Estudio de la condesnación fraccionada de los gases de pirólisis de cisco de café

dc.contributor.advisorChejne Jana, Farid
dc.contributor.authorUribe Vargas, Camilo Alejandro
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2022-01-31T14:49:44Z
dc.date.available2022-01-31T14:49:44Z
dc.date.issued2022-01-09
dc.descriptionilustraciones, diagramas
dc.description.abstractSe hicieron experimentos de condensación de vapores pirolíticos de cisco de café en un sistema de condensación fraccionada de dos etapas, con temperaturas de condensación de 80 y 0 °C respectivamente. Se probaron condensadores de tres materiales con diferentes energías superficiales, con el fin de observar su efecto en el rendimiento y composición del bioaceite, utilizando las técnicas de GC/MS, FTIR y titulación Karl Fischer en las fracciones líquidas obtenidas. Los rendimientos de bioaceite por unidad de área obtenidos fueron proporcionales a la energía de la superficie de condensación, lo que se atribuye a la mayor mojabilidad de estas superficies que afecta el tamaño crítico de las gotas durante la condensación. En ambas etapas, se obtuvieron fracciones con diferentes características: el líquido condensado a 80 °C tuvo una menor humedad y fue abundante en fenoles y azúcares, mientras que la condensada a 0 °C fue rica en compuestos más livianos como ácidos y cetonas, lo que le brindan potencial para la refinación de biocombustibles. Aunque no hubo diferencias significativas en las composiciones de las fracciones condensadas en diferentes superficies, el uso de materiales de baja energía superficial podría ser beneficioso en el diseño de nuevos sistemas de colección de bioaceite, debido a sus mejores tasas de condensación. Finalmente, a partir de un modelo de transferencia de calor para la condensación por película de gases de pirólisis, se diseñó un sistema de condensación fraccionada para un reactor de lecho fluidizado de escala semiindustrial. (texto tomado de la fuente)spa
dc.description.abstractCoffee is the major crop produced in Colombia, making it worthwhile to investigate ways to put its wastes to effective use, to improve the industry competitiveness. In this work, coffee husk pyrolysis vapor condensation experiments were performed in a two-stage condensation system, with condenser temperatures of 80 °C and 0°C. Three different condenser surface materials of varying surface energy were tested to observe their effect on bio-oil yields and composition, using GC/MS, FTIR spectroscopy and Karl Fischer in the obtained fractions. Bio-oil yields per unit area were found to be proportional to the condensation surface energy, attributed to the higher surface wettability effect on critical drop size during condensation. In both stages, fractions with different characteristics were obtained: the liquid condensed at 80°C had a much lower water content and was abundant in phenols and sugars, while the one condensed at 0 °C was rich in lighter compounds like acids and ketones, giving the first stage fraction potential for further refining into biofuels. Although there were no noticeable differences in the compositions of the fractions condensed on different surfaces, the use of low energy materials could be beneficial in the design of new bio-oil collection systems, owing to the improved rate of condensation.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaAprovechamiento de la biomasaspa
dc.format.extent95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80809
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references1] M. Chai, Y. He, Nishu, C. Sun, and R. Liu, “Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis,” J. Energy Inst., vol. 93, no. 2, pp. 811–821, 2020. [2] C. W. Lewis, “Biomass through the ages,” Biomass, vol. 1, no. 1, pp. 5–15, 1981. [3] P. Basu, Pyrolysis and Torrefaction, First Edit. © 2010 Elsevier Inc., 2010. [4] S. Papari and K. Hawboldt, “A review on condensing system for biomass pyrolysis process,” Fuel Process. Technol., vol. 180, no. July, pp. 1–13, 2018. [5] S. Papari, K. Hawboldt, and P. Fransham, “Study of selective condensation for woody biomass pyrolysis oil vapours,” Fuel, vol. 245, no. November 2018, pp. 233– 239, 2019. [6] A. Tumbalam Gooty, D. Li, C. Briens, and F. Berruti, “Fractional condensation of bio-oil vapors produced from birch bark pyrolysis,” Sep. Purif. Technol., vol. 124, pp. 81–88, 2014. [7] Y. Han et al., “Hydrotreatment of pyrolysis bio-oil: A review,” Fuel Process. Technol., vol. 195, no. May, 2019. [8] T. Chen, C. Deng, and R. Liu, “Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor,” Energy and Fuels, vol. 24, no. 12, pp. 6616–6623, 2010. [9] Y. Zhang and A. Faghri, Transport phenomena in multiphase systems. Chapter 8: Condensation. Elsevier B.V., 2006. [10] E. D. Wikramanayake and V. Bahadur, “Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation,” Int. J. Heat Mass Transf., vol. 140, pp. 260–268, 2019. [11] H. . Xiang, “Chapter 8. Surface Tension,” Corresp. Princ. Its Pract., pp. 215–228, 2005. [12] “Surface Tension.” [Online]. Available: http://hyperphysics.phyastr.gsu.edu/hbase/surten.html. [Accessed: 06-Apr-2021]. [13] J. W. Rose, “Surface tension effects and enhancement of condensation heat transfer,” Chem. Eng. Res. Des., vol. 82, no. 4, pp. 419–429, 2004. [14] C. A. Bishop, Process Diagnostics and Coating Characteristics. 2015. [15] H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” vol. 1, 1960. [16] O. Carrier and D. Bonn, Contact Angles and the Surface Free Energy of Solids, no. 1950. Elsevier Inc., 2015. [17] R. Tadmor, “Line energy and the relation between advancing, receding, and Young contact angles,” Langmuir, vol. 20, no. 18, pp. 7659–7664, 2004. [18] C. Y. Hui and A. Jagota, “Surface tension, surface energy, and chemical potential78 due to their difference,” Langmuir, vol. 29, no. 36, pp. 11310–11316, 2013. [19] X. Liu and P. Cheng, “Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux,” Int. J. Heat Mass Transf., vol. 83, pp. 842–849, 2015. [20] R. Wen, X. Zhou, B. Peng, Z. Lan, R. Yang, and X. Ma, “Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas,” Int. J. Heat Mass Transf., vol. 140, pp. 173–186, 2019. [21] M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, “Biofuels production through biomass pyrolysis- A technological review,” Energies, vol. 5, no. 12, pp. 4952–5001, 2012. [22] E. Lazzari et al., “Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis,” Ind. Crops Prod., vol. 111, no. October 2017, pp. 856–864, 2018. [23] A. Oasmaa, I. Fonts, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, and M. GarciaPerez, “Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review,” Energy and Fuels, vol. 30, no. 8, pp. 6179–6200, 2016. [24] F. Stankovikj and M. Garcia-Perez, “TG-FTIR Method for the Characterization of Bio-oils in Chemical Families,” Energy and Fuels, vol. 31, no. 2, pp. 1689–1701, 2017. [25] A. Oasmaa and C. Peacocke, “A guide to physical property characterisation of biomass-derived fast pyrolysis liquids,” VTT Publ., no. 450, pp. 2–65, 2001. [26] F. Stankovikj, A. G. McDonald, G. L. Helms, and M. Garcia-Perez, “Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins,” Energy and Fuels, vol. 30, no. 8, pp. 6505–6524, 2016. [27] J. Montoya, B. Pecha, F. C. Janna, and M. Garcia-Perez, “Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 122, pp. 106–121, 2016. [28] A. P. Pinheiro Pires et al., “Challenges and opportunities for bio-oil refining: A review,” Energy and Fuels, vol. 33, no. 6, pp. 4683–4720, 2019. [29] R. J. M. Westerhof, N. J. M. Kuipers, S. R. A. Kersten, and W. P. M. Van Swaaij, “Controlling the water content of biomass fast pyrolysis oil,” Ind. Eng. Chem. Res., vol. 46, no. 26, pp. 9238–9247, 2007. [30] V. S. K. K. Palla, K. Papadikis, and S. Gu, “A numerical model for the fractional condensation of pyrolysis vapours,” Biomass and Bioenergy, vol. 74, pp. 180–192, 2015. [31] K. Papadikis, S. Gu, and A. V. Bridgwater, “Eulerian model for the condensation of pyrolysis vapors in a water condenser,” Energy and Fuels, vol. 25, no. 4, pp. 1859– 1868, 2011. [32] R. J. M. Westerhof et al., “Fractional condensation of biomass pyrolysis vapors,” Energy and Fuels, vol. 25, no. 4, pp. 1817–1829, 2011. [33] A. S. Pollard, M. R. Rover, and R. C. Brown, “Characterization of bio-oil recovered79 as stage fractions with unique chemical and physical properties,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 129–138, 2012. [34] A. V. Bridgwater, “Renewable fuels and chemicals by thermal processing of biomass,” Chem. Eng. J., vol. 91, no. 2–3, pp. 87–102, 2003. [35] H. Sui, H. Yang, J. Shao, X. Wang, Y. Li, and H. Chen, “Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk,” Energy and Fuels, vol. 28, no. 8, pp. 5095–5102, 2014. [36] N. M. Mkhize et al., “Influence of reactor and condensation system design on tyre pyrolysis products yields,” J. Anal. Appl. Pyrolysis, vol. 143, no. August, p. 104683, 2019. [37] M. Bunbury, The destructive distillation of wood. New York: Van Nostrand Co., 1926. [38] A. Pattiya and S. Suttibak, “Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter,” J. Energy Inst., vol. 90, no. 1, pp. 110–119, 2017. [39] M. Amutio, G. Lopez, J. Alvarez, M. Olazar, and J. Bilbao, “Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor,” Bioresour. Technol., vol. 194, pp. 225–232, 2015. [40] A. Adrados, A. Lopez-Urionabarrenechea, J. Solar, J. Requies, I. De Marco, and J. F. Cambra, “Upgrading of pyrolysis vapours from biomass carbonization,” J. Anal. Appl. Pyrolysis, vol. 103, pp. 293–299, 2013. [41] H. Zhang, R. Xiao, H. Huang, and G. Xiao, “Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,” Bioresour. Technol., vol. 100, no. 3, pp. 1428–1434, 2009. [42] B. Pidtasang, P. Udomsap, S. Sukkasi, N. Chollacoop, and A. Pattiya, “Influence of alcohol addition on properties of bio-oil produced from fast pyrolysis of eucalyptus bark in a free-fall reactor,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 1851–1857, 2013. [43] S. Papari, K. Hawboldt, and R. Helleur, “Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil,” Ind. Eng. Chem. Res., vol. 54, no. 2, pp. 605–611, 2015. [44] M. A. F. Mazlan, Y. Uemura, N. B. Osman, and S. Yusup, “Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer,” Energy Convers. Manag., vol. 98, pp. 208–214, 2015. [45] S. Thangalazhy-Gopakumar et al., “Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor,” Bioresour. Technol., vol. 101, no. 21, pp. 8389–8395, 2010. [46] S. Du, Y. Sun, D. P. Gamliel, J. A. Valla, and G. M. Bollas, “Catalytic pyrolysis of miscanthus×giganteus in a spouted bed reactor,” Bioresour. Technol., vol. 169, pp. 188–197, 2014. [47] J. Jae, R. Coolman, T. J. Mountziaris, and G. W. Huber, “Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal,” Chem. Eng. Sci., vol. 108, pp. 33–46, 2014.80 [48] S. Ma, L. Zhang, L. Zhu, and X. Zhu, “Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation,” J. Anal. Appl. Pyrolysis, vol. 131, no. November 2017, pp. 113–119, 2018. [49] A. Moutsoglou, B. Lawburgh, and J. Lawburgh, “Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin,” J. Anal. Appl. Pyrolysis, vol. 135, no. August, pp. 350–360, 2018. [50] C. Wang, H. Ding, Y. Zhang, and X. Zhu, “Analysis of property variation and stability on the aging of bio-oil from fractional condensation,” Renew. Energy, no. xxxx, 2019. [51] S. Deutch et al., “Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 123, pp. 244–254, 2016. [52] W. Cai and R. Liu, “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production,” Fuel, vol. 182, pp. 677–686, 2016. [53] J. Montoya, “Kinetic Study and Phenomenological Modeling of a Biomass Particle During Fast Pyrolyss Process,” Univ. Nac. Colomb., p. Ph.D. Thesis, 2016. [54] D. M. Brewis, “Surface properties accociated with adhesion,” Polym. Eng. Sci., vol. 7, no. 1, pp. 17–20, 1967. [55] C. W. Karl, W. Rahimi, S. Kubowicz, A. Lang, H. Geisler, and U. Giese, “Surface Modification of Ethylene Propylene Diene Terpolymer Rubber by Plasma Polymerization Using Organosilicon Precursors,” ACS Appl. Polym. Mater., vol. 2, no. 9, pp. 3789–3796, 2020. [56] R. Matjie, S. Zhang, Q. Zhao, N. Mabuza, and J. R. Bunt, “Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit,” Fuel, vol. 181, pp. 573–578, 2016. [57] S. K. Rhee, “Surface energies of silicate glasses calculated from their wettability data,” J. Mater. Sci., vol. 12, no. 4, pp. 823–824, 1977. [58] E. Christensen and J. Ferrell, “Quantification of Semi-Volatile Oxygenated Components of Pyrolysis Bio-Oil by Gas Chromatography / Mass Spectrometry ( GC / MS ),” no. March, 2016. [59] S. A. Bekalo and H. W. Reinhardt, “Fibers of coffee husk and hulls for the production of particleboard,” Mater. Struct. Constr., vol. 43, no. 8, pp. 1049–1060, 2010. [60] A. O. Oyedun, M. Patel, M. Kumar, and A. Kumar, “The upgrading of bio-oil via hydrodeoxygenation,” Chem. Catal. Biomass Upgrad., pp. 35–60, 2019. [61] S. Kim, R. W. Kramer, and P. G. Hatcher, “Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram,” Anal. Chem., vol. 75, no. 20, pp. 5336–5344, 2003. [62] Y. a. Cengel and G. A. Afshin, Heat and Mass Transfer: Fundamentals and Applications - Fifth Edition. 2015. [63] A. P. Colburn and O. A. Hougen, “Design of Cooler Condensers for Mixtures of81 Vapors with Noncondensing Gases,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1178– 1182, 1934. [64] R. SZIJÁRTÓ, “Condensation of steam in horizontal pipes: model development and validation,” Budapest Univ., 2015. [65] H. Uchida, A. Oyama, and Y. Togo, “Evaluation of post-incident cooling systems of light water power reactors,” Vol 30. Int. Conf. Peac. uses At. energy, 1964. [66] T. Tagami, “Interim report on safety assessments and facilities establishment project for June 1965,” Japanese At. Energy Res. Agency, 1965. [67] Y. Kataoka, T. Fukui, S. Hatamiya, T. Nakao, M. Naitoh, and I. Sumida, “Experiments on convection heat transfer along a vertical flat plate between pools with different temperatures,” Nucl. Technol., vol. 99, no. 3, pp. 386–396, 1992. [68] A. A. Dehbi, W. M. Golay, and S. M. Kazimi, “The effects of noncondensable gases on steam condensation under turbulent natural conditions.” 1991. [69] S. T. Anderson and R. . Newell, “Information programs for technology adoption: the case of energy-efficiency audits,” Resour. Energy Econ., vol. 26, no. 1, pp. 27–50, 2004. [70] S. Zhang, X. Cheng, and F. Shen, “Condensation Heat Transfer with NonCondensable Gas on a Vertical Tube,” Energy Power Eng., vol. 10, no. 04, pp. 25– 34, 2018. [71] A. Dehbi, “A generalized correlation for steam condensation rates in the presence of air under turbulent free convection,” Int. J. Heat Mass Transf., vol. 86, pp. 1–15, 2015. [72] J. M. Martín-Valdepeñas, M. A. Jiménez, F. Martín-Fuertes, and J. A. F. Benítez, “Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code,” Heat Mass Transf. und Stoffuebertragung, vol. 41, no. 11, pp. 961–976, 2005. [73] S. M. Ghiaasiaan, B. K. Kamboj, and S. I. Abdel-Khalik, “Two-fluid modeling of condensation in the presence of noncondensables in two-phase channel flows,” Nucl. Sci. Eng., vol. 119, no. 1, pp. 1–17, 1995. [74] M. K. Groff, S. J. Ormiston, and H. M. Soliman, “Numerical solution of film condensation from turbulent flow of vapor-gas mixtures in vertical tubes,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3899–3912, 2007. [75] M. H. Kim and M. L. Corradini, “Modeling of condensation heat transfer in a reactor containment,” Nucl. Eng. Des., vol. 118, no. 2, pp. 193–212, 1990. [76] L. E. Herranz, M. H. Anderson, and M. L. Corradini, “A diffusion layer model for steam condensation within the AP600 containment,” Nucl. Eng. Des., vol. 183, no. 1–2, pp. 133–150, 1998. [77] D. Kern, “Process heat transfer,” McGraw Hill, vol. 250, no. 5. pp. 462–463, 1965. [78] S. Kim and K. J. Kim, “Dropwise condensation modeling suitable for superhydrophobic surfaces,” J. Heat Transfer, vol. 133, no. 8, pp. 1–8, 2011. [79] W. Liu and X. Ling, “Heat transfer model based on diffusion layer theory for82 dropwise condensation with high non-condensable gas,” AIP Adv., vol. 10, no. 12, 2020. [80] J. W. · U. M. · R. W. Dibble, Combustion. . [81] R. C. Reid, T. K. Sherwood, and R. E. Street, “ The Properties of Gases and Liquids ,” Physics Today, vol. 12, no. 4. pp. 38–40, 1959. [82] A. Matuszkiewicz and P. H. Vernier, “TWO-PHASE STRUCTURE OF THE CONDENSATION BOUNDARY LAYER WITH A NON-CONDENSING GAS AND LIQUID DROPLETS Forced convection condensation on a flat plate in the presence of a non-condensing gas has been studied by many authors ( e . g . Sparrow et al . 1967 ; H,” vol. 17, no. 2, pp. 213–225, 1991. [83] J. W. Rose, “Further aspects of dropwise condensation theory,” Int. J. Heat Mass Transf., vol. 19, no. 12, pp. 1363–1370, 1976. [84] Y. Zhao, D. J. Preston, Z. Lu, L. Zhang, J. Queeney, and E. N. Wang, “Effects of millimetric geometric features on dropwise condensation under different vapor conditions,” Int. J. Heat Mass Transf., vol. 119, pp. 931–938, 2018. [85] S. Khandekar and K. Muralidhar, Modeling Dropwise Condensation: From Atomic Scale to Drop Instability. 2020. [86] R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, “Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system.” [87] B. K. Cheng, B. Naccarato, K. J. Kim, A. Kumar, A. Materials, and L. Vegas, “Theoretical considerations of contact angle histeresis,” pp. 1–23, 2019. [88] F. P. Incropera, Fundamentals of Heat and Mass Transfer, Seventh Edition. 2011. [89] R. J. Bedmutha, L. Ferrante, C. Briens, F. Berruti, and I. Inculet, “Single and twostage electrostatic demisters for biomass pyrolysis application,” Chem. Eng.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.lembCondensación
dc.subject.lembCondensation
dc.subject.proposalCondensación fraccionadaspa
dc.subject.proposalPirólisisspa
dc.subject.proposalBioaceitespa
dc.subject.proposalFractional condensationeng
dc.subject.proposalBio-oileng
dc.subject.proposalPyrolysiseng
dc.titleEstudio de la condesnación fraccionada de los gases de pirólisis de cisco de caféspa
dc.title.translatedStudy of the fractional condensation of coffee husk pyrolysis vaporseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstrategia de transformación del sector energético colombiano en el horizonte 2030spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037621809.2021.pdf
Tamaño:
4.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: