Identificación de ejemplos adversarios en modelos de Machine Learning que detectan malware para Android

dc.contributor.advisorCamargo Mendoza, Jorge Eliecerspa
dc.contributor.authorAldana Burgos, Leidy Marcelaspa
dc.contributor.refereeGonzález Osorio, Fabio Augustospa
dc.contributor.refereeNiño Vásquez, Luis Fernandospa
dc.contributor.researchgroupUnsecurelab Cybersecurity Research Groupeng
dc.date.accessioned2026-01-21T19:41:09Z
dc.date.available2026-01-21T19:41:09Z
dc.date.issued2025-11-26
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste documento muestra un método computacional para identificar entradas adversarias en Machine Learning, enfocado en la detección de Malware para Android. En primer lugar, se creó un conjunto de datos de malware, con el cual se entrenaron cuatro modelos de machine learning, estos cuatro modelos son una red neuronal, un Autoencoder, SVM y regresión logística; todos ellos tienen el objetivo de aprender a clasificar aplicaciones para Android entre beningware o malware. En segundo lugar, se ejecutaron diez ataques adversarios de evasión contra cada uno de esos modelos de machine learning, los cuales son FGSM, BIM, CW (L2 y Linf), ZOO, HopSkip Jump, JSMA, Deepfool, PGD y Boundary Attack. La implementación de estos ataques permitió analizar la vulnerabilidad de estos modelos, debido a que logra alterar la clasificación que hace cada modelo. En tercer lugar, se propone un método sencillo para mitigar los efectos de dicha vulnerabilidad, el cual tiene el enfoque de detectar ejemplos adversarios previo a la entrada a cada modelo de machine learning; una vez detectados son excluidos y se evalúa de nuevo las métricas de rendimiento, como la evaluación cuantitativa de la capacidad para clasificar en cada modelo de machine learning. Finalmente, en los resultados se resalta la importancia de algunas características estáticas y dinámicas frecuentes en muestras de malware. (Texto tomado de la fuente).spa
dc.description.abstractThis document presents a computational method for identifying adversarial inputs in Machine Learning, focused on Android malware detection. First, a malware dataset was created, with which four machine learning models were trained. These four models are a neural network, an autoencoder, an SVM, and logistic regression; all of them aim to learn how to classify Android applications as either beningware or malware. Second, ten adversarial evasion attacks were run against each of these machine learning models: FGSM, BIM, CW (L2 and Linf), ZOO, HopSkip Jump, JSMA, Deepfool, PGD, and Boundary Attack. The implementation of these attacks allowed us to analyze the vulnerability of these models, as it is able to alter the classification performed by each model. Third, a simple method is proposed to mitigate the effects of this vulnerability. This method focuses on detecting adversarial examples prior to entering each Machine Learning model. Once detected, they are excluded, and performance metrics are re-evaluated, such as a quantitative evaluation of the classification capacity of each Machine Learning model. Finally, the results highlight the importance of some common static and dynamic characteristics in malware samples.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extentxii, 47 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89285
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesM. Mendoza, Relato de un asesino. Editorial Planeta, jun. de 2021, pág. 288, Novela contemporánea, Epub 2, isbn: 978-958-42-9322-0
dc.relation.referencesA. Panda, R. Chakravarty y S. Moulik, ‘‘Hand Gesture Recognition using Flex Sensor and Machine Learning Algorithms’’, mar. de 2021. doi: 10.1109/IECBES48179.2021.9398789
dc.relation.referencesS. G. Selvaganapathy y S. Sadasivam, ‘‘Defense against adversarial malware using robust classifier: DAM-ROC’’, Sadhana, vol. 47, n.o 4, pág. 209, 2022, issn: 0973-7677. doi: 10.1007/s12046-022-019 80-6. dirección: https://doi.org/10.1007/s12046-022-01980-6
dc.relation.referencesV. Zantedeschi, M. -I. Nicolae y A. Rawat, Efficient Defenses Against Adversarial Attacks, 2017. arXiv: 1707.06728 [cs.LG]. dirección: https://arxiv.org/abs/1707.06728
dc.relation.referencesOWASP, OWASP Machine Learning Security Top Ten, Accedido el 17 de julio de 2025, 2023. dirección: https://owasp.org/www-project-machine-learning-security-top-10/
dc.relation.referencesM. Chowdhury, A. Rahman y M. R. Islam, ‘‘Protecting data from malware threats using machine learning technique’’, jun. de 2017, págs. 1691-1694. doi: 10.1109/ICIEA.2017.8283111
dc.relation.referencesH. Rathore, S. Agarwal, S. K. Sahay y M. Sewak, ‘‘Malware Detection Using Machine Learning and Deep Learning’’, en Big Data Analytics. Springer International Publishing, 2018, págs. 402-411, isbn: 9783030047801. doi: 10.1007/978-3-030-04780-1_28. dirección: http://dx.doi.org/10.1007/97 8-3-030-04780-1_28
dc.relation.referencesR. Richardson y M. M. North, ‘‘Ransomware: Evolution, Mitigation and Prevention’’, International Management Review, vol. 13, n.o 1, págs. 10-21, 2017, Accessed: 2025-07-31. dirección: https://digit alcommons.kennesaw.edu/facpubs/4276
dc.relation.referencesD. Gibert, C. Mateu y J. Planes, ‘‘The rise of machine learning for detection and classification of malware: Research developments, trends and challenges’’, Journal of Network and Computer Applications, vol. 153, pág. 102 526, 2020, issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2019.102526. dirección: https://www.sciencedirect.com/science/article/pii/S1084804519303868
dc.relation.referencesL. Chen, C.-Y. Yang, A. Paul y R. Sahita, Towards resilient machine learning for ransomware detection, 2019. arXiv: 1812.09400 [cs.LG]. dirección: https://arxiv.org/abs/1812.09400
dc.relation.referencesG. D’Ambrosio y W. Li, ‘‘AdversarialDroid: A Deep Learning based Malware Detection Approach for Android System Against Adversarial Example Attacks’’, oct. de 2021, págs. 1-5. doi: 10.1109/URTC54 388.2021.9701615
dc.relation.referencesH. Rathore, S. Sahay, P. Nikam y M. Sewak, ‘‘Robust Android Malware Detection System Against Adversarial Attacks Using Q-Learning’’, Information Systems Frontiers, vol. 23, págs. 1- 16, ago. de 2021. doi: 10.1007/s10796-020-10083-8
dc.relation.referencesJ. Zhang, C. Zhang, X. Liu, Y. Wang, W. Diao y S. Guo, ‘‘ShadowDroid: Practical Black-box Attack against ML-based Android Malware Detection’’, dic. de 2021, págs. 629 -636. doi: 10.1109/ICPADS533 94.2021.00084
dc.relation.referencesJ. Zhang, X. Xu, B. Han y col., Attacks Which Do Not Kill Training Make Adversarial Learning Stronger, 2020. arXiv: 2002.11242 [cs.LG]. dirección: https://arxiv.org/abs/2002.11242
dc.relation.referencesKaspersky, WannaCry Ransomware, https://www.kaspersky.es/resource-center/threats/rans omware-wannacry, Recuperado el 27 de noviembre de 2024, 2024
dc.relation.referencesY. Yilmaz, O. Cetin, B. Arief y J. Hernandez-Castro, ‘‘Investigating the impact of ransomware splash screens’’, Journal of Information Security and Applications, vol. 61, pág. 102 934, sep. de 2021. doi: 10.1016/j.jisa.2021.102934
dc.relation.referencesL. Yuryna Connolly, D. S. Wall, M. Lang y B. Oddson, ‘‘An empirical study of ransomware attacks on organizations: an assessment of severity and salient factors affecting vulnerability’’, Journal of Cybersecurity, vol. 6, n.o 1, tyaa023, dic. de 2020, issn: 2057-2085. doi: 10.1093/cybsec/tyaa023. eprint: https://academic.oup.com/cybersecurity/article-pdf/6/1/tyaa023/35198032/tyaa02 3.pdf. dirección: https://doi.org/10.1093/cybsec/tyaa023
dc.relation.referencesX. Qi, Y. Tang, H. Wang, T. Liu y J. Jing, ‘‘Adversarial Example Attacks Against Intelligent Malware Detection: A Survey’’, en 2022 4th International Conference on Applied Machine Learning (ICAML), 2022, págs. 1-7. doi: 10.1109/ICAML57167.2022.00068
dc.relation.referencesL. Aldana y J. Camargo, ‘‘Adversarial Attacks in a Shallow Neural Network to Classify Android Malware’’, en Advances in Artificial Intelligence – IBERAMIA 2024, L. Correia, A. Rosá y F. Garijo, eds., Uruguay: Springer Cham, 2024, págs. 472-475
dc.relation.referencesL. Aldana, Static and Dynamic Features with Adversarial Examples, https://www.kaggle.com/data sets/l7032681/static-and-dynamic-features-adv, 2024. dirección: https://www.kaggle.com/d atasets/l7032681/static-and-dynamic-features-adv
dc.relation.referencesL. Aldana, Dataset for Adversarial Machine Learning on Android Malware, https://github.com/le idy-m/dataset-advML, Accessed: 2025-07-30, 2024. dirección: https://github.com/leidy-m/datas et-advML
dc.relation.referencesL. Aldana, Adversarial Machine Learning on Android Malware Detection, https://github.com/lei dy-m/Adversarial-ML-Android-Malware, Accessed: 2025-07-30, 2024. dirección: https://github.c om/leidy-m/Adversarial-ML-Android-Malware
dc.relation.referencesN. Martins, J. M. Cruz, T. Cruz y P. Henriques Abreu, ‘‘Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review’’, IEEE Access, vol. 8, págs. 35 403 -35 419, 2020. doi: 10.1109/ACCESS.2020.2974752
dc.relation.referencesK. Liu, S. Xu, G. Xu, M. Zhang, D. Sun y H. Liu, ‘‘A Review of Android Malware Detection Approaches Based on Machine Learning’’, IEEE Access, vol. 8, págs. 124 579-124 607, 2020. doi: 10.1109/ACCESS.2020.3006143
dc.relation.referencesZ. Kong, J. Xue, Z. Liu, Y. Wang y W. Han, ‘‘MalDBA: Detection for Query-Based Malware Black-Box Adversarial Attacks’’, Electronics, vol. 12, n.o 7, 2023, issn: 2079-9292. doi: 10.3390/electronics12 071751. dirección: https://www.mdpi.com/2079-9292/12/7/1751
dc.relation.referencesA. Rashid y J. Such, ‘‘StratDef: Strategic defense against adversarial attacks in ML-based malware detection’’, Computers & Security, vol. 134, pág. 103 459, 2023, issn: 0167-4048. doi: https://doi.or g/10.1016/j.cose.2023.103459. dirección: https://www.sciencedirect.com/science/article /pii/S0167404823003693
dc.relation.referencesN. Wang, Y. Chen, Y. Hu, W. Lou e Y. T. Hou, ‘‘MANDA: On Adversarial Example Detection for Network Intrusion Detection System’’, en IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, BC, Canada: IEEE Press, 2021, págs. 1 -10. doi: 10.1109/INFOCOM4298 1.2021.9488874. dirección: https://doi.org/10.1109/INFOCOM42981.2021.9488874
dc.relation.referencesI. Rosenberg, A. Shabtai, Y. Elovici y L. Rokach, Defense Methods Against Adversarial Examples for Recurrent Neural Networks, 2019. arXiv: 1901.09963 [cs.CR]. dirección: https://arxiv.org/abs/1 901.09963
dc.relation.referencesK. Grosse, P. Manoharan, N. Papernot, M. Backes y P. McDaniel, On the (Statistical) Detection of Adversarial Examples, 2017. arXiv: 1702.06280 [cs.CR]. dirección: https://arxiv.org/abs/1702 .06280
dc.relation.referencesG. Android, Arquitectura de Android, https://developer.android.com/guide/platform, Último acceso: 11 de julio de 2025, 2025
dc.relation.referencesD. Arp, E. Quiring, F. Pendlebury y col., ‘‘Dos and Don’ts of Machine Learning in Computer Security’’, en 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA: USENIX Association, 2022. dirección: https://www.usenix.org/system/files/sec22-arp.pdf
dc.relation.referencesS. Nune, ‘‘Adversarial Attacks on Android Malware Detection and Classification’’, Master’s Project, San Jose State University, San Jose, California, Fall de 2022. doi: 10.31979/etd.gjhb-v87s. dirección: https://scholarworks.sjsu.edu/etd_projects/1196
dc.relation.referencesS. Haykin, Neural Networks and Learning Machines, 3rd. Upper Saddle River, NJ, USA: Pearson, 2009
dc.relation.referencesMathWorks, Autocodificadores (Autoencoders), Página web en español, access date 21-Aug-2025, MathWorks, 2025. dirección: https://la.mathworks.com/discovery/autoencoder.html
dc.relation.referencesscikit-learn developers, Support Vector Machines, Accessed: 2025-08-21, scikit-learn, 2025. dirección: https://scikit-learn.org/stable/modules/svm.html
dc.relation.referencesW. Villegas-Ch, A. Jaramillo-Alcázar y S. Luján-Mora, ‘‘Evaluating the Robustness of Deep Learning Models against Adversarial Attacks: An Analysis with FGSM, PGD and CW’’, Big Data and Cognitive Computing, vol. 8, n.o 1, 2024, issn: 2504-2289. doi: 10.3390/bdcc8010008. dirección: https://www .mdpi.com/2504-2289/8/1/8
dc.relation.referencesI. H. Sarker, ‘‘Multi-aspects AI-based modeling and adversarial learning for cybersecurity intelligence and robustness: A comprehensive overview’’, SECURITY AND PRIVACY, vol. 6, n.o 5, e295, 2023. doi: https://doi.org/10.1002/spy2.295. eprint: https://onlinelibrary.wiley.com/doi/pdf /10.1002/spy2.295. dirección: https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.295
dc.relation.referencesI. J. Goodfellow, J. Shlens y C. Szegedy, Explaining and Harnessing Adversarial Examples, 2015. arXiv: 1412.6572 [stat.ML]. dirección: https://arxiv.org/abs/1412.6572
dc.relation.referencesTensorFlow Authors, Fast Gradient Sign Method, https://www.tensorflow.org/tutorials/gener ative/adversarial_fgsm, Accessed: 2025-08-03, 2024
dc.relation.referencesD. Irigaray y C. Serena, ‘‘Ataques adversarios en sistemas de reconocimiento visual’’, Tutores: Dr. Mauricio Delbracio, Dr. José Lezama, Dr. Guillermo Moncecchi, Proyecto de Grado, Universidad de la República, Facultad de Ingeniería, Montevideo, Uruguay, dic. de 2019. dirección: https://www.fing .edu.uy/inco/grupos/pln/prygrado/informe_pgattack.pdf
dc.relation.referencesM. Intelligence y D. Learning, Deepfool: a simple and accurate method to fool deep neural networks, Video en YouTube, Accedido el 24 de agosto de 2025, abr. de 2022. dirección: https://www.youtube .com/watch?v=wSYbf_b3N14
dc.relation.referencesS. - M. Moosavi-Dezfooli, A. Fawzi y P. Frossard, DeepFool: a simple and accurate method to fool deep neural networks, 2016. arXiv: 1511.04599 [cs.LG]. dirección: https://arxiv.org/abs/1511.04599
dc.relation.referencesF. Wu, R. Gazo, E. Haviarova y B. Benes, Efficient Project Gradient Descent for Ensemble Adversarial Attack, 2019. arXiv: 1906.03333 [cs.LG]. dirección: https://arxiv.org/abs/1906.03333
dc.relation.referencesT. Combey, A. Loison, M. Faucher y H. Hajri, Probabilistic Jacobian-based Saliency Maps Attacks, 2020. arXiv: 2007.06032 [cs.CV]. dirección: https://arxiv.org/abs/2007.06032
dc.relation.referencesN. Carlini y D. Wagner, Towards Evaluating the Robustness of Neural Networks, 2017. arXiv: 1608.0 4644 [cs.CR]. dirección: https://arxiv.org/abs/1608.04644
dc.relation.referencesP. -Y. Chen, H. Zhang, Y. Sharma, J. Yi y C. -J. Hsieh, ‘‘ZOO: Zeroth Order Optimization Based Black- box Attacks to Deep Neural Networks without Training Substitute Models’’, en Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, ép. CCS ’17, ACM, nov. de 2017, págs. 15-26. doi: 10.1145/3128572.3140448. dirección: http://dx.doi.org/10.1145/3128572.3140448
dc.relation.referencesW. Brendel, J. Rauber y M. Bethge, Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models, 2018. arXiv: 1712.04248 [stat.ML]. dirección: https://arxiv .org/abs/1712.04248
dc.relation.referencesJ. Chen, M. I. Jordan y M. J. Wainwright, HopSkipJumpAttack: A Query-Efficient Decision-Based Attack, 2020. arXiv: 1904.02144 [cs.LG]. dirección: https://arxiv.org/abs/1904.02144
dc.relation.referencesD. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon y K. Rieck, ‘‘DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket’’, feb. de 2014. doi: 10.14722/ndss.2014.23247
dc.relation.referencesM. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck y J. Hoffmann, ‘‘Mobile-sandbox: Having a deeper look into Android applications’’, mar. de 2013, págs. 1808-1815. doi: 10.1145/2480362.2480701
dc.relation.referencesA. Martín García, R. Lara-Cabrera y D. Camacho, ‘‘A new tool for static and dynamic Android malware analysis’’, págs. 509-516, sep. de 2018. doi: 10.1142/9789813273238_0066
dc.relation.referencesA. Martín García, R. Lara-Cabrera y D. Camacho, ‘‘Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset’’, Information Fusion, vol. 52, dic. de 2018. doi: 10.1016/j.inffus.2018.12.006
dc.relation.referencesN. V. Chawla, K. W. Bowyer, L. O. Hall y W. P. Kegelmeyer, ‘‘SMOTE: Synthetic Minority Over- sampling Technique’’, Journal of Artificial Intelligence Research, vol. 16, págs. 321 -357, jun. de 2002, issn: 1076-9757. doi: 10.1613/jair.953. dirección: http://dx.doi.org/10.1613/jair.953
dc.relation.referencesX. Wang, L. Zhang, K. Zhao, X. Ding y M. Yu, ‘‘MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection’’, Sensors, vol. 22, n.o 7, 2022, issn: 1424-8220. doi: 10.3390/s22072 597. dirección: https://www.mdpi.com/1424-8220/22/7/2597
dc.relation.referencesC. C. U. López, J. S. D. Villarreal, A. F. P. Belalcazar, A. N. Cadavid y J. G. D. Cely, ‘‘Features to Detect Android Malware’’, en 2018 IEEE Colombian Conference on Communications and Computing (COLCOM), 2018, págs. 1-6. doi: 10.1109/ColComCon.2018.8466715
dc.relation.referencesV. Kouliaridis, G. Kambourakis y T. Peng, ‘‘Feature Importance in Android Malware Detection’’, dic. de 2020. doi: 10.1109/TrustCom50675.2020.00195
dc.relation.referencesJ. Park, M. Kang, S.-j. Cho, H. Han y K. Suh, ‘‘Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection’’, en 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2020, págs. 92 - 99. doi: 10.1109/AIKE48582.2020.0 0021
dc.relation.referencesQ. E. A. Ratul, N. Chowdhury, H. Soliman, M. S. Chaity y A. Haque, ‘‘Android Malware Detection in Large Dataset: Smart Approach’’, en feb. de 2020, págs. 800-814, isbn: 978-3-030-39444-8. doi: 10.1007/978-3-030-39445-5_58
dc.relation.referencesA. Banik y J. P. Singh, ‘‘Android Malware Detection by Correlated Real Permission Couples Using FP Growth Algorithm and Neural Networks’’, IEEE Access, vol. 11, págs. 124 996 -125 010, 2023. doi: 10.1109/ACCESS.2023.3323845
dc.relation.referencesX. Jiang, B. Mao, J. Guan y X. Huang, ‘‘Android Malware Detection Using Fine-Grained Features’’, Scientific Programming, vol. 2020, n.o 1, pág. 5 190 138, 2020. doi: https://doi.org/10.1155/2020 /5190138. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2020/5190138. dirección: https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/5190138
dc.relation.referencesY. Z. Xuxian Jiang, Android Malware. New York: Springer New York, NY, 2013, isbn: 978-1-4614- 7394-7. doi: 10.1007/978-1-4614-7394-7. dirección: https://springerlink.unalproxy.elogim .com/book/10.1007/978-1-4614-7394-7
dc.relation.referencesShashwatwork, Android Malware Dataset for Machine Learning, https://www.kaggle.com/dataset s/shashwatwork/android-malware-dataset-for-machine-learning, Accedido el 2 de septiembre de 2025, 2025
dc.relation.referencesGoogle, Cursor (android.database) — Android Developers, https://developer.android.com/refer ence/android/database/Cursor, Accedido el 2 de septiembre de 2025, 2025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.proposalAdversariospa
dc.subject.proposalRed neuronalspa
dc.subject.proposalRegresión logísticaspa
dc.subject.proposalMalwareeng
dc.subject.proposalAutoencodereng
dc.subject.proposalAndroideng
dc.subject.proposalMachine Learningeng
dc.subject.proposalSVMeng
dc.subject.proposalAdversarialeng
dc.subject.proposalNeural networkeng
dc.subject.proposalLogistic regressioneng
dc.subject.unescoInteligencia artificialspa
dc.subject.unescoArtificial intelligenceeng
dc.subject.unescomalwarespa
dc.subject.unescomalwareeng
dc.subject.unescoSeguridad de los datosspa
dc.subject.unescodata securityeng
dc.titleIdentificación de ejemplos adversarios en modelos de Machine Learning que detectan malware para Androidspa
dc.title.translatedIdentifying adversarial examples in Machine Learning models that detect malware for Androideng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
iden.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: