth Edi. John Wiley & Sons, 2004.spa
dc.relation.referencesN. Chaoying, Encyclopedia of Tribology. Boston, MA: Springer US, 2013.spa
dc.relation.referencesJ. Aldric-Wright, Metallointercalators. New York: Springer Wien, 2011.spa
dc.relation.referencesM. S. Bonfanti and R. I. Ghauharali, “Visualisation by confocal microscopy of traces on bullets and cartridge cases.,” Sci. Justice, vol. 40, no. 4, pp. 241–56, 2000.spa
dc.relation.referencesD. N. Hanlon, I. Todd, E. Peekstok, W. M. Rainforth, and S. van der Zwaag, “The application of laser scanning confocal microscopy to tribological research,” Wear, vol. 251, pp. 1159–1168, 2001.spa
dc.relation.referencesK. D. Kihm, Near-Field Characterization of Micro/Nano-Scaled Fluid Flows. Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesR. Guinebretière, X-ray Diffraction by Polycrystalline Materials. London, UK: Jhon Wiley & Sons, Ltd., 2007.spa
dc.relation.referencesY. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesR. Haynes, Optical Microscopy of Materials. Boston, MA: Springer US, 1984.spa
dc.relation.referencesD. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, J. Michae, J. Goldstein, and I. Charles, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. Springer, 2003.spa
dc.relation.referencesD. J. Stokes, Principles and Practice of Variable Pressure / Environmental Scanning Electron Scanning Electron Microscopy ( VP-ESEM ). UK: Jhon Wiley & Sons, Ltd., 2008.spa
dc.relation.referencesV. Kazmiruk, Scanning Electron Microscopy. InTech, 2012.spa
dc.relation.referencesH. M. Clark and R. B. Hartwich, “A re-examination of the ‘particle size effect’ in slurry erosion,” Wear, vol. 248, no. 1–2, pp. 147–161, Mar. 2001.spa
dc.relation.referencesD. C. Montgomery, Diseño y analisis de experimentos, Segunda Ed. Mexico: Limusa Wiley, 2005.spa
dc.relation.referencesR. O. Kuehl, Diseño de Experimentos, Segunda Ed. Mexico: Thomson Learning, 2001.spa
dc.relation.referencesX. Liu, H. Wang, D. Li, and Y. Wu, “Study on kinetics of carbide coating growth by thermal diffusion process,” Surf. Coatings Technol., vol. 201, no. 6, pp. 2414–2418, Dec. 2006.spa
dc.relation.referencesP. M. Conn, Techniques in Confocal Microscopy. UK: Elsevier Ltd, 2010.spa
dc.relation.referencesMahr Gmbh, “Perthometer. Surface Texture Parameters,” Mahr GMBH Göttingen, p. 19, 1999.spa
dc.relation.referencesZ. J. Shan, Z. G. Pang, F. Q. Luo, and F. D. Wei, “Kinetics of V(N,C) and Nb(N,C) coatings produced by V–Nb–RE deposition technique,” Surf. Coatings Technol., vol. 206, no. 19–20, pp. 4322–4327, May 2012.spa
dc.relation.referencesX. S. Fan, Z. G. Yang, C. Zhang, and Y. D. Zhang, “Thermo-reactive deposition processed vanadium carbide coating: growth kinetics model and diffusion mechanism,” Surf. Coatings Technol., vol. 208, pp. 80–86, Sep. 2012.spa
dc.relation.referencesZ. J. Shan, Z. G. Pang, F. Q. Luo, and F. D. Wei, “Kinetics of V(N,C) and Nb(N,C) coatings produced by V-Nb-RE deposition technique,” Surf. Coatings Technol., vol. 206, no. 19–20, pp. 4322–4327, 2012.spa
dc.relation.referencesL. Wu, T. Yao, Y. Wang, J. Zhang, F. Xiao, and B. Liao, “Understanding the mechanical properties of vanadium carbides: Nano-indentation measurement and first-principles calculations,” J. Alloys Compd., vol. 548, pp. 60–64, Jan. 2013.spa
dc.relation.referencesX. Wu, G. Li, Y. Chen, and G. Li, “Microstructure and mechanical properties of vanadium carbide coatings synthesized by reactive magnetron sputtering,” Int. J.Refract. Met. Hard Mater., vol. 27, no. 3, pp. 611–614, May 2009.spa
dc.relation.referencesJ. G. A. Bitter, “A study of erosion phenomena part I,” Wear, vol. 6, no. 1, pp. 5–21, Jan. 1963.spa
dc.relation.referencesJ. G. A. Bitter, “A study of erosion phenomena Part II,” Wear, vol. 6, no. 3, pp. 169–190, May 1963.spa
dc.relation.referencesJ. R. Cano Rodas, J. P. Congote García, and A. Toro, “Efecto de la velocidad y ángulo de impacto en la resistencia a corrosión-erosión de aceros inoxidables recubiertos con TiN.,” Rev. Dyna, 2004.spa
dc.relation.referencesV. de Souza and A. Neville, “Corrosion and erosion damage mechanisms during erosion–corrosion of WC–Co–Cr cermet coatings,” Wear, vol. 255, no. 1–6, pp. 146–156, Aug. 2003.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.lembMateriales resistentes a la corrosiónspa
dc.subject.lembCorrosion resistant materialseng
dc.subject.lembCorrosión y anticorrosivosspa
dc.subject.lembCorrosion and anti-corrosiveseng
dc.subject.proposalErosión-corrosiónspa
dc.subject.proposalTRDspa
dc.subject.proposalCarburo de Vanadio-Niobiospa
dc.subject.proposalÁngulo de impactospa
dc.subject.proposalVelocidad de impacto.spa
dc.subject.proposalErosion-corrosioneng
dc.subject.proposalThermo-reactive Diffusioneng
dc.subject.proposalVandium-Niobium Carbideeng
dc.subject.proposalImpact angleeng
dc.subject.proposalImpact velocityeng
dc.titleErosión Corrosión de recubrimientos ternarios de carburos de Vanadio-Niobio depositados mediante la técnica TRD sobre aceros AISI H13 y AISI D2spa
dc.title.translatedErosion Corrosion of Vanadium-Niobium carbides ternary coatings deposited by the TRD technique on AISI H13 and AISI D2 steelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleRecubrimientos de carburos ternarios depositados con la Técnica TRDspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032364105-2014.pdf
Tamaño:
4.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: