Detección y conteo de evasores en el sistema de transporte Transmilenio
dc.contributor.advisor | Pedraza Bonilla, César Augusto | spa |
dc.contributor.author | Rodríguez Peraza, César Ivan | spa |
dc.contributor.referee | Perdomo Charry, Oscar Julian | spa |
dc.contributor.referee | Zona Ortiz, Angela Tatiana | spa |
dc.contributor.researchgroup | Plas Programming languages And Systems | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000583 | |
dc.date.accessioned | 2025-04-11T17:11:59Z | |
dc.date.available | 2025-04-11T17:11:59Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Bogotá se encuentra entre las veinte ciudades con peor tráfico del mundo de acuerdo con el Ranking del Índice de Tráfico. Además, carece de un sistema de transporte público robusto; el sistema TransMilenio, en particular, presenta deficiencias operativas y económicas que agravan los problemas de movilidad en la ciudad. La más destacada de estas deficiencias es la evasión de pago, un fenómeno que hasta ahora ha sido difícil de cuantificar y, por consiguiente, de mitigar. Por esta razón, el objetivo de este trabajo es detectar y cuantificar a los evasores en los torniquetes del sistema TransMilenio. Para lograrlo, se exploraron diversas técnicas de procesamiento de imágenes y video, así como aprendizaje automático e inteligencia artificial. Este trabajo enfrenta varios retos, entre los que destacan el marcado desequilibrio en el conjunto de datos (3 de cada 100 personas son evasores), la sutileza en algunos eventos de evasión y los complejos entornos de las estaciones. El modelo con mejores resultados es capaz de identificar el 95% de los evasores, gracias a la aplicación de conceptos de vanguardia en aprendizaje no supervisado y auto-supervisado. (Texto tomado de la fuente). | spa |
dc.description.abstract | Bogotá ranks among the top 20 cities with the worst traffic according to Traffic Index. Furthermore, Bogotá lacks a robust public transportation system; TransMilenio has significant operational and financial shortcomings, which worsen the mobility issues in the city. One of the most prominent issues is fare evasion, a phenomenon that has been difficult to quantify. The primary objective of this study is to detect and quantify fare evaders at the turnstiles of TransMilenio. To achieve this, a variety of techniques were explored across fields such as image and video processing, machine learning, and artificial intelligence. This work faces several challenges, mainly the heavily imbalanced dataset (3 out of 100 people are evaders), the subtlety of some evasion events, and the complex environments in the stations. The model that yielded the best results can detect approximately 95% of fare evaders through the application of cutting-edge concepts in unsupervised and self-supervised learning. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.description.researcharea | Visión por computadora y aprendizaje de máquina | spa |
dc.format.extent | xi, 102 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87944 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
dc.relation.references | 15 de cada 100 usuarios se cuelan en el sistema, estrategia anti-evasión de TransMilenio. https://www.transmilenio.gov.co/publicaciones/151223/15-de-cada-100-usuarios-se-cuelan-en-el-sistema-estrategia-anti-evasion-de-transmilenio/ | spa |
dc.relation.references | MTA Board and Committee Meetings. https://new.mta.info/transparency/board-and-committee-meetings. – Accessed: 2024 | spa |
dc.relation.references | TomTom Tra!c Index Ranking. https://www.tomtom.com/traffic-index/ranking/?country=CO Accessed: March 30, 2024 | spa |
dc.relation.references | Aggarwal, J. ; Ryoo, M.: Human Activity Analysis: A Review. En: ACM Comput. Surv. 43 (2011), 04, p. 16 | spa |
dc.relation.references | Alex Graves, J¨urgen S.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. En: Neural Networks 18 (2005), Nr. 5-6, p. 602–610 | spa |
dc.relation.references | Alex Kafkas, Daniela Montaldi: How do memory systems detect and respond to novelty? En: Neuroscience Letters 680 (2018), p. 60–68 | spa |
dc.relation.references | Andrej Karpathy, Sanketh Shetty Thomas Leung-Rahul S. ; Fei-Fei, Li: Large- scale video classification with convolutional neural networks. En: Conference on Com- puter Vision and Pattern Recognition (CVPR), 2014, p. 1725–1732 | spa |
dc.relation.references | Arnab, Anurag ; Dehghani, Mostafa ; Heigold, Georg ; Sun, Chen ; Lucic, Mario; Schmid, Cordelia: Vivit: A video vision transformer. (2021) | spa |
dc.relation.references | Assran, Mahmoud ; Caron, Mathilde ; Misra, Ishan ; Bojanowski, Piotr ; Jou- lin, Armand ; Ballas, Nicolas ; Rabbat, Michael G.: Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples. En: CoRR abs/2104.13963 (2021) | spa |
dc.relation.references | Baik, Sungyong ; Choi, Janghoon ; Kim, Heewon ; Cho, Dohee ; Min, Jaesik ; Lee, Kyoung M.: Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning. En: CoRR abs/2110.03909 (2021) | spa |
dc.relation.references | Barrett, Louise F.: Superior pattern processing is the essence of the evolved human brain. En: Frontiers in Neuroscience 6 (2012), p. 116 | spa |
dc.relation.references | Bertasius, Gedas ; Wang, Heng ; Torresani, Lorenzo: Is Space-Time Attention All You Need for Video Understanding?, 2021 | spa |
dc.relation.references | Bobick, A. F. ; Davis, J. W.: The recognition of human movement using temporal templates. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001), Nr. 3, p. 257–267 | spa |
dc.relation.references | de Bogotá, Consejo: Preocupante la situación del sistema integrado de transporte y el fondo. 2024. – Accessed: 2024-09-28 | spa |
dc.relation.references | C. R. Wren, T. D. ; Pentland, A. P.: Pfinder: Real-time tracking of the human body. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997), Nr. 7, p. 780–785 | spa |
dc.relation.references | Caron, Mathilde ; Touvron, Hugo ; Misra, Ishan ; J´ egou, Herv´e ; Mairal, Julien ; Bojanowski, Piotr ; Joulin, Armand: Emerging Properties in Self-Supervised Vision Transformers. En: CoRR abs/2104.14294 (2021) | spa |
dc.relation.references | Carreira, Joao ; Zisserman, Andrew: Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, 2018 | spa |
dc.relation.references | Carrillo, Libardo Andrés M.: ¿La política pública de transporte público masivo en Bogotá es adecuada para garantizar el derecho al acceso a un servicio de transporte de calidad? Caso TransMilenio como eje central de movilidad en Bogotá. https://repository.javeriana.edu.co/bitstream/handle/10554/21837/MarinCarrilloLibardoAndres2 →Accessed : M arch30, 2024 | spa |
dc.relation.references | Cewu Lu, Jianping S. ; Jia, Jiaya: Abnormal Event Detection at 150 FPS in Matlab, 2013 | spa |
dc.relation.references | Chalapathy, Raghavendra ; Chawla, Sanjay. Deep Learning for Anomaly Detection: A Survey. 2019 | spa |
dc.relation.references | Chen, Chenliang ; Jafari, Roozbeh ; Kehtarnavaz, Nasser: UTD-MHAD: A Mul- timodal Dataset for Human Action Recognition Utilizing a Depth Camera and a Wea- rable Inertial Sensor. En: Proceedings of the IEEE International Conference on Image Processing (ICIP) (2015), p. 168–172 | spa |
dc.relation.references | Chen, Chun-Fu ; Panda, Rameswar ; Fan, Quanfu: RegionViT: Regional-to-Local Attention for Vision Transformers, 2022 | spa |
dc.relation.references | Chen, Renwang ; Chen, Xuanhong ; Ni, Bingbing ; Ge, Yanhao: SimSwap: An Effcient Framework For High Fidelity Face Swapping. En: Proceedings of the 28th ACM International Conference on Multimedia, ACM, Oktober 2020 (MM ’20) | spa |
dc.relation.references | Cho, Kyunghyun ; van Merrienboer, Bart ; Gulcehre, Caglar ; Bahdanau, Dzmitry ; Bougares, Fethi ; Schwenk, Holger ; Bengio, Yoshua: Learning phrase representations using RNN encoder-decoder for statistical machine translation. (2014) | spa |
dc.relation.references | Chong, Yong S. ; Tay, Yong H.: Abnormal Event Detection in Videos using Spatio- temporal Autoencoder. En: CoRR abs/1701.01546 (2017) | spa |
dc.relation.references | Cole, Leonard E.: The Central Nervous System and Behavior. New York : McGraw- Hill Book Company, 1939 | spa |
dc.relation.references | Doersch, Carl ; Yang, Yi ; Vecerik, Mel ; Gokay, Dilara ; Gupta, Ankush ; Aytar, Yusuf ; Carreira, Joao ; Zisserman, Andrew. TAPIR: Tracking Any Point with per-frame Initialization and temporal Refinement. 2023 | spa |
dc.relation.references | Donahue, Je# ; Hendricks, Lisa A. ; Rohrbach, Marcus ; Venugopalan, Sub- hashini ; Guadarrama, Sergio ; Saenko, Kate ; Darrell, Trevor: Long-term re- current convolutional networks for visual recognition and description. (2016) | spa |
dc.relation.references | Dosovitskiy, Alexey ; Beyer, Lucas ; Kolesnikov, Alexander ; Weissenborn, Dirk ; Zhai, Xiaohua ; Unterthiner, Thomas ; Dehghani, Mostafa ; Minderer, Matthias ; Heigold, Georg ; Gelly, Sylvain ; Uszkoreit, Jakob ; Houlsby, Neil: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. En: International Conference on Learning Representations (ICLR), 2021 | spa |
dc.relation.references | El Colombiano: Dueños de perrita que quedó atrapada en los torniquetes anticolados de TransMilenio tuvieron que cortarlos con una segueta. 2024. – Consultado: 2024-10-21 | spa |
dc.relation.references | El Espectador: Torniquetes anticolados: TransMilenio confirma que por ahora no instalarán más. 2024. – Consultado: 2024-10-21 | spa |
dc.relation.references | Fabian Caba Heilbron, Bernard G. ; Niebles, Juan C. ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding. 2015 | spa |
dc.relation.references | Faisal I. Bashir, Ashfaq A. K. ; Schonfeld, Dan: Object Trajectory-Based Acti- vity Classification and Recognition Using Hidden Markov Models. En: IEEE Transac- tions on Image Processing 16 (2007), Nr. 7, p. 1912–1919 | spa |
dc.relation.references | Feichtenhofer, Christoph ; Fan, Haoqi ; Malik, Jitendra ; He, Kaiming: SlowFast Networks for Video Recognition, 2019 | spa |
dc.relation.references | Feichtenhofer, Christoph ; Pinz, Axel ; Zisserman, Andrew: Convolutional Two- Stream Network Fusion for Video Action Recognition, 2016 | spa |
dc.relation.references | Finn, Chelsea ; Abbeel, Pieter ; Levine, Sergey: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. En: CoRR abs/1703.03400 (2017) | spa |
dc.relation.references | Gong, Dong ; Liu, Lingqiao ; Le, Vuong ; Saha, Budhaditya ; Mansour, Mous- sa R. ; Venkatesh, Svetha ; van den Hengel, Anton: Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection. En: CoRR abs/1904.02639 (2019) | spa |
dc.relation.references | Hasan, Mahmudul ; Choi, Jonghyun ; Neumann, Jan ; Roy-Chowdhury, Amit K. ; Davis, Larry S.: Learning Temporal Regularity in Video Sequences. En: CoRR abs/1604.04574 (2016) | spa |
dc.relation.references | Hassan, Nasim ; Xu, Jie: An ensemble approach to anomaly detection. En: Procee- dings of the 2012 IEEE Symposium on Computational Intelligence and Data Mining, 2012, p. 135–142 | spa |
dc.relation.references | Heng Wang, Cordelia S. ; Liu, Cheng-Lin: Dense trajectories and motion boundary descriptors for action recognition. En: International Journal of Computer Vision, 2011 | spa |
dc.relation.references | Huang, Xin ; Xiong, Yu ; Dai, Xiyang ; Theis, Lucas [u. a.]: E!cient Video Trans- former with Temporal Attention. En: arXiv preprint arXiv:2208.08613 (2022) | spa |
dc.relation.references | Islam, Md. M. ; Nooruddin, Sheikh ; Karray, Fakhri ; Muhammad, Ghulam: Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects. En: Computers in Biology and Medicine 149 (2022), p. 106060. – ISSN 0010–4825 | spa |
dc.relation.references | Isola, Phillip ; Zhu, Jun-Yan ; Zhou, Tinghui ; Efros, Alexei A.: Image-to-Image Translation with Conditional Adversarial Networks. En: CoRR abs/1611.07004 (2016) | spa |
dc.relation.references | Ivan Laptev, Cordelia S. ; Rozenfeld, Benjamin: Learning realistic human actions from movies. En: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008 | spa |
dc.relation.references | Ivanov, Y. A. ; Bobick, A. F.: Recognition of visual activities and interactions by sto- chastic parsing. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000), Nr. 8, p. 852–872 | spa |
dc.relation.references | Karaev, Nikita ; Rocco, Ignacio ; Graham, Benjamin ; Neverova, Natalia ; Ve- daldi, Andrea ; Rupprecht, Christian. CoTracker: It is Better to Track Together. 2024 | spa |
dc.relation.references | Kay, Will ; Carreira, Joao ; Simonyan, Karen ; Zhang, Brian ; Hillier, Chloe ; Vijayanarasimhan, Sudheendra ; Viola, Fabio ; Green, Tim ; Back, Trevor ; Natsev, Paul ; Suleyman, Mustafa ; Zisserman, Andrew. The Kinetics Human Action Video Dataset. 2017 | spa |
dc.relation.references | Ke, Yan ; Sukthankar, Rahul: PCA-SIFT: A more distinctive representation for local image descriptors. En: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2004, p. 506–513 | spa |
dc.relation.references | Kevin Chavez, Garrick Fernandez Noah Jackson Will L.: Course Notes. 2017-2018. – Retrieved from the Stanford Vision Lab website | spa |
dc.relation.references | Kingma, Diederik P. ; Rezende, Danilo J. ; Mohamed, Shakir ; Welling, Max: Semi-Supervised Learning with Deep Generative Models. (2014) | spa |
dc.relation.references | Kirillov, Alexander ; Mintun, Eric ; Ravi, Nikhila ; Mao, Hanzi ; Rolland, Chloe ; Gustafson, Laura ; Xiao, Tete ; Whitehead, Spencer ; Berg, Alexander C. ; Lo, Wan-Yen ; Doll´ ar, Piotr ; Girshick, Ross. Segment Anything. 2023 | spa |
dc.relation.references | Koch, Gregory ; Zemel, Richard ; Salakhutdinov, Ruslan: Siamese Neural Net- works for One-shot Image Recognition. En: Proceedings of the International Conference on Machine Learning (ICML). University of Toronto, Toronto, Ontario, Canada, 2015 | spa |
dc.relation.references | Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: ImageNet classification with deep convolutional neural networks. En: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY, USA : Curran Associates Inc., 2012 (NIPS’12), p. 1097–1105 | spa |
dc.relation.references | Kuehne, H. ; Jhuang, H. ; Garrote, E. ; Poggio, T. ; Serre, T. HMDB: A Large Human Motion Database. 2011 | spa |
dc.relation.references | Kumar, Varun ; Nandi, G.C. ; Kala, Rahul: Static hand gesture recognition using stacked Denoising Sparse Autoencoders. En: 2014 Seventh International Conference on Contemporary Computing (IC3), 2014, p. 99–104 | spa |
dc.relation.references | Laptev, Ivan: On space-time interest points. En: International Journal of Computer Vision 64 (2005), Nr. 2-3, p. 107–123 | spa |
dc.relation.references | Laura Daniela Gómez Rodríguez, María García F.: ¿Por qué TransMilenio en Bogotá está en crisis? En: Revista Ciudad. Estados Pol´ıtica 4 (2017), Nr. 3, p. 103–118. – ISSN 2389–8437 | spa |
dc.relation.references | Lee, Kwonjoon ; Maji, Subhransu ; Ravichandran, Avinash ; Soatto, Stefano: Meta-Learning with Di#erentiable Convex Optimization. En: CoRR abs/1904.03758 (2019) | spa |
dc.relation.references | Licheng Zhang, Xihong W. ; Luo, Dingsheng: Human activity recognition with HMM-DNN model. En: 2015 IEEE 14th International Conference on Cognitive Infor- matics Cognitive Computing (ICCI*CC), 2015, p. 192–197 | spa |
dc.relation.references | Lin, Yuanze ; Guo, Xun ; Lu, Yan: Self-Supervised Video Representation Learning with Meta-Contrastive Network. En: CoRR abs/2108.08426 (2021) | spa |
dc.relation.references | Liu, Wen ; Luo, Weixin ; Lian, Dongze ; Gao, Shenghua. Future Frame Prediction for Anomaly Detection – A New Baseline. 2018 | spa |
dc.relation.references | Liu, Zhuang ; Mao, Hanzi ; Wu, Chao-Yuan ; Feichtenhofer, Christoph ; Darrell, Trevor ; Xie, Saining. A ConvNet for the 2020s. 2022 | spa |
dc.relation.references | Luis A. Guzman, Jose Pablo C.: A Hybrid Discrete Choice Model to Understand the Effect of Public Policy on Fare Evasion Discouragement in Bogotá’s Bus Rapid Transit. En: Transportation Research Part A: Policy and Practice 151 (2021), p. 140–153 | spa |
dc.relation.references | López, Luis Alfonso G. Relación entre Políticas Públicas de Transporte y Ambiental sobre la dinámica de crecimiento del parque de motocicletas y la calidad del aire de Bogotá durante el período 2012-2015. URI: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/4350. 2019 | spa |
dc.relation.references | Mahadevan, Vijay ; AbdAlmageed, Wael ; Natarajan, Premkumar. UCSD Pe- destrian Dataset. http://www.svcl.ucsd.edu/projects/peoplecnt/db/readme.pdf. 2010 | spa |
dc.relation.references | Mathieu, Michael ; Couprie, Camille ; LeCun, Yann. Deep multi-scale video pre- diction beyond mean square error. 2016 | spa |
dc.relation.references | Md Golam Morshed, Aftab A. ; Lee, Young-Koo: Human Action Recognition: A Taxonomy-Based Survey, Updates, and Opportunities. En: Sensors 23 (2023), p. 2182 | spa |
dc.relation.references | Misra, Ishan ; Zitnick, C. L. ; Hebert, Martial. Shuffle and Learn: Unsupervised Learning using Temporal Order Verification. 2016 | spa |
dc.relation.references | Neloy, Asif A. ; Turgeon, Maxime: A comprehensive study of auto-encoders for anomaly detection: Efficiency and trade-offs. En: Machine Learning with Applications 17 (2024), p. 100572. – ISSN 2666–8270 | spa |
dc.relation.references | Pang, Guansong ; Shen, Chunhua ; Cao, Longbing ; Hengel, Anton Van D.: Deep Learning for Anomaly Detection: A Review. En: ACM Computing Surveys 54 (2021), März, Nr. 2, p. 1–38. – ISSN 1557–7341 | spa |
dc.relation.references | Piciarelli, Claudio ; Micheloni, Christian ; Foresti, Gian L.: Trajectory-based anomalous event detection. En: IEEE Transactions on Circuits and Systems for Video Technology Vol. 18, 2008, p. 1544–1554 | spa |
dc.relation.references | Reiss, Tal ; Cohen, Niv ; Horwitz, Eliahu ; Abutbul, Ron ; Hoshen, Yedid. Anomaly Detection Requires Better Representations. 2022 | spa |
dc.relation.references | Rombach, Robin ; Ho, Jonathan ; Salimans, Tim ; Kreis, Karsten ; Esser, Patrick ; Ommer, Björn: Latent Di#usion Models for Video Generation. En: arXiv preprint arXiv:2204.03692 (2022) | spa |
dc.relation.references | S.A., TransMilenio: Notas de Estados Financieros - Diciembre 2023. https://www.transmilenio.gov.co/publicaciones/153921/notas-de-estados-financieros- diciembre-2023/. 2023. – Accessed: March 30, 2024 | spa |
dc.relation.references | S.A., TransMilenio: Informe 2024 sobre el sistema de TransMilenio. 2024. – Accessed: 2024-09-28 | spa |
dc.relation.references | Sabokrou, Mohammad ; Fayyaz, Mohsen ; Fathy, Mahmood ; Klette, Reinhard: Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes. En: CoRR abs/1609.00866 (2016) | spa |
dc.relation.references | Schlegl, Thomas ; Seeböck, Philipp ; et al.: AnoGAN: Deep Anomaly Detection using Generative Adversarial Networks. En: Medical Image Analysis 53 (2017), p. 27–38 | spa |
dc.relation.references | Shahroudy, Amir ; Liu, Jun ; Ng, Tian-Tsong ; Wang, Gang: NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. En: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p. 1010–1019 | spa |
dc.relation.references | Shannon, C.E.: A Mathematical Theory of Communication. En: Bell System Technical Journal 27 (1948), Nr. 3, p. 379–423 | spa |
dc.relation.references | Shuchang, Zhou. A Survey on Human Action Recognition. 2022 | spa |
dc.relation.references | Simonyan, Karen ; Zisserman, Andrew: Two-stream convolutional networks for action recognition in videos. (2014) | spa |
dc.relation.references | Soomro, Khurram ; Zamir, Amir R. ; Shah, Mubarak. UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild. 2012 | spa |
dc.relation.references | Srivastava, Nitish ; Mansimov, Elman ; Salakhutdinov, Ruslan: Unsupervised learning of video representations using LSTMs. (2016) | spa |
dc.relation.references | Sultani, Waqas ; Chen, Chen ; Shah, Mubarak. Real-world Anomaly Detection in Surveillance Videos. 2019 | spa |
dc.relation.references | Tran, Du ; Bourdev, Lubomir ; Fergus, Rob ; Torresani, Lorenzo ; Paluri, Manohar: Learning spatiotemporal features with 3D convolutional networks, 2015 | spa |
dc.relation.references | Tran, Du ; Wang, Heng ; Torresani, Lorenzo ; Feiszli, Matt: Video Classification with Channel-Separated Convolutional Networks. En: CoRR abs/1904.02811 (2019) | spa |
dc.relation.references | Tran, Du ; Wang, Heng ; Torresani, Lorenzo ; Ray, Jamie ; LeCun, Yann ; Paluri, Manohar. A Closer Look at Spatiotemporal Convolutions for Action Recognition. 2018 | spa |
dc.relation.references | TransMilenio: Este 2023 la línea base de evasión disminuyó hasta ubicarse en 15.32 %. https://www.transmilenio.gov.co/publicaciones/153766/este-2023-la-linea-base-de-evasion-disminuyo-hasta-ubicarse-en-1532/descargar.php?idFile=57267. 2023. – Accessed: 2024-10-14 | spa |
dc.relation.references | Voleti, Vikram ; Jolicoeur-Martineau, Alexia ; Pal, Christopher. MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation. 2022 | spa |
dc.relation.references | Wang, Heng ; Schmid, Cordelia: Action Recognition with Improved Trajectories. En: Proceedings of the IEEE International Conference on Computer Vision (ICCV) IEEE, 2013, p. 3351–3358 | spa |
dc.relation.references | Wang, Jing ; Xu, Zhijie: Spatio-temporal texture modelling for real-time crowd anomaly detection. En: Computer Vision and Image Understanding 144 (2016), p. 177–187. – Individual and Group Activities in Video Event Analysis. – ISSN 1077–3142 | spa |
dc.relation.references | Wang, Limin ; Qiao, Yu ; Tang, Xiaoou: Action recognition with trajectory-pooled deep-convolutional descriptors. En: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Juni 2015 | spa |
dc.relation.references | Wang, Limin ; Xiong, Yuanjun ; Wang, Zhe ; Qiao, Yu ; Lin, Dahua ; Tang, Xiaoou ; Gool, Luc V.: Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, 2016 | spa |
dc.relation.references | Wang, Yunbo ; Gao, Zhifeng ; Long, Mingsheng ; Wang, Jianmin ; Yu, Philip S.: PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. En: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), 2017 | spa |
dc.relation.references | Wang, Yunbo ; Long, Mingsheng ; Wang, Jianmin ; Yu, Philip S.: Spatiotemporal Pyramid Network for Video Action Recognition. (2019) | spa |
dc.relation.references | Xu, Jiehui ; Wu, Haixu ; Wang, Jianmin ; Long, Mingsheng. Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. 2021 | spa |
dc.relation.references | Yan, Shen ; Xiong, Xuehan ; Arnab, Anurag ; Lu, Zhichao ; Zhang, Mi ; Sun, Chen ; Schmid, Cordelia: Multiview Transformers for Video Recognition, 2022 | spa |
dc.relation.references | Yunbo Wang, Ming-Hsuan Yang Li-Jia Li Mingsheng Long Li Fei-Fei: Eidetic 3D LSTM: A Model for Video Prediction and Beyond. En: Proceedings of the 6th International Conference on Learning Representations (ICLR), 2018 | spa |
dc.relation.references | Zhang, Bowen ; Yu, Jiahui ; Fifty, Christopher ; Han, Wei ; Dai, Andrew M. ; Pang, Ruoming ; Sha, Fei: Co-training Transformer with Videos and Images Improves Action Recognition. (2021) | spa |
dc.relation.references | Zhao, Hang ; Gallo, Orazio ; Frosio, Iuri ; Kautz, Jan: Loss Functions for Image Restoration With Neural Networks. En: IEEE Transactions on Computational Imaging 3 (2017), Nr. 1, p. 47–57 | spa |
dc.relation.references | Zhou, Shifu ; Shen, Wei ; Zeng, Dan ; Fang, Mei ; Wei, Yuanwang ; Zhang, Zhijiang: Spatial-temporal Convolutional Neural Networks for Anomaly Detection and Localization in Crowded Scenes. En: Signal Processing: Image Communication 47 (2016), 07 | spa |
dc.relation.references | Zhu, Yi ; Zolfaghari, Mohammadreza ; Zeng, Zhaoyang [u. a.]: MOLO-VT: Motion and Location-aware Video Transformer for Action Recognition. En: arXiv preprint arXiv:2207.05920 (2022) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
dc.subject.ddc | 360 - Problemas y servicios sociales; asociaciones::361 - Problemas sociales y servicios | spa |
dc.subject.proposal | Aprendizaje de máquina | spa |
dc.subject.proposal | Procesamiento de video | spa |
dc.subject.proposal | Aumento de datos | spa |
dc.subject.proposal | Aprendizaje no supervisado | spa |
dc.subject.proposal | Aprendizaje auto-supervisado | spa |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Video processing | eng |
dc.subject.proposal | Data augmentation | eng |
dc.subject.proposal | Unsupervised learning | eng |
dc.subject.proposal | Self-supervised learning | eng |
dc.subject.wikidata | prevención del delito | spa |
dc.subject.wikidata | crime prevention | eng |
dc.subject.wikidata | aprendizaje automático | spa |
dc.subject.wikidata | machine learning | eng |
dc.subject.wikidata | TransMilenio | spa |
dc.subject.wikidata | TransMilenio | eng |
dc.title | Detección y conteo de evasores en el sistema de transporte Transmilenio | spa |
dc.title.translated | Detection and counting of fare evaders in the TransMilenio transport system | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030584108.2024.pdf
- Tamaño:
- 19.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: