Modelo para la gestión del riesgo fitosanitario basado en herramientas agroclimatológicas en sistemas de producción de arroz tecnificado en Colombia

dc.contributor.advisorDíaz Almanza, Eliecer David
dc.contributor.advisorRamírez Gil, Joaquín Guillermo
dc.contributor.authorRodríguez Almonacid, Deidy Viviana
dc.contributor.cvlacRodríguez Almonacid, Deidy Viviana [0001675068]
dc.contributor.orcidRodríguez Almonacid, Deidy Viviana [0009000123862944]
dc.contributor.researchgateRodríguez Almonacid, Deidy Vivian [hdr_xprf]
dc.coverage.countryColombia
dc.date.accessioned2025-09-18T17:43:56Z
dc.date.available2025-09-18T17:43:56Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografías, mapasspa
dc.description.abstractEl cultivo de arroz es uno de los sistemas de producción más importantes para la seguridad alimentaria de Colombia y actúa como un factor dinamizador de la economía rural. Uno de los factores que más impacta el rendimiento y los costos de producción son las enfermedades que pueden ocasionar pérdidas superiores al 25% y bajo condiciones extremas asociada a fenómenos conducentes hasta el 80%. Las dinámicas espaciotemporales de las enfermedades están modeladas en gran parte por las variables climáticas. Actualmente existen relaciones aún desconocidas, por lo que hay que explorar y entender el papel asociado entre el clima y las enfermedades en plantas, acompañadas de la gestión oportuna de los datos como base para tomar decisiones basadas en evidencia. Por lo anterior, la hipótesis del presente trabajo fue que la variación de las variables climáticas actúa como un factor de cambio en la dinámica de las patologías en el cultivo de arroz a escala meso (región). Para esto, el objetivo general del presente estudio es: Desarrollar un modelo de gestión del riesgo fitosanitario que considera las herramientas agroclimatológicas en sistemas de producción de arroz tecnificado en una zona productora de Colombia. Para el cumplimiento de dicho objetivo se ha propuesto una serie de herramientas avanzadas de ciencia de datos, métodos robustos de análisis como la determinación de zonas homólogas climáticas, modelación de la distribución espacial usando modelos de nicho ecológico, y análisis de riesgo de brotes epidemiológicos. Los resultados encontrados se dividen en dos capítulos: el primero se asoció a la aplicación de una metodología detallada paso a paso de la ciencia de datos para la gestión de datos climáticos y epidemiológicos; por otra parte, en el segundo se realizó una aproximación meso (región) al riesgo espaciotemporal de las enfermedades más importantes del cultivo del arroz en Colombia con base en variables de clima como factores de cambio. Este trabajo presenta un avance significado e innovador en la gestión de datos climáticos espaciotemporales y epidemiológicos como herramienta que ayude a la toma de decisiones basadas en evidencias Agroclimáticas. (Texto tomado de la fuente)spa
dc.description.abstractRice cultivation is one of the most important production systems for food security in Colombia, and acts as a driving force in the rural economy. One of the factors that has the greatest impact on yield and production costs is disease, which can cause losses of more than 25% and under very extreme conditions up to 80%. The spatial-temporal dynamics of diseases are related to climatic variables; however, there is currently much knowledge to be developed associated with the relationship between climatological and epidemiological variables, together with the timely management of data, as a basis for evidence-based decision making. Therefore, the hypothesis of this work is based on the fact that the variation of climatic variables act as a factor of change in the dynamics of pathologies in rice crops at meso scale (region). Therefore, the hypothesis of the work is that climatic variables act as a factor of change in the dynamics of pathologies in rice cultivation on a meso-scale (region). For this reason, the general objective of this study is: To develop a phytosanitary risk management model considering agroclimatological tools in technified rice production systems in a production area of Colombia. A series of advanced data science tools, robust analysis methods such as the determination of climatic homologous zones, spatial distribution modelling using ecological niche models, and epidemiological outbreak risk analysis have been proposed to fulfil this objective. The results found in this work are divided into two chapters: the first was associated with the application of a detailed step-by-step data science methodology for climate and epidemiological data management; for the second chapter, a meso (region) approach to the spatio-temporal risk of the most important diseases of rice cultivation in Colombia was made based on climate variables as drivers of change. This work presents a significant and innovative advance in the management of spatio-temporal climatic and epidemiological data as a tool to help decision-making based on agro-climatic evidence.eng
dc.description.curricularareaGeociencias.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Meteorología
dc.description.researchareaAgroclimatología
dc.format.extent170 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88914
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Meteorología
dc.relation.referencesAamodt, G., Samuelsen, S. O., & Skrondal, A. (2006). A simulation study of three methods for detecting disease clusters. International Journal of Health Geographics, 5(1), 15. https://doi.org/10.1186/1476-072X-5-15
dc.relation.referencesAbirami, K., & Mayilvahanan, P. (2016). Performance analysis of K-means and bisecting K-means algorithms in Weblog data. 4(8), 6. https://ijeter.everscience.org/Manuscripts/Volume-4/Issue-8/Vol-4-issue-8-M-23.pdf
dc.relation.referencesAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541-545. https://doi.org/10.1111/ecog.01132
dc.relation.referencesAjilogba, C. F., & Walker, S. (2023). Using crop modeling to find solutions for wheat diseases: A review. Frontiers in Environmental Science, 10, 987765. https://doi.org/10.3389/fenvs.2022.987765
dc.relation.referencesAllen, R., Pereira, L., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Estudio FAO Riego Y Drenaje No 56.
dc.relation.referencesAlsafadi, K., Mohammed, S., Mokhtar, A., Sharaf, M., & He, H. (2021). Fine-resolution precipitation mapping over Syria using local regression and spatial interpolation. Atmospheric Research, 256, 105524. https://doi.org/10.1016/j.atmosres.2021.105524
dc.relation.referencesAnderson, P. K. (1994). Conceptual Framework: Discussion Part A: A Conceptual Framework of Integrated Epidemiology for Application to Emerging Diseases. Annals of the New York Academy of Sciences, 740(1), 439-444. https://doi.org/10.1111/j.1749-6632.1994.tb19905.x
dc.relation.referencesAnderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535-544. https://doi.org/10.1016/j.tree.2004.07.021
dc.relation.referencesAsibi, A. E., Chai, Q., & Coulter, J. A. (2019). Rice Blast: A Disease with Implications for Global Food Security. Agronomy, 9(8). https://doi.org/10.3390/agronomy9080451
dc.relation.referencesBalanagouda, P., Sridhara, S., Shil, S., Hegde, V., Naik, M. K., Narayanaswamy, H., & Balasundram, S. K. (2021). Assessment of the Spatial Distribution and Risk Associated with Fruit Rot Disease in Areca catechu L. Journal of Fungi (Basel, Switzerland), 7(10). https://doi.org/10.3390/jof7100797
dc.relation.referencesBalsamo, G., Agusti-Panareda, A., Albergel, C., Arduini, G., Beljaars, A., Bidlot, J., Blyth, E., Bousserez, N., Boussetta, S., Brown, A., Buizza, R., Buontempo, C., Chevallier, F., Choulga, M., Cloke, H., Cronin, M. F., Dahoui, M., De Rosnay, P., Dirmeyer, P. A., … Zeng, X. (2018). Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122038
dc.relation.referencesBastidas Osejo, B., Betancur Vargas, T., & Alejandro Martinez, J. (2019). Spatial distribution of precipitation and evapotranspiration estimates from Worldclim and Chelsa datasets: Improving long-term water balance at the watershed-scale in the Urabá region of Colombia. International Journal of Sustainable Development and Planning, 14(02), 105-117. https://doi.org/10.2495/SDP-V14-N2-105-117
dc.relation.referencesBecerra, I., Castro, L., Cortes, C., Del Valle, C., Diaz, A., Florez, A., Fonseca, M., & Viveros, J. (2020). Plan de ordenamiento productivo del arroz en Colombia para el desarrollo, estabilidad y especialización de la cadena arrocera colombiana 2020-2038 (ISBN: 978-958-5552-53-1). https://upra.gov.co/es-co/Paginas/pop-arroz.aspx
dc.relation.referencesBenavides, H., Simbaqueva, O., & IDEAM, UPME, Fundación Unversitaria Los Libertadores. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023775/023775.html. Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105, 17-24. https://api.semanticscholar.org/CorpusID:1759661
dc.relation.referencesBholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105, 17-24. https://api.semanticscholar.org/CorpusID:1759661
dc.relation.referencesBhukal, N., Singh, R., & Mehta, N. (2015). Progression and Development of Sheath Blight of Rice in Relation to Weather Variables. 45.
dc.relation.referencesBigirimana, V. D. P., Hua, G. K. H., Nyamangyoku, O. I., & Höfte, M. (2015). Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01066
dc.relation.referencesBiswas, S., Wardat, M., & Rajan, H. (2022). The Art and Practice of Data Science Pipelines: A Comprehensive Study of Data Science Pipelines in Theory, in-the-Small, and in-the-Large. Proceedings of the 44th International Conference on Software Engineering, 2091-2103. https://doi.org/10.1145/3510003.3510057
dc.relation.referencesBobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021
dc.relation.referencesBobrowski, M., Weidinger, J., & Schickhoff, U. (2021). Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. Atmosphere, 12(5), 543. https://doi.org/10.3390/atmos12050543
dc.relation.referencesBock, C. H., Chiang, K.-S., & Del Ponte, E. M. (2022). Plant disease severity estimated visually: A century of research, best practices, and opportunities for improving methods and practices to maximize accuracy. Tropical Plant Pathology, 47(1), 25-42. https://doi.org/10.1007/s40858-021-00439-z
dc.relation.referencesBock, C. H., Graham, J. H., Gottwald, T. R., Cook, A. Z., & Parker, P. E. (2010). Wind Speed Effects on the Quantity of Xanthomonas citri subsp. Citri Dispersed Downwind from Canopies of Grapefruit Trees Infected with Citrus Canker. Plant Disease, 94(6), 725-736. https://doi.org/10.1094/PDIS-94-6-0725
dc.relation.referencesBregaglio, S., Titone, P., Cappelli, G., Tamborini, L., Mongiano, G., & Confalonieri, R. (2016). Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in a temperate climate. European Journal of Agronomy, 76, 107-117. https://doi.org/10.1016/j.eja.2016.02.009
dc.relation.referencesBregaglio, S., Titone, P., Hossard, L., Mongiano, G., Savoini, G., Piatti, F. M., Paleari, L., Masseroli, A., & Tamborini, L. (2017). Effects of agro-pedo-meteorological conditions on dynamics of temperate rice blast epidemics and associated yield and milling losses. Field Crops Research, 212, 11-22. https://doi.org/10.1016/j.fcr.2017.06.022
dc.relation.referencesCalvero Jr, S. B., COAKLEY, S. M., & TENG, P. S. (1996). Development of empirical forecasting models for rice blast based on weather factors. Plant Pathology, 45(4), 667-678. https://doi.org/10.1046/j.1365-3059.1996.d01-168.x
dc.relation.referencesCamargo, M. B. P., & Hubbard, K. G. (1999). Spatial and temporal variability of daily weather variables in sub-humid and semi-arid areas of the united states high plains. Agricultural and Forest Meteorology, 93(2), 141-148. https://doi.org/10.1016/S0168-1923(98)00122-1
dc.relation.referencesCardona, O., Aalst, M., Birkmann, J., Fordham, M., Mcgregor, G., Perez, R., Pulwarty, R., Schipper, L., & Bach, S. (2012). Determinants of risk: Exposure and vulnerability.
dc.relation.referencesCardona, O.-D., Ordaz, M. G., Mora, M. G., Salgado-Gálvez, M. A., Bernal, G. A., Zuloaga-Romero, D., Marulanda Fraume, M. C., Yamín, L., & González, D. (2014). Global risk assessment: A fully probabilistic seismic and tropical cyclone wind risk assessment. Global probabilistic assessment of risk from natural hazards for the Global Assessment Report 2013 (GAR13), 10, 461-476. https://doi.org/10.1016/j.ijdrr.2014.05.006
dc.relation.referencesCarvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, Parts A/B/C, 94, 22-28. https://doi.org/10.1016/j.pce.2016.05.001
dc.relation.referencesCastaño Zapata, J. (2002). Principios básicos de Fitoepidemiología (Caldas, Manizalez). Editorial Universidad de Caldas.
dc.relation.referencesCastejón-Muñoz, M. (2008). The effect of temperature and relative humidity on the airbone concentration of Pyricularia oryzae spores and the development of rice blast in southern Spain. Spanish Journal of Agricultural Research, 6, 61-69. https://api.semanticscholar.org/CorpusID:85598101
dc.relation.referencesChakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology, 60(1), 2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014a). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. https://doi.org/10.1038/nclimate2153
dc.relation.referencesChallinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014a). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. https://doi.org/10.1038/nclimate2153
dc.relation.referencesChallinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014b). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. https://doi.org/10.1038/nclimate2153
dc.relation.referencesCheng, Y. T., Zhang, L., & He, S. Y. (2019). Plant-Microbe Interactions Facing Environmental Challenge. Cell Host & Microbe, 26(2), 183-192. https://doi.org/10.1016/j.chom.2019.07.009
dc.relation.referencesCissoko, M., Sagara, I., Sankaré, M. H., Dieng, S., Guindo, A., Doumbia, Z., Allasseini, B., Traore, D., Fomba, S., Bendiane, M. K., Landier, J., Dessay, N., & Gaudart, J. (2020). Geo-Epidemiology of Malaria at the Health Area Level, Dire Health District, Mali, 2013–2017. International Journal of Environmental Research and Public Health, 17(11). https://doi.org/10.3390/ijerph17113982
dc.relation.referencesCleves-Leguizamo, J. A., Ramírez-Castañeda, L. N., & Díaz, E. D. (2021). Proposal of an empirical model to estimate the productivity of ‘Valencia’ orange (Citrus sinensis L. Osbeck) in the Colombian low tropics. Revista Colombiana de Ciencias Hortícolas, 15(3), e10860. https://doi.org/10.17584/rcch.2021v15i3.10860
dc.relation.referencesCoakley, S. M. (1988). Variation in Climate and Prediction of Disease in Plants. Annual Review of Phytopathology, 26(1), 163-181. https://doi.org/10.1146/annurev.py.26.090188.001115
dc.relation.referencesCoakley, S. M., McDaniel, L. R., & Line, R. F. (1988). Quantifying how climatic factors affect variation in plant disease severity: A general method using a new way to analyze meteorological data. Climatic Change, 12(1), 57-75. https://doi.org/10.1007/BF00140264
dc.relation.referencesCoakley, S. M., Scherm, H., & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399-426. https://doi.org/10.1146/annurev.phyto.37.1.399
dc.relation.referencesCohen, S. P., Liu, H., Argueso, C. T., Pereira, A., Vera Cruz, C., Verdier, V., & Leach, J. E. (2017). RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature. PLOS ONE, 12(11), e0187625. https://doi.org/10.1371/journal.pone.0187625
dc.relation.referencesCuevas, A., Higuera, M. O. L., & Federación Nacional de Arroceros (FEDEARROZ). Fondo Nacional del Arroz (FNA). (2017). ADOPCIÓN MASIVA DE TECNOLOGÍA. GUÍA PARA EL MONITOREO Y MANEJO DE ENFERMEDADES. MVB. https://fedearroz.s3.amazonaws.com/media/documents/cartilla_enfermedades_DqWlBTF.pdf
dc.relation.referencesDANE & FEDEARROZ. (2017). Boletin Técnico 4° CENSO NACIONAL ARROCERO 2016 (Boletín Técnico No. 4; p. 35). Departamento Administrativo Nacional de Estadística (DANE) & Federación Nacional de Arroceros (FEDEARROZ). https://www.dane.gov.co/files/investigaciones/agropecuario/censo-nacional-arrocero/boletin-tecnico-4to-censo-nacional-arrocero-2016.pdf
dc.relation.referencesDANE y FNA, 2020. (2020). Boletin tecnico. Encuesta Nacional de Arroz Mecanizado (ENAM) I y II Semestre 2020. (p. 55. Available in https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado/encuesta-nacional-de-arroz-mecanizado-enam-historicos) [Encuesta]. Departamento Administrativo Nacional de Estadistica (DANE) y Fondo Nacional del Arroz de Fedearroz (FNA). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado/encuesta-nacional-de-arroz-mecanizado-enam-historicos
dc.relation.referencesDato, K. M. G., Dégbègni, M. R., Atchadé, M. N., Zandjanakou Tachin, M., Hounkonnou, M. N., & Aman Omondi, B. (2021). Spatial parameters associated with the risk of banana bunchy top disease in smallholder systems. PLOS ONE, 16(12), e0260976. https://doi.org/10.1371/journal.pone.0260976
dc.relation.referencesDe Oliveira-Júnior, J. F., Correia Filho, W. L. F., De Barros Santiago, D., De Gois, G., Da Silva Costa, M., Da Silva Junior, C. A., Teodoro, P. E., & Freire, F. M. (2021). Rainfall in Brazilian Northeast via in situ data and CHELSA product: Mapping, trends, and socio-environmental implications. Environmental Monitoring and Assessment, 193(5), 263. https://doi.org/10.1007/s10661-021-09043-9
dc.relation.referencesDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. https://doi.org/10.1002/qj.828
dc.relation.referencesDelerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., Garcés Varón, G., & Jiménez, D. (2016). Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches. PLOS ONE, 11(8), e0161620. https://doi.org/10.1371/journal.pone.0161620
dc.relation.referencesDonovan, N. J., Backhouse, D., & Burgess, L. W. (2006). Enhanced suppression of Gaeumannomyces graminis var. Tritici by retention of residues in a cereal cropping system. Australasian Plant Pathology, 35(1), 43. https://doi.org/10.1071/AP05096
dc.relation.referencesDumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J.-L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40, 101037. https://doi.org/10.1016/j.ejrh.2022.101037
dc.relation.referencesDykes, J., Abdul-Rahman, A., Archambault, D., Bach, B., Borgo, R., Chen, M., Enright, J., Fang, H., Firat, E. E., Freeman, E., Gönen, T., Harris, C., Jianu, R., John, N. W., Khan, S., Lahiff, A., Laramee, R. S., Matthews, L., Mohr, S., … Xu, K. (2022). Visualization for epidemiological modelling: Challenges, solutions, reflections and recommendations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2233), 20210299. https://doi.org/10.1098/rsta.2021.0299
dc.relation.referencesEastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60(1), 54-69. https://doi.org/10.1111/j.1365-3059.2010.02402.x
dc.relation.referencesEscobar, L. E. (2020). Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.519059
dc.relation.referencesFang, X., Ai, J., Liu, W., Ji, H., Zhang, X., Peng, Z., Wu, Y., Shi, Y., Shen, W., & Bao, C. (2019). Epidemiology of infectious diarrhoea and the relationship with etiological and meteorological factors in Jiangsu Province, China. Scientific Reports, 9(1), 19571. https://doi.org/10.1038/s41598-019-56207-2
dc.relation.referencesFAOSTAT, 2023. (2023). Crops and livestock products (Rice) (Data Library No. Food and Agriculture Organization Corporate Statistical Database). https://www.fao.org/faostat/en/#search/Rice. https://www.fao.org/faostat/en/#search/Rice
dc.relation.referencesFathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E. (2022). Big Data Analytics in Weather Forecasting: A Systematic Review. Archives of Computational Methods in Engineering, 29(2), 1247-1275. https://doi.org/10.1007/s11831-021-09616-4
dc.relation.referencesFaybishenko, B., Versteeg, R., Pastorello, G., Dwivedi, D., Varadharajan, C., & Agarwal, D. (2022). Challenging problems of quality assurance and quality control (QA/QC) of meteorological time series data. Stochastic Environmental Research and Risk Assessment, 36(4), 1049-1062. https://doi.org/10.1007/s00477-021-02106-w
dc.relation.referencesFEDEARROZ, 2015. (2015a). Protocolo Brigada Fitosanitaria Nacional en el cultivo de arroz en Colombia. Documento interno.
dc.relation.referencesFEDEARROZ, 2015. (2015b). Protocolo para el Monitoreo lotes sensores de enfermedades e insectos fitófagos en el cultivo de arroz en Colombia. Documento interno.
dc.relation.referencesFEDEARROZ, & FNA. (2021, octubre 1). Contexto mundial y nacional del cultivo del arroz 2000—2020,. https://fedearroz.s3.amazonaws.com/media/documents/Cartilla_Contexto_Mundial_y_Nacional_del_cultivo_de_arroz_2000-2020_dXUQLuQ.pdf
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
dc.relation.referencesFischer, T., Byerlee, D., & Edmeades, G. (2014). Crop yields and global food security, Will yield increase continue to feed the world? The Australian Centre for International Agricultural Research (ACIAR).
dc.relation.referencesFones, H. N., Bebber, D. P., Chaloner, T. M., Kay, W. T., Steinberg, G., & Gurr, S. J. (2020). Threats to global food security from emerging fungal and oomycete crop pathogens. Nature Food, 1(6), 332-342. https://doi.org/10.1038/s43016-020-0075-0
dc.relation.referencesFrancl, L. (2007). The Disease Triangle: A plant pathological paradigm revisited. The Plant Health Instructor. https://www.apsnet.org/edcenter/foreducators/TeachingNotes/Pages/DiseaseTriangle.aspx
dc.relation.referencesFranklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.
dc.relation.referencesFRY, W. E. (1982). 3—Epidemiology: Dynamics of Interacting Pathogen and Host Populations. En W. E. FRY (Ed.), Principles of Plant Disease Management (pp. 43-66). Academic Press. https://doi.org/10.1016/B978-0-08-091830-3.50006-X
dc.relation.referencesGarrett, K. A., Forbes, G. A., Savary, S., Skelsey, P., Sparks, A. H., Valdivia, C., van Bruggen, A. H. C., Willocquet, L., Djurle, A., Duveiller, E., Eckersten, H., Pande, S., Vera Cruz, C., & Yuen, J. (2011). Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathology, 60(1), 15-30. https://doi.org/10.1111/j.1365-3059.2010.02409.x
dc.relation.referencesGaudart, J., Poudiougou, B., Dicko, A., Ranque, S., Toure, O., Sagara, I., Diallo, M., Diawara, S., Ouattara, A., Diakite, M., & Doumbo, O. K. (2006). Space-time clustering of childhood malaria at the household level: A dynamic cohort in a Mali village. BMC Public Health, 6(1), 286. https://doi.org/10.1186/1471-2458-6-286
dc.relation.referencesGhatak, A., Willocquet, L., Savary, S., & Kumar, J. (2013). Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks: A case of pathogen specialization? PloS One, 8(6), e66180. https://doi.org/10.1371/journal.pone.0066180
dc.relation.referencesGhini, R., & Bevitori, R. (2014). Rice Blast Disease in Climate Change Times. Rice Research: Open Access, 03(01). https://doi.org/10.4172/2375-4338.1000e111
dc.relation.referencesGold, K. M. (2021). Plant Disease Sensing: Studying Plant-Pathogen Interactions at Scale. mSystems, 6(6), e0122821. https://doi.org/10.1128/mSystems.01228-21
dc.relation.referencesGreer, C. A., & Webster, R. K. (2001). Occurrence, Distribution, Epidemiology, Cultivar Reaction, and Management of Rice Blast Disease in California. Plant Disease, 85(10), 1096-1102. https://doi.org/10.1094/PDIS.2001.85.10.1096
dc.relation.referencesGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566. https://doi.org/10.1111/nph.16485
dc.relation.referencesGustafson, E. J., Miranda, B. R., Dreaden, T. J., Pinchot, C. C., & Jacobs, D. F. (2022). Beyond blight: Phytophthora root rot under climate change limits populations of reintroduced American chestnut. Ecosphere, 13(2), e3917. https://doi.org/10.1002/ecs2.3917
dc.relation.referencesH. Akaike. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
dc.relation.referencesHaq, M., Mia, M. A. T., Rabbi, M. F., & Ali, M. A. (2011). Incidence and Severity of Rice Diseases and Insect Pests in Relation to Climate Change. En R. Lal, M. V. K. Sivakumar, S. M. A. Faiz, A. H. M. Mustafizur Rahman, & K. R. Islam (Eds.), Climate Change and Food Security in South Asia (pp. 445-457). Springer Netherlands. https://doi.org/10.1007/978-90-481-9516-9_27
dc.relation.referencesHb, N. (2021). Integrated Management of Rice Diseases. 4(2).
dc.relation.referencesHijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276
dc.relation.referencesHubbard, K. G. (1994). Spatial variability of daily weather variables in the high plains of the USA. Agricultural and Forest Meteorology, 68(1), 29-41. https://doi.org/10.1016/0168-1923(94)90067-1
dc.relation.referencesHurtado, G., Gonzalez, O., & Cadena, M. (2017). Atlas climatológico de Colombia. http://www.ideam.gov.co/web/tiempo-y-clima/atlas-de-colombia
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales, I., & Universidad Nacional de Colombia, U. (2018). LA VARIABILIDAD CLIMÁTICA Y EL CAMBIO CLIMÁTICO EN COLOMBIA (1.a ed.). https://www.andi.com.co/Uploads/variabilidad.pdf
dc.relation.referencesInstituto Geografico Agustín Codazzi (IGAC). (2011). Modelo digital de elevación de Colombia (DEM), resolución de 30 m. [Dataset].
dc.relation.referencesIRRI. (2023). Knowledgebank Rice Disease [Website]. http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/diseases
dc.relation.referencesJames, S. (2016). Weighted Averaging. En S. James, An Introduction to Data Analysis using Aggregation Functions in R (pp. 75-95). Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7_3
dc.relation.referencesJaramillo-Robledo, A., & Chaves-Córdoba, B. (2000). DISTRIBUCIÓN DE LA PRECIPITACIÓN EN COLOMBIA ANALIZADA MEDIANTE CONGLOMERACIÓN ESTADÍSTICA. Revista Cenicafe, 51(2), 102-113.
dc.relation.referencesJiménez-Valverde, A., Rodríguez-Rey, M., & Peña-Aguilera, P. (2021). Climate data source matters in species distribution modelling: The case of the Iberian Peninsula. Biodiversity and Conservation, 30(1), 67-84. https://doi.org/10.1007/s10531-020-02075-6
dc.relation.referencesJohansen, T. J., Dees, M. W., & Hermansen, A. (2015). High soil moisture reduces common scab caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in potato. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 65(3), 193-198.
dc.relation.referencesJones, R. A. C. (2021). Global Plant Virus Disease Pandemics and Epidemics. Plants (Basel, Switzerland), 10(2). https://doi.org/10.3390/plants10020233
dc.relation.referencesJung, S., Moon, J., & Hwang, E. (2020). Cluster-Based Analysis of Infectious Disease Occurrences Using Tensor Decomposition: A Case Study of South Korea. International Journal of Environmental Research and Public Health, 17(13). https://doi.org/10.3390/ijerph17134872
dc.relation.referencesJuroszek, P., & von Tiedemann, A. (2015). Linking Plant Disease Models to Climate Change Scenarios to Project Future Risks of Crop Diseases: A Review. Journal of Plant Diseases and Protection, 122(1), 3-15. https://doi.org/10.1007/BF03356525
dc.relation.referencesKambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Special Issue on Perspectives on Parallel and Distributed Processing, 74(7), 2561-2573. https://doi.org/10.1016/j.jpdc.2014.01.003
dc.relation.referencesKansakar, P., & Hossain, F. (2016). A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy, 36, 46-54. https://doi.org/10.1016/j.spacepol.2016.05.005
dc.relation.referencesKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
dc.relation.referencesKarger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., & Jetz, W. (2021). Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Scientific Data, 8(1), 307. https://doi.org/10.1038/s41597-021-01084-6
dc.relation.referencesKarunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609-629. https://doi.org/10.1016/j.ins.2021.11.036
dc.relation.referencesKatile, A., Sagara, I., Cissoko, M., Bationo, C. S., Dolo, M., Thera, I., Traore, S., Kone, M., Dembele, P., Bocoum, D., Sidibe, I., Simaga, I., Sissoko, M. S., Landier, J., & Gaudart, J. (2022). Spatio-Temporal Variability of Malaria Incidence in the Health District of Kati, Mali, 2015–2019. International Journal of Environmental Research and Public Health, 19(21). https://doi.org/10.3390/ijerph192114361
dc.relation.referencesKatsantonis, D., kadoglidou, K., Dramalis, C., & Puigdollers, P. (2017). Rice blast forecasting models and their practical value: A review. Phytopathologia Mediterranea, 56(2), 187-216. https://doi.org/10.14601/Phytopathol_Mediterr-18706
dc.relation.referencesKatsantonis, D., Kadoglidou, K. I., Dramalis, C., & Puigdollers, P. (2017). Rice blast forecasting models and their practical value: A review. Phytopathologia Mediterranea, 56, 187-216. https://api.semanticscholar.org/CorpusID:55221793
dc.relation.referencesKhoshkdaman, M., Mousanejad, S., Elahinia, S. A., Ebadi, A. A., & Padasht-Dehkaei, F. (2021). Sheath blight development and yield loss on rice in different epidemiological conditions. Journal of Plant Pathology, 103(1), 87-96. https://doi.org/10.1007/s42161-020-00653-9
dc.relation.referencesKim, K.-H., Cho, J., Lee, Y. H., & Lee, W.-S. (2015). Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agricultural and Forest Meteorology, 203, 191-207. https://doi.org/10.1016/j.agrformet.2015.01.011
dc.relation.referencesKobayasi, K., Matsui, T., Yoshimoto, M., & Hasegawa, T. (2010). Effects of Temperature, Solar Radiation, and Vapor-Pressure Deficit on Flower Opening Time in Rice. Plant Production Science, 13(1), 21-28. https://doi.org/10.1626/pps.13.21
dc.relation.referencesKulldorff, M. (1997). A spatial scan statistic. Communications in Statistics - Theory and Methods, 26(6), 1481-1496. https://doi.org/10.1080/03610929708831995
dc.relation.referencesKulldorff, M. (2021, julio). SaTScanTM Manual do Usuário para versão 10.0. https://www.satscan.org/SaTScan_TM_Manual_do_Usu%C3%A1rio_Portugues.pdf
dc.relation.referencesKulldorff, M., & Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14(8), 799-810. https://doi.org/10.1002/sim.4780140809
dc.relation.referencesKurita, T. (2019). Principal Component Analysis (PCA). En Computer Vision: A Reference Guide (pp. 1-4). Springer International Publishing. https://doi.org/10.1007/978-3-030-03243-2_649-1
dc.relation.referencesLaanaya, F., St-Hilaire, A., & Gloaguen, E. (2017). Water temperature modelling: Comparison between the generalized additive model, logistic, residuals regression and linear regression models. Hydrological Sciences Journal, 62(7), 1078-1093. https://doi.org/10.1080/02626667.2016.1246799
dc.relation.referencesLal, M. (2014). Diversity analysis of Rhizoctonia solani causing sheath blight of rice in India. AFRICAN JOURNAL OF BIOTECHNOLOGY, 13, 4595-4605.
dc.relation.referencesLash, T. L., Fox, M. P., MacLehose, R. F., Maldonado, G., McCandless, L. C., & Greenland, S. (2014). Good practices for quantitative bias analysis. International Journal of Epidemiology, 43(6), 1969-1985. https://doi.org/10.1093/ije/dyu149
dc.relation.referencesLaunay, M., Caubel, J., Bourgeois, G., Huard, F., Garcia de Cortazar-Atauri, I., Bancal, M.-O., & Brisson, N. (2014). Climatic indicators for crop infection risk: Application to climate change impacts on five major foliar fungal diseases in Northern France. Agriculture, Ecosystems & Environment, 197, 147-158. https://doi.org/10.1016/j.agee.2014.07.020
dc.relation.referencesLawrence, M. (2005). The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bulletin of the American Meteorological Society, v.86, 225-233 (2005), 86. https://doi.org/10.1175/BAMS-86-2-225
dc.relation.referencesLawrence, T. J., Takenaka, B. P., Garg, A., Tao, D., Deem, S. L., Fèvre, E. M., Gluecks, I., Sagan, V., & Shacham, E. (2023). A global examination of ecological niche modeling to predict emerging infectious diseases: A systematic review. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1244084
dc.relation.referencesLebeda, A. (1981). Epidemiology and plant disease management. Biologia Plantarum, 23(3), 219-219. https://doi.org/10.1007/BF02894891
dc.relation.referencesLee, D.-K., & Kim, H.-G. (2010). Habitat potential evaluation using Maxent model-Focused on Riparian distance, stream order and land use. Journal of the Korean Society of Environmental Restoration Technology, 13(6), 161-172.
dc.relation.referencesLegates, D. R., & McCabe Jr., G. J. (1999). Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. https://doi.org/10.1029/1998WR900018
dc.relation.referencesLevin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 73(6), 1943-1967. https://doi.org/10.2307/1941447
dc.relation.referencesLiberda, E., & Sly, T. (2023). Qualitative Risk Assessment Methods. En E. Liberda & T. Sly (Eds.), Assessment and Communication of Risk: A Pocket Text for Health and Safety Professionals (pp. 157-174). Springer International Publishing. https://doi.org/10.1007/978-3-031-28905-7_4
dc.relation.referencesLópez-Bravo, D., Virginio-Filho, E. de M., & Avelino, J. (2012). Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Prot, 38, 21-29. AGRICOLA. https://doi.org/10.1016/j.cropro.2012.03.011
dc.relation.referencesMadden, L. V., Hughes, G., & van den Bosch, F. (2017). The Study of Plant Disease Epidemics. The American Phytopathological Society. https://doi.org/10.1094/9780890545058
dc.relation.referencesMehta, S., Singh, B., Dhakate, P., Rahman, M., & Islam, M. A. (2019). Rice, Marker-Assisted Breeding, and Disease Resistance. En S. H. Wani (Ed.), Disease Resistance in Crop Plants (pp. 83-111). Springer International Publishing. https://doi.org/10.1007/978-3-030-20728-1_5
dc.relation.referencesMelo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837
dc.relation.referencesMerga, W. (2018). Measuring and Analysis of Plant Diseases. https://api.semanticscholar.org/CorpusID:92992132
dc.relation.referencesMesa Sanchez, O. J., & Peñaranda Velez, V. M. (2015). Complejidad de la estructura espacio-temporal de la precipitación. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39, 304-320. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0370-39082015000300002&nrm=iso
dc.relation.referencesMetreveli, V., Kreft, H., Akobia, I., Janiashvili, Z., Nonashvili, Z., Dzadzamia, L., Javakhishvili, Z., & Gavashelishvili, A. (2023). Potential Distribution and Suitable Habitat for Chestnut (Castanea sativa). Forests, 14(10). https://doi.org/10.3390/f14102076
dc.relation.referencesMiller, I. F., Jiranek, J., Brownell, M., Coffey, S., Gray, B., Stahl, M., & Metcalf, C. J. E. (2022). Predicting the effects of climate change on the cross-scale epidemiological dynamics of a fungal plant pathogen. Scientific Reports, 12(1), 14823. https://doi.org/10.1038/s41598-022-18851-z
dc.relation.referencesMisra, A. K., Yadav, S., Mishra, S. K., & Tripathi, M. (2020). Impact of Meteorological Variables and Climate Change on Plant Diseases. https://api.semanticscholar.org/CorpusID:216162889
dc.relation.referencesMolinari, C., & Talbot, N. J. (2022). A Basic Guide to the Growth and Manipulation of the Blast Fungus, Magnaporthe oryzae. Current Protocols, 2(8), e523. https://doi.org/10.1002/cpz1.523
dc.relation.referencesMontealegre, J. E., & Pabón Caicedo, J. D. (2000). La variabilidad climática interanual asociada al ciclo El Niño-La Niña-Oscilación del Sur y su efecto en el patrón pluviométrico de Colombia. Meteorol. Colomb., 2, 7-21.
dc.relation.referencesNarváez, G., & León, G. (2001). Caracterización y Zonificación Climática de la Region Andina. Meteorología Colombiana, 4, 121-126. https://docplayer.es/21391523-Caracterizacion-y-zonificacion-climatica-de-la-region-andina.html
dc.relation.referencesNelson, M. R., Orum, T. V., Jaime-Garcia, R., & Nadeem, A. (1999). Applications of Geographic Information Systems and Geostatistics in Plant Disease Epidemiology and Management. Plant Disease, 83(4), 308-319. https://doi.org/10.1094/PDIS.1999.83.4.308
dc.relation.referencesOjiambo, P. S., Yuen, J., Van Den Bosch, F., & Madden, L. V. (2017). Epidemiology: Past, Present, and Future Impacts on Understanding Disease Dynamics and Improving Plant Disease Management—A Summary of Focus Issue Articles. Phytopathology®, 107(10), 1092-1094. https://doi.org/10.1094/PHYTO-07-17-0248-FI
dc.relation.referencesOrganización de las Naciones Unidas, (ONU). (2015). Marco de Sendai para la Reducción del Riesgo de Desastres 2015-2030. https://www.refworld.org.es/docid/5b3d419f4.html el 12 Febrero 2020
dc.relation.referencesOsorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras-Díaz, R. G., Martínez-Meyer, E., Barve, V., & Barve, N. (2020). ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11(10), 1199-1206. https://doi.org/10.1111/2041-210X.13452
dc.relation.referencesOu, S. H., & Britain), C. M. I. (Great. (1985). Rice Diseases. Commonwealth Mycological Institute. https://books.google.com.co/books?id=-k3mewv9nMoC
dc.relation.referencesOuedraogo, B., Inoue, Y., Kambiré, A., Sallah, K., Dieng, S., Tine, R., Rouamba, T., Herbreteau, V., Sawadogo, Y., Ouedraogo, L. S. L. W., Yaka, P., Ouedraogo, E. K., Dufour, J.-C., & Gaudart, J. (2018). Spatio-temporal dynamic of malaria in Ouagadougou, Burkina Faso, 2011–2015. Malaria Journal, 17(1), 138. https://doi.org/10.1186/s12936-018-2280-y
dc.relation.referencesPabón Caicedo, J. D., Eslava, J. A., & Gómez, R. (2001). Características de gran escala del clima de América Tropical Colombia. Meteorología Colombiana, 4, 39-46.
dc.relation.referencesPabón, J. D., Eslava, J. A., & Gómez, R. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana, 4, 47-59. http://168.176.14.11/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero04/04_05.pdf
dc.relation.referencesPacheco, Y., & Léon, G. (2001). Clasificación de la Orinoquía Colombiana a partir de los patrones de circulación atmosférica. Meterología Colombiana, 4, 117-120. Impreso.
dc.relation.referencesPadmanabhan, S. (1963). The role of therapeutic treatments in plant disease control with special reference to rice diseases. Indian Phytopathology Society Bulletin, 79-84.
dc.relation.referencesPannu, P. P. S., Chahal, S. S., Kaur, M., & Sidhu, S. S. (2005). Influence of weather variables on the development of brown leaf spot caused by Helminthosporium oryzae in rice. Indian phytopathology, 58, 489-492. https://api.semanticscholar.org/CorpusID:86318136
dc.relation.referencesPatil, R. R., & Kumar, S. (2021). Predicting rice diseases across diverse agro-meteorological conditions using an artificial intelligence approach. PeerJ. Computer Science, 7, e687. https://doi.org/10.7717/peerj-cs.687
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html
dc.relation.referencesPeixoto, C. N., Ottoni, G., Filippi, M. C. C., Silva-Lobo, V. L., & Prabhu, A. S. (2013). Biology of Gaeumannomyces graminis var. Graminis isolates from rice and grasses and epidemiological aspects of crown sheath rot of rice. Tropical Plant Pathology, 38(6), 495-504. https://doi.org/10.1590/S1982-56762013000600005
dc.relation.referencesPeláez Sánchez, O., & Más Bermejo, P. (2020). Brotes, epidemias, eventos y otros términos epidemiológicos de uso cotidiano. Revista Cubana de Salud Pública; Vol. 46 | No. 2 | ABRIL - JUNIO | 2020. https://revsaludpublica.sld.cu/index.php/spu/article/view/2358/1467
dc.relation.referencesPeng, R., & Dominici, F. (2008). Statistical Models. En Statistical Methods for Environmental Epidemiology with R: A Case Study in Air Pollution and Health (pp. 69-97). Springer New York. https://doi.org/10.1007/978-0-387-78167-9_6
dc.relation.referencesPersaud, R., McGowan, D., & Persaud, M. (2021). Managing the Imminent Danger of Rice Blast ( Pyricularia oryzae Cav.) and Sheath Blight ( Rhizoctonia solani Kühn) Disease: A Critical Review Article. American Journal of Agriculture and Forestry, 9, 409. https://doi.org/10.11648/j.ajaf.20210906.20
dc.relation.referencesPeterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17(1), 135-144. https://doi.org/10.1111/j.1466-8238.2007.00347.x
dc.relation.referencesPeterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
dc.relation.referencesPfeiffer, D. U., & Stevens, K. B. (2015). Spatial and temporal epidemiological analysis in the Big Data era. Preventive Veterinary Medicine, 122(1-2), 213-220. https://doi.org/10.1016/j.prevetmed.2015.05.012
dc.relation.referencesPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
dc.relation.referencesPhillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
dc.relation.referencesPokhrel, B. (2021). Effects of Environmental Factors on Crop Diseases Development’. 12(553).
dc.relation.referencesPooja, K., & Katoch, A. (2014). Past, present and future of rice blast management. Plant Science Today, 1(3), 165-173. https://doi.org/10.14719/pst.2014.1.3.24
dc.relation.referencesPorter, J. R., Challinor, A. J., Cochrane, K., Howden, M., Iqbal, M. M., Lobell, D. B., & Travasso, M. I. (2014). Food Security and Food Production Systems. En Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)] (pp. 485-533). Cambridge University Press.
dc.relation.referencesQGIS Development Team. (2020). Quantum GIS Geographic Information System (Open Source) Geospatial Foundation Project [Computer software]. (Versión Version 3.16.6) [Software].
dc.relation.referencesQiu, J., Xie, J., Chen, Y., Shen, Z., Shi, H., Naqvi, N. I., Qian, Q., Liang, Y., & Kou, Y. (2022). Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant, 15(4), 723-739. https://doi.org/10.1016/j.molp.2022.02.014
dc.relation.referencesRamírez-Gil, J. G. (2018). Avocado wilt complex disease, implications and management in Colombia. Revista Facultad Nacional de Agronomía Medellín, 71, 8525-8541.
dc.relation.referencesRamirez-Gil, J. G., Lopera, A. A., & Garcia, C. (2023). Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon, 9(8), e18658. https://doi.org/10.1016/j.heliyon.2023.e18658
dc.relation.referencesRamirez-Gil, J. G., & Morales-Osorio, J. G. (2021). Diseases and disorders associated with different stages of crop development and factors that determine the incidence in Hass avocado crops. 68(1), 71-82. https://doi.org/10.1590/0034-737X202168010009
dc.relation.referencesRini Pal, Dipankar Mandal, Mohan Kumar Biswas, & Birendra Nath Panja. (2017). Effect of weather parameters on the initiation and progression of sheath blight of rice. Journal of Agrometeorology, 19(1), 39-43. https://doi.org/10.54386/jam.v19i1.753
dc.relation.referencesRodríguez-Almonacid, D. V., Ramírez-Gil, J. G., Higuera, O. L., Hernández, F., & Díaz-Almanza, E. (2023). A Comprehensive Step-by-Step Guide to Using Data Science Tools in the Gestion of Epidemiological and Climatological Data in Rice Production Systems. Agronomy, 13(11). https://doi.org/10.3390/agronomy13112844
dc.relation.referencesRomero, F., Cazzato, S., Walder, F., Vogelgsang, S., Bender, S. F., & van der Heijden, M. G. A. (2022). Humidity and high temperature are important for predicting fungal disease outbreaks worldwide. New Phytologist, 234(5), 1553-1556. https://doi.org/10.1111/nph.17340
dc.relation.referencesSa’adi, Z., Shahid, S., & Shiru, M. S. (2021). Defining climate zone of Borneo based on cluster analysis. Theoretical and Applied Climatology, 145(3-4), 1467-1484. https://doi.org/10.1007/s00704-021-03701-1
dc.relation.referencesSaupe, E. E., Barve, V., Myers, C. E., Soberón, J., Barve, N., Hensz, C. M., Peterson, A. T., Owens, H. L., & Lira-Noriega, A. (2012). Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling, 237-238, 11-22. https://doi.org/10.1016/j.ecolmodel.2012.04.001
dc.relation.referencesSavary, S., Nelson, A., Willocquet, L., Pangga, I., & Aunario, J. (2012). Modeling and mapping potential epidemics of rice diseases globally. Crop Protection, 34, 6-17. https://doi.org/10.1016/j.cropro.2011.11.009
dc.relation.referencesSchober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia, 126(5). https://journals.lww.com/anesthesia-analgesia/fulltext/2018/05000/correlation_coefficients__appropriate_use_and.50.aspx
dc.relation.referencesSewelam, N., El-Shetehy, M., Mauch, F., & Maurino, V. G. (2021). Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection. Plants, 10(9). https://doi.org/10.3390/plants10091946
dc.relation.referencesShaw, M. W., & Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60(1), 31-43. https://doi.org/10.1111/j.1365-3059.2010.02407.x
dc.relation.referencesSimonsen, L., Gog, J. R., Olson, D., & Viboud, C. (2016). Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. The Journal of Infectious Diseases, 214(suppl_4), S380-S385. https://doi.org/10.1093/infdis/jiw376
dc.relation.referencesSingh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640-656. https://doi.org/10.1038/s41579-023-00900-7
dc.relation.referencesSingrodia, V., Mitra, A., & Paul, S. (2019). A Review on Web Scrapping and its Applications. 2019 International Conference on Computer Communication and Informatics (ICCCI), 1-6. https://doi.org/10.1109/ICCCI.2019.8821809
dc.relation.referencesSong, C., & Kulldorff, M. (2003). Power evaluation of disease clustering tests. International Journal of Health Geographics, 2(1), 9. https://doi.org/10.1186/1476-072X-2-9
dc.relation.referencesStadler, S. J. (2005). Aridity Indexes. En J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 89-94). Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_17
dc.relation.referencesSun, S., Bao, Y., Lu, M., Liu, W., Xie, X., Wang, C., & Liu, W. (2016). A comparison of models for the short-term prediction of rice stripe virus disease and its association with biological and meteorological factors. Acta Ecologica Sinica, 36(3), 166-171. https://doi.org/10.1016/j.chnaes.2016.04.002
dc.relation.referencesSunder, S., Singh, R., & Agarwal, R. (2014). Brown spot of rice: An overview. Indian Phytopathology.
dc.relation.referencesSzumilas, M. (2010). Explaining odds ratios. Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l’Academie Canadienne de Psychiatrie de l’enfant et de l’adolescent, 19(3), 227-229.
dc.relation.referencesThe United Nations Educational, Scientific and Cultural Organization (UNESCO). (1979). Map of the World Distribution of Arid Regions: Explanatory Note. UNESCO. https://play.google.com/store/books/details?id=Dfw9AAAAYAAJ
dc.relation.referencesTjur, T. (2009). Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination. The American Statistician, 63(4), 366-372. https://doi.org/10.1198/tast.2009.08210
dc.relation.referencesTonini, A., Cabrera, E., Tonini, A., & Cabrera, E. (2011). Opportunities for Global Rice Research in a Changing World. https://doi.org/10.22004/AG.ECON.287644
dc.relation.referencesTrevor Hastie & Robert Tibshirani. (1986). Generalized Additive Models. Statistical Science, 1(3), 297-310. https://doi.org/10.1214/ss/1177013604
dc.relation.referencesUgwu, C. L. J., & Zewotir, T. (2020). Evaluating the Effects of Climate and Environmental Factors on Under-5 Children Malaria Spatial Distribution Using Generalized Additive Models (GAMs). Journal of Epidemiology and Global Health, 10(4), 304-314. https://doi.org/10.2991/jegh.k.200814.001
dc.relation.referencesUllah, H., Akbar, M., & Khan, F. (2020). Construction of homogeneous climatic regions by combining cluster analysis and L‐moment approach on the basis of Reconnaissance Drought Index for Pakistan. International Journal of Climatology, 40(1), 324-341. https://doi.org/10.1002/joc.6214
dc.relation.referencesVelikou, K., Lazoglou, G., Tolika, K., & Anagnostopoulou, C. (2022). Reliability of the ERA5 in Replicating Mean and Extreme Temperatures across Europe. Water, 14(4), 543. https://doi.org/10.3390/w14040543
dc.relation.referencesWang, T., Li, Z., Ma, Z., Gao, Z., & Tang, G. (2023). Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sensing of Environment, 288, 113490. https://doi.org/10.1016/j.rse.2023.113490
dc.relation.referencesWarren, D. L., Matzke, N. J., Cardillo, M., Baumgartner, J. B., Beaumont, L. J., Turelli, M., Glor, R. E., Huron, N. A., Simões, M., Iglesias, T. L., Piquet, J. C., & Dinnage, R. (2021). ENMTools 1.0: An R package for comparative ecological biogeography. Ecography, 44(4), 504-511. https://doi.org/10.1111/ecog.05485
dc.relation.referencesWu, S., Wai, H.-T., Li, L., & Scaglione, A. (2018). A Review of Distributed Algorithms for Principal Component Analysis. Proceedings of the IEEE, 106, 1321-1340. https://doi.org/10.1109/JPROC.2018.2846568
dc.relation.referencesXin, X.-F., Nomura, K., Aung, K., Velásquez, A. C., Yao, J., Boutrot, F., Chang, J. H., Zipfel, C., & He, S. Y. (2016). Bacteria establish an aqueous living space in plants crucial for virulence. Nature, 539(7630), 524-529. https://doi.org/10.1038/nature20166
dc.relation.referencesYang, L., Qin, G., Zhao, N., Wang, C., & Song, G. (2012). Using a generalized additive model with autoregressive terms to study the effects of daily temperature on mortality. BMC Medical Research Methodology, 12(1), 165. https://doi.org/10.1186/1471-2288-12-165
dc.relation.referencesoshida, S. (1972). Physiological Aspects of Grain Yield. Annual Review of Plant Physiology, 23(1), 437-464. https://doi.org/10.1146/annurev.pp.23.060172.002253
dc.relation.referencesYoshida, S. (1977). Rice. En Ecophysiology of Tropical Crops (pp. 57-87). Elsevier. https://doi.org/10.1016/B978-0-12-055650-2.50008-3
dc.relation.referencesZarzo-Arias, A., Uhl, B., Maynard, D. S., & Morales, M. B. (2023). Editorial: The ecological niche at different spatial scales. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1296340
dc.relation.referencesZuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Things are not Always Linear; Additive Modelling. En A. F. Zuur, E. N. Ieno, N. Walker, A. A. Saveliev, & G. M. Smith (Eds.), Mixed effects models and extensions in ecology with R (pp. 35-69). Springer New York. https://doi.org/10.1007/978-0-387-87458-6_3
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.armarcRice -- Effect of climate on
dc.subject.bneArroz -- Efectos del climaspa
dc.subject.bneClimatología agrícola -- Investigación -- Colombiaspa
dc.subject.bneCrops and climate -- Researcheng
dc.subject.bnePlantas -- Efectos del climaspa
dc.subject.bneVegetation and climateeng
dc.subject.bneMeteorología agrícolaspa
dc.subject.bneMeteorology, Agriculturaleng
dc.subject.bnePérdidas de cosechasspa
dc.subject.bneCrop losseseng
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.lembArroz -- Cultivospa
dc.subject.lembRice -- Harvestingeng
dc.subject.lembArroz -- Enfermedades y plagasspa
dc.subject.lembRice -- Diseases and pestseng
dc.subject.proposalGestión de datosspa
dc.subject.proposalClustering climáticospa
dc.subject.proposalHerramientas de visualizaciónspa
dc.subject.proposalEpidemiologíaspa
dc.subject.proposalEscalasspa
dc.subject.proposalIdoneidadspa
dc.subject.proposalCiencias de datosspa
dc.subject.proposalData managementeng
dc.subject.proposalClimate clusteringeng
dc.subject.proposalVisualisation toolseng
dc.subject.proposalEpidemiologyeng
dc.subject.proposalScaleseng
dc.subject.proposalSuitabilityeng
dc.subject.proposalData scienceeng
dc.subject.wikidataVariabilidad climáticaspa
dc.subject.wikidataClimate variabilityeng
dc.titleModelo para la gestión del riesgo fitosanitario basado en herramientas agroclimatológicas en sistemas de producción de arroz tecnificado en Colombiaspa
dc.title.translatedModel for phytosanitary risk management based on agroclimatological tools in technical rice production systems in Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Ciencias - Meterologia _dvrodrigueza.pdf
Tamaño:
6.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Meteorología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: