Manufactura aditiva de cerámicas ingenieriles: diseño, procesamiento y caracterización
| dc.contributor.advisor | Herrera Quintero, Liz Karen | spa |
| dc.contributor.author | Amaya Villabon, Theylor Andrés | spa |
| dc.contributor.cvlac | Amaya Villabon, Theylor [0000186159] | spa |
| dc.contributor.researchgate | https://www.researchgate.net/profile/Theylor-Andres-Amaya-Villabon | |
| dc.date.accessioned | 2025-11-05T19:46:32Z | |
| dc.date.available | 2025-11-05T19:46:32Z | |
| dc.date.issued | 2025-11-05 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | Este documento examina la viabilidad de la técnica de Direct Ink Writing (DIW), para la producción de componentes cerámicos ingenieriles utilizando diferentes tipos de alúmina y aditivos. Se seleccionaron dos tipos de alúmina para investigar cómo su morfología y tamaño de partícula afectan la reología de las pastas cerámicas, la calidad de impresión y las propiedades del producto sinterizado. A través de experimentos meticulosos, se ajustaron las concentraciones de polietilenglicol (PEG) como agente surfactante y alcohol polivinílico (PVA) como aglutinante, optimizando las mezclas para mejorar la fluidez, la cohesión y la estabilidad estructural de las piezas impresas. Se imprimieron probetas para ensayos mecánicos y se prepararon para sinterizar a dos temperaturas diferentes, 1550°C y 1600°C, con el objetivo de evaluar la influencia de las condiciones de sinterización en las propiedades mecánicas y microestructurales. Además, se demostró la aplicación práctica de DIW en la fabricación de un impulsor para bomba, resaltando el potencial de esta tecnología para crear componentes cerámicos complejos con altas exigencias de precisión y rendimiento. (Texto tomado de la fuente). | spa |
| dc.description.abstract | This document explores the feasibility of additive manufacturing, specifically through Direct Ink Writing (DIW), for producing engineering ceramic components using different types of alumina and additives. Two types of alumina were selected to investigate how their morphology and particle size affect the rheology of ceramic pastes, printing quality, and properties of the sintered product. Through meticulous experiments, concentrations of polyethylene glycol (PEG) as a surfactant and polyvinyl alcohol (PVA) as a binder were adjusted, optimizing the mixes to enhance fluidity, cohesion, and structural stability of the printed pieces. Test specimens were printed for mechanical trials and prepared for sintering at two different temperatures, 1550°C and 1600°C, aiming to assess the impact of sintering conditions on mechanical and microstructural properties. Furthermore, the practical application of DIW in manufacturing a pump impeller was demonstrated, highlighting the potential of this technology to create complex ceramic components with high demands for precision and performance. | eng |
| dc.description.degreelevel | Pregrado | spa |
| dc.description.degreename | Ingeniero Mecatrónico | spa |
| dc.description.methods | Se formularon pastas H₂O–PEG–PVA–Al₂O₃ optimizadas para DIW; tras comparar dos morfologías de alúmina, se adoptó la esférica (55 %vol) con 3,95 %wt PEG y 0,1 %wt PVA. Se desaireó la pasta por vibración, se imprimieron probetas TRS y de compresión (Cura: 1,0 mm capa; 1,2 mm línea; 15 mm/s; 80 % flujo), se secaron a 100 °C×6 h y se sinterizaron a 1550 °C y 1600 °C. Se midió contracción, densidad (Arquímedes), TRS (ASTM B528) y compresión. La microestructura se evaluó por SEM y porosidad superficial vía Otsu. El efecto de la temperatura se analizó con ANOVA (α=0,05), mostrando mayor densificación y resistencia a 1600 °C. | spa |
| dc.description.notes | Ganador de la versión XXXIV del Concurso Mejores Trabajos de Grado de pregrado de la Universidad Nacional de Colombia | spa |
| dc.description.researcharea | Ingeniería de materiales y procesos de manufactura | spa |
| dc.format.extent | vi, 49 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89107 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Ingeniería Mecánica y Mecatrónica | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Ingeniería Mecatrónica | spa |
| dc.relation.references | Liu, N., Sun, X., Chen, Z., Xu, Z., Dai, N., Shi, G., ... & Zheng, C. (2022). Direct ink writing of dense alumina ceramics prepared by rapid sintering. Ceramics International, 48(20), 30767-30778. | |
| dc.relation.references | Yang, L., Zeng, X., Ditta, A., Feng, B., Su, L., & Zhang, Y. (2020). Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. Journal of Advanced Ceramics, 9, 312-319. | |
| dc.relation.references | Baugh, S. F. (1991). Thermal degradation of polyethylene glycol and polyvinyl alcohol, common binders for aluminum oxide ceramics, The. 1990-1999-Mines Theses & Dissertations. | |
| dc.relation.references | Khan, A. U., Briscoe, B. J., & Luckham, P. F. (2000). Interaction of binders with dispersant stabilised alumina suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161(2), 243-257. | |
| dc.relation.references | M. Mehrpouya, A. Vosooghnia, A. Dehghanghadikolaei, and B. Fotovvati, “CO,” in Sustainable Manufacturing. Handbooks in Advanced Manufacturing., no. April, G. Kapil and K.Salonitis, Eds. Elsevier, 2021, pp. 29–59. | |
| dc.relation.references | M. Dzemko et al., “ScienceDirect ScienceDirect Toward Shifted Production Strategies Through Additive Manufacturing : A Technology and Market Review for Changing Value Chains A new methodology to analyze the functional and physical architecture Technology and Market Review for Changing Value Chains of existing products for an assembly oriented product family identification Toward Shifted 28th Production Strategies Through Additive France Manufacturing :,” Procedia CIRP, vol. 86, pp. 228–233, 2020, doi: 10.1016/j.procir.2020.01.029. | |
| dc.relation.references | P. J. S. Cruz, A. Camões, B. Figueiredo, M. J. Ribeiro, and J. Renault, “Additive manufacturing effect on the mechanical behaviour of architectural stoneware bricks,” Constr. Build. Mater., vol. 238, p. 117690, 2020, doi: 10.1016/j.conbuildmat.2019.117690. | |
| dc.relation.references | A. Wolf, P. L. Rosendahl, and U. Knaack, “Automation in Construction Additive manufacturing of clay and ceramic building components,” Autom. Constr., vol. 133, no. May 2021, p. 103956, 2022, doi: 10.1016/j.autcon.2021.103956. | |
| dc.relation.references | I. Paoletti, “Mass customization with additive manufacturing : new perspectives for multi performative building components in architecture,” Procedia Eng., vol. 180, pp. 1150–1159, 2017, doi: 10.1016/j.proeng.2017.04.275. | |
| dc.relation.references | D. Delgado Camacho et al., “Applications of additive manufacturing in the construction industry – A forward-looking review,” Autom. Constr., vol. 89, no. August 2017, pp. 110–119, 2018, doi: 10.1016/j.autcon.2017.12.031. | |
| dc.relation.references | A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities,” J. Am. Ceram. Soc., vol. 98, no. 7, pp. 1983–2001, 2015, doi: 10.1111/jace.13700. | |
| dc.relation.references | Z. Chen et al., “3D printing of ceramics: A review,” J. Eur. Ceram. Soc., vol. 39, no. 4, pp. 661–687, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.013. | |
| dc.relation.references | P. J. S. Cruz, B. Figueiredo, J. Carvalho, and T. Campos, “Additive Manufacturing of Ceramic Components for Façade Construction,” vol. 8, no. 1, pp. 1–20, 2020, doi: 10.7480/jfde.2020.1.4725. | |
| dc.relation.references | V. Sangiorgio, F. Parisi, F. Fieni, and N. Parisi, “The New Boundaries of 3D-Printed Clay Bricks Design : Printability of Complex Internal Geometries,” 2022. | |
| dc.relation.references | M. Gagliardi, “3D Printed Technical Ceramics : Technologies and Global Markets,” BCC research, 2017. Report Code: AVM141A. | |
| dc.relation.references | F. Craveiro, H. M. Bartolo, A. Gale, J. P. Duarte, and P. J. Bartolo, “Automation in Construction A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing,” Autom. Constr., vol. 82, no. July, pp. 75–83, 2017, doi: 10.1016/j.autcon.2017.05.006. | |
| dc.relation.references | A. Turchenko, T. Davydova, and I. Spivak, “Prospects for the creation of smart homes using energy-saving wall ceramic materials,” vol. 02029, 2020. | |
| dc.relation.references | J. V Vaghasiya, C. C. Mayorga-martinez, and M. Pumera, “Smart Energy Bricks : Ti 3 C 2 @ Polymer Electrochemical Energy Storage inside Bricks by 3D Printing,” vol. 2106990, no. September, 2021, doi: 10.1002/adfm.202106990. | |
| dc.relation.references | E. Feilden, “Additive Manufacturing of Ceramics and Ceramic Composites via Robocasting,” Imperial College London, 2017, doi: 10.13140/RG.2.2.29343.25765. | |
| dc.relation.references | B. H. Jared et al., “Scripta Materialia Additive manufacturing : Toward holistic design,” Scr. Mater., vol. 135, pp. 141–147, 2017, doi: 10.1016/j.scriptamat.2017.02.029. | |
| dc.relation.references | A. M. Barki, L. Bocquet, and A. Stevenson, “Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing,” no. July, pp. 1–10, 2017, doi: 10.1038/s41598-017-06115-0. | |
| dc.relation.references | C. Kukla, S. Cano, D. Kaylani, S. Schuschnigg, C. Holzer, J. Gonzalez-Gutierrez, “Debinding behaviour of feedstock for material extrusion additive manufacturing of zirconia,” Powder Metallurgy, vol. 62, no. 3, pp. 196–204, 2019. https://doi.org/10.1080/00325899.2019.1616139 | |
| dc.relation.references | S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, “Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation,” Additive Manufacturing, vol. 26, pp. 117–128, 2019. https://doi.org/10.1016/j.addma.2019.01.001 | |
| dc.relation.references | W. Lengauer, I. Duretek, M. Fürst, V. Schwarz, J. Gonzalez-Gutierrez, S. Schuschnigg, “Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components,” International Journal of Refractory Metals and Hard Materials, vol. 82, pp. 141–149, 2019. https://doi.org/10.1016/j.ijrmhm.2019.04.011 | |
| dc.relation.references | Cutler, I. B., Bradshaw, C., Christensen, C. J., & Hyatt, E. P. (1957). Sintering of Alumina at Temperatures of 1400 C. and Below. Journal of the American Ceramic Society, 40(4), 134-139. https://doi.org/10.1111/j.1151-2916.1957.tb12589x | |
| dc.relation.references | Sarin, V. (2014). Comprehensive hard materials. Newnes. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 670 - Manufactura::679 -Otros productos de materiales específicos | spa |
| dc.subject.proposal | Manufactura aditiva | spa |
| dc.subject.proposal | Cerámicas ingenieriles | spa |
| dc.subject.proposal | Alúmina | spa |
| dc.subject.proposal | Sinterización | spa |
| dc.subject.proposal | Propiedades mecánicas | spa |
| dc.subject.proposal | Microestructura | spa |
| dc.subject.proposal | Additive manufacturing | eng |
| dc.subject.proposal | Direct Ink Writing (DIW) | eng |
| dc.subject.proposal | Engineering ceramics | eng |
| dc.subject.proposal | Alumina | eng |
| dc.subject.proposal | Sintering | eng |
| dc.subject.proposal | Mechanical properties | eng |
| dc.subject.proposal | Microstructure | eng |
| dc.subject.unesco | Ingeniería de la industria y de los transportes | spa |
| dc.subject.unesco | Manufacturing and transport engineering | eng |
| dc.subject.unesco | Compuesto químico | spa |
| dc.subject.unesco | Chemical compounds | eng |
| dc.subject.wikidata | alúmina | spa |
| dc.subject.wikidata | aluminium oxide | eng |
| dc.title | Manufactura aditiva de cerámicas ingenieriles: diseño, procesamiento y caracterización | spa |
| dc.title.translated | Additive manufacturing of engineering ceramics: design, processing and characterization | eng |
| dc.type | Trabajo de grado - Pregrado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Manufactura Aditiva de Cerámicas Ingenieriles diseño procesamiento y caracterización.pdf
- Tamaño:
- 1.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Ingeniería Mecatrónica

