Neutron flux modeling of the IAN-R1 nuclear reactor using data-driven techniques

dc.contributor.advisorSofrony Esmeral, Jorge Ivánspa
dc.contributor.authorAmorocho Marciales, Andrés Felipespa
dc.contributor.researchgroupSistemas Aeroespaciales y Vehículos Autónomos (SAVA)spa
dc.date.accessioned2025-03-19T19:59:07Z
dc.date.available2025-03-19T19:59:07Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractConventional models for predicting the power output of nuclear reactors often encounter difficulties due to uncertainties in system parameters, loss of dynamic information from simplifications or linearizations, and, in some instances, improper control rod calibration that affects input modeling accuracy. This paper introduces a novel approach for modeling the power of the IAN-R1 nuclear reactor in Colombia, leveraging the Koopman operator framework through Extended Dynamic Mode Decomposition (EDMD). Various DMD algorithms were tested to identify the most suitable one for approximating the Koopman matrix, ensuring better system representation. Despite the inherent challenges associated with the reactor’s operational data acquisition, such as incomplete or inconsistent datasets, a comprehensive and reliable database was successfully constructed, capable of capturing the reactor’s normal operational behavior. The proposed model not only estimates the reactor’s power but also provides predictions for the radiation dose rate. The validation of the Koopman model was conducted by comparing its poles with those of other models, and the results were further evaluated against actual operational data from the reactor. The findings demonstrate that the proposed model performs well, offering adaptability to changes in core configuration and system parameters.eng
dc.description.abstractLos modelos convencionales para predecir la potencia de los reactores nucleares a menudo enfrentan dificultades debido a incertidumbres en los parámetros del sistema, la pérdida de información dinámica por simplificaciones o linearizaciones y, en algunos casos, una calibración inadecuada de las barras de control que afecta la precisión en la modelación de las entradas. Este trabajo presenta un enfoque novedoso para modelar la potencia del reactor nuclear IAN-R1 en Colombia, empleando el marco del operador de Koopman mediante la Descomposición en Modo Dinámico Extendido (EDMD). Se probaron diversos algoritmos de DMD para identificar el más adecuado en la aproximación de la matriz de Koopman, garantizando una mejor representación del sistema. A pesar de los desafíos inherentes a la adquisición de datos operacionales del reactor, como conjuntos de datos incompletos o inconsistentes, se logró construir una base de datos integral y confiable, capaz de capturar el comportamiento normal del reactor. El modelo propuesto no solo permite estimar la potencia del reactor, sino que también proporciona predicciones sobre la tasa de dosis de radiación. La validación del modelo de Koopman se llevó a cabo mediante la comparación de sus polos con los de otros modelos, y los resultados fueron evaluados en relación con datos operacionales reales del reactor. Los hallazgos demuestran que el modelo propuesto presenta un buen desempeño y ofrece adaptabilidad ante cambios en la configuración del núcleo y en los parámetros del sistema. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaModelado y control de sistemas físicosspa
dc.description.sponsorshipFundación Juan Pablo Gutiérrez Cáceresspa
dc.format.extentxii, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87697
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesNor Arymaswati Abdullah, Azura Che Soh, Samsul Bahari, Mohd Noor, Ribhan Zafira, Abd Rahman, and Julia Abd Karim. TRIGA PUSPATI reactor: model analysis and accuracy. Indonesian Journal of Electrical Engineering and Computer Science, 20(2):788--797, 2020. ISSN 2502-4752. doi: 10.11591/ijeecs.v20.i2.pp.spa
dc.relation.referencesIan Abraham and Todd D. Murphey. Active Learning of Dynamics for Data-Driven Control Using Koopman Operators. IEEE Transactions on Robotics, 35(5), 2019. ISSN 19410468. doi: 10.1109/TRO.2019.2923880.spa
dc.relation.referencesIan Abraham and Todd D. Murphey. Active Learning of Dynamics for Data-Driven Control Using Koopman Operators. 6 2019. URL http://arxiv.org/abs/1906.05194spa
dc.relation.referencesOrhan Erdal Akay and Mehmet Das. Modeling the total heat transfer coefficient of a nuclear research reactor cooling system by different methods. Case Studies in Thermal Engineering, 25, 6 2021. ISSN 2214157X. doi: 10.1016/j.csite.2021.100914.spa
dc.relation.referencesD L Alonso, V M Pabón, G A Parrado, and J C Parada. Revista INVESTIGACIONES Y APLICACIONES NUCLEARES. Technical report, Servicio geológico colombiano, Bogotá, 10 2017.spa
dc.relation.referencesHenryk Anglart. Nuclear Reactor Dynamics and Stability. Technical report, 2011.spa
dc.relation.referencesHassan Arbabi and Igor Mezić. Ergodic theory, Dynamic Mode Decomposition and Computation of Spectral Properties of the Koopman operator. 11 2016. doi: 10.1137/17M1125236. URL http://arxiv.org/abs/1611.06664http://dx.doi.org/10.1137/ 17M1125236.spa
dc.relation.referencesSantiago Bazzana and Herman Blaumann. DESARROLLO, ANÁLISIS Y EVALUACIÓN DE EXPERIMENTOS NEUTRÓ- NICOS EN EL RA-6. PhD thesisspa
dc.relation.referencesSantiago Bazzana and Herman Blaumann. PROYECTO INTEGRADOR CARRERA DE INGENIERÍA NUCLEAR EVALUA- CIÓN DE ESTADOS CRÍTICOS Y ANÁLISIS DE EXPERIMENTOS DE LA PUESTA EN MARCHA DEL REACTOR RA-6. PhD thesis, 2009.spa
dc.relation.referencesJohn Darrell Bess, Thomas L Maddock, and Margaret A Marshall. Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements International Conference on Nuclear Criticality (ICNC) 2011 BENCHMARK EVALUATION OF THE NRAD REACTOR LEU CORE STARTUP MEASUREMENTS. Technical report, 2011. URL https://www.researchgate.net/publication/255248801.spa
dc.relation.referencesPetar Bevanda, Stefan Sosnowski, and Sandra Hirche. Koopman operator dynamical models: Learning, analysis and control, 1 2021. ISSN 13675788.spa
dc.relation.referencesT. U. Bhatt, S. R. Shimjith, A. P. Tiwari, K. P. Singh, S. K. Singh, Kanchhi Singh, and R. K. Patil. Estimation of sub- criticality using extended Kalman filtering technique. Annals of Nuclear Energy, 60:98--105, 10 2013. ISSN 0306-4549. doi: 10.1016/J.ANUCENE.2013.04.028.spa
dc.relation.referencesS. Boarin, A. Cammi, M. E. Ricotti, D. Chiesa, M. Nastasi, E. Previtali, M. Sisti, G. Magrotti, M. Prata, and A. Salvini. Setting-up a control-oriented model for simulation of TRIGA Mark II dynamic response, 5 2018. ISSN 00295493.spa
dc.relation.referencesValeria Boscaino, Rosario Miceli, and Giuseppe Capponi. MATLAB-based simulator of a 5 kW fuel cell for power electronics design. International Journal of Hydrogen Energy, 38(19):7924--7934, 6 2013. ISSN 03603199. doi: 10.1016/j.ijhydene.2013.04.123.spa
dc.relation.referencesS L Brunton, J L Proctor, and J N Kutz. Sparse Identification of Nonlinear Dynamics with Control (SINDYc). In IFAC-PapersOnLine, volume 49, pages 710--715. Elsevier B.V., 2016. ISBN 24058963 (ISSN). doi: 10.1016/j.ifacol.2016.10. 249. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009180569&doi=10.1016%2fj.ifacol.2016.10.249&partnerID= 40&md5=fa23911a76c461cf01b7597e3a56122f.spa
dc.relation.referencesSteven L Brunton. Notes on Koopman Operator Theory. Technical report, Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States, 2019spa
dc.relation.referencesSteven L Brunton and J Nathan Kutz. Data-Driven Science and Engineering Machine Learning, Dynamical Systems, and Control. Technical report, 2021.spa
dc.relation.referencesSteven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern Koopman Theory for Dynamical Systems. SIAM Review, 64(2):229--340, 2022. ISSN 00361445. doi: 10.1137/21M1401243spa
dc.relation.referencesAntonio Cammi, Roberto Ponciroli, Andrea Borio Di Tigliole, Giovanni Magrotti, Michele Prata, Davide Chiesa, and Ezio Previtali. A zero dimensional model for simulation of TRIGA Mark II dynamic response. Progress in Nuclear Energy, 68:43--54, 2013. ISSN 01491970. doi: 10.1016/j.pnucene.2013.04.002.spa
dc.relation.referencesKevin K Chen, Jonathan H Tu, and Clarence W Rowley. Variants of dynamic mode decomposition: boundary conditions, Koopman, and Fourier analyses * Variants of dynamic mode decomposition. Technical report, 2011.spa
dc.relation.referencesRamazan Coban. Power level control of the TRIGA Mark-II research reactor using the multifeedback layer neural network and the particle swarm optimization. Annals of Nuclear Energy, 69:260--266, 7 2014. ISSN 0306-4549. doi: 10.1016/J.ANUCENE. 2014.02.019spa
dc.relation.referencesRamazan Coban. Power level control of the TRIGA Mark-II research reactor using the multifeedback layer neural network and the particle swarm optimization. Annals of Nuclear Energy, 69:260--266, 2014. ISSN 03064549. doi: 10.1016/j.anucene.2014.02.019.spa
dc.relation.referencesJonathan Coburn, S. Michael Luker, Edward J. Parma, and K. Russell DePriest. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimenters. In EPJ Web of Conferences, volume 106. EDP Sciences, 2 2016. ISBN 9782759819294. doi: 10.1051/epjconf/201610605001.spa
dc.relation.referencesGokhan Corak. STATE FEEDBACK REACTOR CONTROL USING A VANADIUM AND RHODIUM SELF-POWERED NEUTRON DETECTOR Gokhan_Corak_Master_thesis). PhD thesis.spa
dc.relation.referencesSteven Dahdah and James Richard Forbes. Closed-Loop Koopman Operator Approximation. 3 2023. URL http://arxiv.org/ abs/2303.15318.spa
dc.relation.referencesRodrigo De Castro Korgi. El Universo LaTeX. Universidad Nacional de Colombia, Bogota DC, 2nd edition, 2010. ISBN 958701060-4.spa
dc.relation.referencesdoc dr Tomaž Žagar. THEORETICAL ANALYSIS OF THREE PARAMETERS DETERMINING A THERMAL POWER CALIBRATION METHOD FOR THE TRIGA RESEARCH REACTOR ANALITIČEN IZRAČUN TREH FAKTORJEV TERMIČNE KALIBRACIJE MOČI RAZIS-KOVALNEGA REAKTORJA TRIGA. Technical report, 11 2018. URL www.fe.um. si/en/jet.html.spa
dc.relation.referencesD Dylewsky, E Kaiser, S L Brunton, and J N Kutz. Principal component trajectories for modeling spectrally conti- nuous dynamics as forced linear systems. Physical Review E, 105(1), 2022. ISSN 24700045 (ISSN). doi: 10.1103/ PhysRevE.105.015312. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123551728&doi=10.1103%2fPhysRevE.105. 015312&partnerID=40&md5=cf4827a21f4d3ddaffc13a46357bfed9.spa
dc.relation.referencesBasma Foad, Rabab Elzohery, and David R. Novog. Demonstration of combined reduced order model and deep neural network for emulation of a time-dependent reactor transient. Annals of Nuclear Energy, 171, 6 2022. ISSN 18732100. doi: 10.1016/j.anucene.2022.109017.spa
dc.relation.referencesBasma Foad, Rabab Elzohery, and David R. Novog. Demonstration of combined reduced order model and deep neural network for emulation of a time-dependent reactor transient. Annals of Nuclear Energy, 171, 6 2022. ISSN 18732100. doi: 10.1016/j.anucene.2022.109017.spa
dc.relation.referencesWm J Garland. Reactor Physics: The Diffusion of Neutrons prepared by. Technical report.spa
dc.relation.referencesGeneral Atomics Technologies Inc. General Atomics NM1000 neutron monitoring system manual .spa
dc.relation.referencesRamirez Raul Gutiérrez Tonatiuh, Bucio Francisco. Manual de Operación del Sistema de Supervisión y Control de la Ins- trumentación del Reactor Nuclear IAN-R1 Colombiano. Technical report, Instituto Nacional de Investigaciones Nucleares, 8 2012.spa
dc.relation.referencesM Haseli and J Cortés. Parallel Learning of Koopman Eigenfunctions and Invariant Subspaces for Accurate Long-Term Prediction. IEEE Transactions on Control of Network Systems, 8(4):1833--1845, 2021. ISSN 2325-5870. doi: 10.1109/TCNS.2021.3088791.spa
dc.relation.referencesM Haseli and J Cortés. Learning Koopman Eigenfunctions and Invariant Subspaces From Data: Symmetric Subspace Decomposition. IEEE Transactions on Automatic Control, 67(7):3442--3457, 2022. ISSN 1558-2523. doi: 10.1109/TAC.2021.3105318.spa
dc.relation.referencesMasih Haseli and Jorge Cortes. Parallel Learning of Koopman Eigenfunctions and Invariant Subspaces for Accurate Long- Term Prediction. IEEE Transactions on Control of Network Systems, 8(4):1833--1845, 12 2021. ISSN 23255870. doi: 10.1109/TCNS.2021.3088791.spa
dc.relation.referencesMasih Haseli and Jorge Cortes. Learning Koopman Eigenfunctions and Invariant Subspaces From Data: Symmetric Subspace Decomposition. IEEE Transactions on Automatic Control, 67(7), 2022. ISSN 15582523. doi: 10.1109/TAC.2021.3105318.spa
dc.relation.referencesMaziar S. Hemati, Matthew O. Williams, and Clarence W. Rowley. Dynamic Mode Decomposition for Large and Streaming Datasets. 6 2014. doi: 10.1063/1.4901016. URL http://arxiv.org/abs/1406.7187http://dx.doi.org/10.1063/1.4901016.spa
dc.relation.referencesM A Hernández-Ortega and A R Messina. Nonlinear Power System Analysis Using Koopman Mode Decomposition and Perturbation Theory. IEEE Transactions on Power Systems, 33(5):5124--5134, 2018. ISSN 1558-0679. doi: 10.1109/TPWRS.2018.2815587.spa
dc.relation.referencesDavid L. Hetrick. David L. Hetrick - Dynamics of Nuclear Reactors (1993).spa
dc.relation.referencesDavid L. Hetrick and Lynn E. Weaver. Neutron Dynamics and Control. Technical report, U.S. ATOMIC ENERGY COMMISSION / Division of Technical Information, Tucson,Arizona, 5 1966.spa
dc.relation.referencesM Hoffmann, M Scherer, T Hempel, A Mardt, B de Silva, B E Husic, S Klus, H Wu, N Kutz, S L Brunton, and F Noé. Deeptime: a Python library for machine learning dynamical models from time series data. Machine Learning: Science and Technology, 3 (1), 2022. ISSN 26322153 (ISSN). doi: 10.1088/2632-2153/ac3de0. URL https://www.scopus.com/inward/record.uri?eid=2-s2. 0-85123731372&doi=10.1088%2f2632-2153%2fac3de0&partnerID=40&md5=472f063cb2e2aee41deeb465244e4a93.spa
dc.relation.referencesBowen Huang and Umesh Vaidya. Data-Driven Approximation of Transfer Operators: Naturally Structured Dynamic Mode Decomposition. 9 2017. URL http://arxiv.org/abs/1709.06203.spa
dc.relation.referencesJ Humberto Pérez-Cruz and Alexander Poznyak. DESIGN OF A SLIDING MODE NEUROCONTROLLER FOR A NUCLEAR RESEARCH REACTOR. Technical report, 2007.spa
dc.relation.referencesINTERNATIONAL ATOMIC ENERGY AGENCY. IAEA BULLETIN -RESEARCH REACTORS. The IAEA’s flagship publication, 12 2023. URL www.iaea.org/bulletin.spa
dc.relation.referencesCarolina Introini, Stefano Lorenzi, and Antonio Cammi. Dynamic Mode Decomposition For The Control Of Nuclear Power Plants. Technical report.spa
dc.relation.referencesCarolina Introini, Antonio Cammi, Stefano Lorenzi, and Giovanni Magrotti. An improved zero-dimensional model for simulation of TRIGA Mark II dynamic response. Progress in Nuclear Energy, 111:85--96, 3 2019. ISSN 01491970. doi: 10.1016/j.pnucene. 2018.10.025spa
dc.relation.referencesTatjana Jevremovic. Nuclear principles in engineering (Second edition). Springer US, 2009. ISBN 9780387856070. doi: 10.1007/978-0-387-85608-7.spa
dc.relation.referencesThomas W. Kerlin and Belle R. Upadhyaya. Dynamics and Control of Nuclear Reactors. 2019.spa
dc.relation.referencesHassan Khalil. Non linear systems. Prentice Hall, Upper Saddle River, NJ, third edition, 2002.spa
dc.relation.referencesNourddine Khentout, Hassen Salhi, Giovanni Magrotti, and Djemai Merrouche. Fault Monitoring and Accommodation of the Heat Exchanger Parameters of Triga-Mark II Nuclear Research Reactor using Model-Based Analytical Redundancy. Progress in Nuclear Energy, 109:97--112, 11 2018. ISSN 01491970. doi: 10.1016/j.pnucene.2018.02.019.spa
dc.relation.referencesF. Glenn Knoll. Radiation Detection and Measurement, volume 1. John Wiley & Sons, Hoboken, New Jersey, fourth edition, 4 2010.spa
dc.relation.referencesB Koopman. HAMILTONIAN SYSTEMS AND TRANSFORMATIONS IN HILBERT SPACE. Technical report, COLUMBIA UNIVERSITY, 3 1931. URL https://www.pnas.org.spa
dc.relation.referencesB Koopman and J Neumann. DYNAMICAL SYSTEMS OF CONTINUOUS SPECTRA. Technical Report 6, COLUMBIA UNIVERSITY AND PRINCETON UNIVERSITY, 1 1932.spa
dc.relation.referencesM Korda and I Mezić. Optimal Construction of Koopman Eigenfunctions for Prediction and Control. IEEE Transactions on Automatic Control, 65(12):5114--5129, 2020. ISSN 1558-2523. doi: 10.1109/TAC.2020.2978039.spa
dc.relation.referencesMilan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. 11 2016. doi: 10.1016/j.automatica.2018.03.046. URL http://arxiv.org/abs/1611.03537http://dx.doi.org/10.1016/j. automatica.2018.03.046.spa
dc.relation.referencesMilan Korda, Mihai Putinar, and Igor Mezić. Data-driven spectral analysis of the Koopman operator. Applied and Computational Harmonic Analysis, 48(2):599--629, 3 2020. ISSN 1096603X. doi: 10.1016/j.acha.2018.08.002.spa
dc.relation.referencesJoel A ; Kulesza, Terry R ; Adams, and Jerawan Armstrong. Title: MCNP® Code Version 6.3.0 Theory & User Manual. Technical report, Los Alamos National Laboratory, 9 2022spa
dc.relation.referencesJohn R Lamarsh, Anthony J Baratta, and Hall Prentice. Introduction to Nuclear Engineering Third Edition Late Professor with the New Yo rk Polytechnic Institute. Technical report.spa
dc.relation.referencesSoledad Le Clainche and Jose M. Vega. Higher order dynamic mode decomposition. SIAM Journal on Applied Dynamical Systems, 16(2):882--925, 2017. ISSN 15360040. doi: 10.1137/15M1054924.spa
dc.relation.referencesCruz Y. Li, Zengshun Chen, Xuelin Zhang, Tim K.T. Tse, and Chongjia Lin. Koopman analysis by the dynamic mode decomposition in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 232, 1 2023. ISSN 01676105. doi: 10.1016/j.jweia.2022.105295.spa
dc.relation.referencesLos Alamos National Laboratory. Overview MCNP. URL https://mcnp.lanl.gov/index.html.spa
dc.relation.referencesLos Alamos National Laboratory and Christopher J Werner. MCNP6.2-EXE: Monte Carlo N–Particle® Transport Code System Version 6.2. 10 2017.spa
dc.relation.referencesNC LUDLUM MEASUREMENTS. LUDLUM MODELS 375 (INCLUDING SERIES ONE), 375/1, 375/2 AND 375/4 DIGITAL WALL-MOUNT AREA MONITORS. Technical report, LUDLUM MEASUREMENTS, INC, 2021.spa
dc.relation.referencesRyan G. McClarren. Calculating Time Eigenvalues of the Neutron Transport Equation with Dynamic Mode Decomposition. Nuclear Science and Engineering, 193(8):854--867, 8 2019. ISSN 1943748X. doi: 10.1080/00295639.2018.1565014.spa
dc.relation.referencesA Mendible, J Koch, H Lange, S L Brunton, and J N Kutz. Data-driven modeling of rotating detonation waves. Physical Review Fluids, 6(5), 2021. ISSN 2469990X (ISSN). doi: 10.1103/PhysRevFluids.6.050507. URL https://www.scopus.com/inward/record. uri?eid=2-s2.0-85106376850&doi=10.1103%2fPhysRevFluids.6.050507&partnerID=40&md5=fef2a54ae950b1c4d43373cbaf89e522.spa
dc.relation.referencesAmir Zacarias Mesquita and Rose Mary Gomes Do Prado Souza. Thermal-hydraulic and neutronic experimental research in the TRIGA reactor of Brazil, 2014. ISSN 01491970.spa
dc.relation.referencesIgor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1-3): 309--325, 8 2005. ISSN 0924090X. doi: 10.1007/s11071-005-2824-x.spa
dc.relation.referencesMohd Sabri Minhat, Nurul Adilla Mohd Subha, Fazilah Hassan, Anita Ahmad, and Abdul Rashid Husain. Profiling and analysis of control rod speed design on core power control for TRIGA reactor. Progress in Nuclear Energy, 128, 10 2020. ISSN 01491970. doi: 10.1016/j.pnucene.2020.103481spa
dc.relation.referencesSeyed Mohammad Hossein Mousakazemi. Control of a PWR nuclear reactor core power using scheduled PID controller with GA, based on two-point kinetics model and adaptive disturbance rejection system. Annals of Nuclear Energy, 129:487--502, 7 2019. ISSN 18732100. doi: 10.1016/j.anucene.2019.02.019.spa
dc.relation.referencesJ Nathan Kutz, J L Proctor, and S L Brunton. Applied Koopman theory for partial differential equations and data- driven modeling of spatio-temporal systems. Complexity, 2018, 2018. ISSN 10762787 (ISSN). doi: 10.1155/2018/ 6010634. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062827282&doi=10.1155%2f2018%2f6010634&partnerID=40& md5=233d998ab5bd04191209f7fbabdbd86e.spa
dc.relation.referencesYoshiaki Oka and Katsuo Suzuki. An Advanced Course in Nuclear Engineering Series Editor: Mitsuru Uesaka Nuclear Reactor Kinetics and Plant Control. Springer, Tokyo, Japan, 2013. URL http://www.springer.com/series/10746.spa
dc.relation.referencesXingjie Peng, Yun Cai, Qing Li, and Kan Wang. Comparison of reactivity estimation performance between two extended Kalman filtering schemes. Annals of Nuclear Energy, 96:76--82, 10 2016. ISSN 18732100. doi: 10.1016/j.anucene.2016.05.026.spa
dc.relation.referencesA. Pikovsky, M. Rosenblum, and J Kurths. Synchronization: A universal concept in nonlinear sciences. 2001.spa
dc.relation.referencesAntonio Cammi Politecnico, Di Milano, Francesco Casella, Politecnico Di Milano, M E Ricotti, A Cammi, F Casella, and F Schiavo. Object-Oriented Modelling for Integral Nuclear Reactors Dynamic Simulation Thermal Separation Modelica Library View project OpenModelica-a free open-source environment for system modeling, simulation, and teaching View project Object-Oriented Modelling for Integral Nuclear Reactors Dynamic Simulation. Technical report. URL https://www.researchgate.net/publication/ 242023102.spa
dc.relation.referencesJoshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Generalizing Koopman Theory to allow for inputs and control. 2 2016. URL http://arxiv.org/abs/1602.07647spa
dc.relation.referencesV. Radulović, R. Jaćimović, A. Pungerčič, I. Vavtar, L. Snoj, and A. Trkov. Characterization of the neutron spectra in three irradiation channels of the JSI TRIGA reactor using the GRUPINT spectrum adjustment code. Nuclear Data Sheets, 167:61--75, 7 2020. ISSN 0090-3752. doi: 10.1016/J.NDS.2020.07.003.spa
dc.relation.referencesV. Radulović, R. Jaćimović, A. Pungerčič, I. Vavtar, L. Snoj, and A. Trkov. Characterization of the neutron spectra in three irradiation channels of the JSI TRIGA reactor using the GRUPINT spectrum adjustment code. Nuclear Data Sheets, 167:61--75, 7 2020. ISSN 00903752. doi: 10.1016/j.nds.2020.07.003.spa
dc.relation.referencesNahrul Khair Alang Md Rashid. Modeling nuclear processes by Simulink. In AIP Conference Proceedings, volume 1659. American Institute of Physics Inc., 4 2015. ISBN 9780735413016. doi: 10.1063/1.4916851.spa
dc.relation.referencesIAN-R1 reactor working group. Safety Analysis Report SAR. Technical report, Direccón de asunstos nucleares - Servicio Geologico Colombiano, 7 2024.spa
dc.relation.referencesBambang Riyono, Reza Pulungan, Andi Dharmawan, and Anhar Riza Antariksawan. A hybrid machine learning approach for improving fuel temperature prediction of research reactors under mix convection regime. Results in Engineering, 15, 9 2022. ISSN 25901230. doi: 10.1016/j.rineng.2022.100612.spa
dc.relation.referencesElisabeth Röhrlich. Boletín del OIEA 54-4, Los átomos para la paz de Eisenhower. 12 2013.spa
dc.relation.referencesErick Rojas-Ramírez, Jorge S. Benítez-Read, and Armando Segovia-De-Los Ríos. A stable adaptive fuzzy control scheme for tracking an optimal power profile in a research nuclear reactor. Annals of Nuclear Energy, 58:238--245, 2013. ISSN 03064549. doi: 10.1016/j.anucene.2013.03.026.spa
dc.relation.referencesClarence W. Rowley, Igor Mezi, Shervin Bagheri, Philipp Schlatter, and Dan S. Henningson. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115--127, 12 2009. ISSN 14697645. doi: 10.1017/S0022112009992059.spa
dc.relation.referencesJaime Sandoval and Edgar López. Desarrollo Capacidades Reactor. Revista de investigaciones y aplicaciones nucleares, 2: 15--30, 2018.spa
dc.relation.referencesPeter J. Schmid. Dynamic mode decomposition of experimental data. Journal of Fluid Mechanics, 656:5--28, 2010. ISSN 14697645. doi: 10.1017/S0022112010001217.spa
dc.relation.referencesPeter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5--28, 2010. ISSN 14697645. doi: 10.1017/S0022112010001217.spa
dc.relation.referencesPeter J Schmid. Annual Review of Fluid Mechanics Dynamic Mode Decomposition and Its Variants. Annu. Rev. Fluid Mech. 2022, 54:225--254, 2021. doi: 10.1146/annurev-fluid-030121. URL https://doi.org/10.1146/annurev-fluid-030121-.spa
dc.relation.referencesGowtham S Seenivasaharagavan, Milan Korda, Hassan Arbabi, and Igor Mezić. Invariant Consistent Dynamic Mode Decomposition. 12 2023. URL http://arxiv.org/abs/2312.08278.spa
dc.relation.referencesHaojie Shi and Max Q. H. Meng. Deep Koopman Operator with Control for Nonlinear Systems. 2 2022. URL http://arxiv.org/ abs/2202.08004.spa
dc.relation.referencesY. Shimazu and W. F.G. Van Rooijen. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method. Annals of Nuclear Energy, 66:161--166, 4 2014. ISSN 03064549. doi: 10.1016/j.anucene.2013.12.004.spa
dc.relation.referencesS. A.Mousavi Shirazi, C. Aghanajafi, S. Sadoughi, and N. Sharifloo. Design, construction and simulation of a multipurpose system for precision movement of control rods in nuclear reactors. Annals of Nuclear Energy, 37(12):1659--1665, 12 2010. ISSN 03064549. doi: 10.1016/j.anucene.2010.07.017.spa
dc.relation.referencesSeyed Alireza Mousavi Shirazi. The simulation of a model by SIMULINK of MATLAB for determining the best ranges for velocity and delay time of control rod movement in LWR reactors. Progress in Nuclear Energy, 54(1):64--67, 1 2012. ISSN 01491970. doi: 10.1016/j.pnucene.2011.08.005.spa
dc.relation.referencesJ. Kenneth. Shultis and Richard E. Faw. Fundamentals of nuclear science and engineering. Marcel Dekker, 2002. ISBN 0824708342.spa
dc.relation.referencesOscar A. Sierra and A. Parrado. Estimación de los parámetros de flujo neutrónico f y Φth a partir de la irradiación de suelos de referencia y monitores de Al-Au. Revista Investigaciones y Aplicaciones Nucleares, 10 2017.spa
dc.relation.referencesOscar A. Sierra, Karel.G. Nuñez, and fabio N. Acero. Implementación del método del triple monitor para la caracterización del flujo neutrónico del reactor nuclear de investigación IAN-R1 (2). Revista Investigaciones y Aplicaciones Nucleares, 2018.spa
dc.relation.referencesLuka Snoj, Andrej Kavčič, Gašper Žerovnik, and Matjaž Ravnik. Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo. Annals of Nuclear Energy, 37(2):223--229, 2 2010. ISSN 03064549. doi: 10.1016/j.anucene.2009.10.020.spa
dc.relation.referencesSteven H. Strogatz. NONLINEAR DYNAMICS AND CHAOS. Second edition edition, 2015.spa
dc.relation.referencesGENERAL ATOMICS ELECTRONIC SYSTEMS. RM-2014 AREA MONITOR - TECHNICAL MANUAL, INCLUDING OPERATOR’S MANUAL. Technical report, GENERAL ATOMICS, 2010.spa
dc.relation.referencesGENERAL ATOMICS ELECTRONIC SYSTEMS. OPERATION AND MAINTENANCE MANUAL NP1000/NPP1000 PER- CENT POWER CHANNEL. Technical report, GENERAL ATOMICS, 2010.spa
dc.relation.referencesJ H Tu, C W Rowley, D M Luchtenburg, S L Brunton, and J N Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391--421, 2014. ISSN 21582505 (ISSN). doi: 10.3934/jcd.2014.1. 391. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009209557&doi=10.3934%2fjcd.2014.1.391&partnerID=40&md5= 1f6dd5cd6050354cb3d957dbf1cf61aa.spa
dc.relation.referencesMehmet Türkmen, Üner Çolak, and Şule Ergün. Core map generation for the ITU TRIGA Mark II research reactor using Genetic Algorithm coupled with Monte Carlo method. Nuclear Engineering and Design, 295:84--95, 12 2015. ISSN 00295493. doi: 10.1016/j.nucengdes.2015.08.022.spa
dc.relation.referencesVineet Vajpayee, Victor Becerra, Nils Bausch, Jiamei Deng, S. R. Shimjith, and A. John Arul. LQGI/LTR based robust control technique for a pressurized water nuclear power plant. Annals of Nuclear Energy, 154, 5 2021. ISSN 18732100. doi: 10.1016/j.anucene.2020.108105.spa
dc.relation.referencesVineet Vajpayee, Victor Becerra, Nils Bausch, Jiamei Deng, S. R. Shimjith, and A. John Arul. LQGI/LTR based robust control technique for a pressurized water nuclear power plant. Annals of Nuclear Energy, 154, 5 2021. ISSN 18732100. doi: 10.1016/j.anucene.2020.108105.spa
dc.relation.referencesVineet Vajpayee, Victor Becerra, Nils Bausch, Jiamei Deng, S. R. Shimjith, and A. John Arul. LQGI/LTR based robust control technique for a pressurized water nuclear power plant. Annals of Nuclear Energy, 154, 5 2021. ISSN 18732100. doi: 10.1016/j.anucene.2020.108105.spa
dc.relation.referencesAna M. Velazquez, Fabio N. Acero, and Andrés Porras. Avances en la validación de la técnica de conteo de neutrones retardados en Colombia para la determinación de uranio y torio en muestras geológicas. Revista Investigaciones y Aplicaciones Nucleares, 6:5--20, 5 2022.spa
dc.relation.referencesMatthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. 8 2014. doi: 10.1007/s00332-015-9258-5. URL http://arxiv.org/abs/1408.4408http: //dx.doi.org/10.1007/s00332-015-9258-5.spa
dc.relation.referencesYongqian Xiao, Xinglong Zhang, Xin Xu, Xueqing Liu, and Jiahang Liu. Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles. IEEE Transactions on Intelligent Vehicles, 8(1):135--146, 1 2023. ISSN 23798858. doi: 10.1109/TIV.2022.3180337.spa
dc.relation.referencesNafiseh Zare, Gholamreza Jahanfarnia, Abdollah Khorshidi, and Jamshid Soltani. Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor. Nuclear Engineering and Technology, 52(9):2017--2024, 9 2020. ISSN 2234358X. doi: 10.1016/j.net.2020.03.002.spa
dc.relation.referencesNafiseh Zare, Gholamreza Jahanfarnia, Abdollah Khorshidi, and Jamshid Soltani. Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor. Nuclear Engineering and Technology, 52(9):2017--2024, 9 2020. ISSN 2234358X. doi: 10.1016/j.net.2020.03.002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalEstimationeng
dc.subject.proposalLarge Scale Complex Systemseng
dc.subject.proposalModelingeng
dc.subject.proposalValidationeng
dc.subject.proposalEstimaciónspa
dc.subject.proposalModeladospa
dc.subject.proposalValidaciónspa
dc.subject.proposalSistemas complejos a gran escalaspa
dc.subject.wikidatadata-driven decision-makingeng
dc.subject.wikidatadata-driven modelingeng
dc.subject.wikidataflujo de neutronesspa
dc.subject.wikidataNeutron fluxeng
dc.subject.wikidatareactor nuclearspa
dc.subject.wikidatanuclear reactoreng
dc.titleNeutron flux modeling of the IAN-R1 nuclear reactor using data-driven techniqueseng
dc.title.translatedModelado del flujo neutrónico del reactor nuclear IAN-R1 con técnicas basadas en datosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019076778.2025.pdf
Tamaño:
7.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: