Numerical modeling of massive sand production during cold heavy oil production

dc.contributor.advisorOsorio Gallego, José Gildardo
dc.contributor.advisorAlzate Espinosa, Guillermo Arturo
dc.contributor.authorArbeláez Londoño, Alejandra
dc.contributor.orcidArbeláez Londoño, Alejandra [0000-0003-0570-5125]spa
dc.contributor.orcidAlzate Espinosa, Guillermo Arturo [0000-0001-6265-274X]spa
dc.contributor.researchgroupGrupo de Investigación en Geomecánica Aplicada, GIGAspa
dc.date.accessioned2023-06-01T14:15:06Z
dc.date.available2023-06-01T14:15:06Z
dc.date.issued2023-05-31
dc.descriptionilustraciones, diagramasspa
dc.description.abstractCold heavy oil production with sand (CHOPS) is a single well technology that involves the deliberate initiation and sustaining of sand inflow into the wells using progressive cavity pumps (PCP) to produce at oil high rates with a subsequent high-pressure drawdown around the wellbore and improvement in oil well productivity. CHOPS is a primary recovery method extensively used in the world as a profitable and simple technology. Foamy-oil flow and wormhole formation are the main mechanisms of CHOPS, where aggressive sand production is a consequence of geomechanical issues such as elastoplastic behavior, stress redistribution, failure criteria, pressure gradient, erosion, and sand liquefaction. The general objective of this thesis is to build a numerical model to predict and explain massive sand production during cold heavy oil production by coupling fluid flow with geomechanics and considering stress redistribution and erosional processes. This research also identifies the relevant phenomena of massive sand production and describes the interaction between geomechanical and erosional processes. A methodology is proposed to model the initiation and propagation of wormholes based on geomechanical behavior. A 3D-single well model is built to understand the cold heavy oil production with sand, considering relevant dynamics such as stress redistribution and the interaction between geomechanical and erosional processes, by coupling fluid flow with geomechanics. This model couples a three-phase fluid flow model and an elastoplastic model and integrates other models: a sand production model, a foamy-oil module, and a conceptual model for wormhole formation. This coupled model is verified and validated firstly by components and lately integrating step by step the different components using commercial software such as ABAQUS® and CMG®. Field cases are run to calibrate the parameters of the sand production model resulting in low sand levels, a case with the main characteristics of a CHOPS well is run and its results are analyzed, and a sensitive study is performed to evaluate the impact of variables such as pressure drawdown, cohesion, internal friction angle, and stress regime. Finally, a special case is built combing all variables and looking to promote sand production with successful results.eng
dc.description.abstractEa producción en frío de crudo pesado con arena (CHOPS) es una tecnología de un solo pozo que involucra el inicio deliberado y el mantenimiento del flujo arena a los pozos utilizando bombas de cavidad progresiva (PCP) para producir petróleo a altas tasas con un subsiguiente alto gradiente de presión alrededor del pozo. y mejora en la productividad de los pozos de petróleo. CHOPS es un método de recuperación primaria ampliamente utilizado en el mundo como una tecnología rentable y sencilla. El flujo de crudo espumoso y la formación de agujeros de gusano son los principales mecanismos de CHOPS, donde la producción agresiva de arena es consecuencia de problemas geomecánicos como el comportamiento elastoplástico, la redistribución de esfuerzos, los criterios de falla, el gradiente de presión, la erosión y la licuefacción de la arena. El objetivo general de esta tesis es construir un modelo numérico para predecir y explicar la producción masiva de arena durante la producción en frío de crudo pesado acoplando el flujo de fluidos con la geomecánica y considerando la redistribución de esfuerzos y los procesos de erosión. Esta investigación también identifica los fenómenos relevantes de producción masiva de arena y describe la interacción entre los procesos geomecánicos y erosivos. Se propone una metodología para modelar la iniciación y propagación de agujeros de gusano basada en el comportamiento geomecánico. Se construye un modelo de pozo único en 3D para comprender la producción en frío de crudo pesado con arena, considerando dinámicas relevantes como la redistribución de esfuerzos y la interacción entre los procesos geomecánicos y erosivos, al acoplar el flujo de fluidos con la geomecánica. Este modelo combina un modelo de flujo de fluido trifásico y un modelo elastoplástico e integra otros modelos: un modelo de producción de arena, un módulo de crudo espumoso y un modelo conceptual para la formación de agujeros de gusano. Este modelo acoplado es verificado y validado primeramente por componentes y posteriormente integrando paso a paso los diferentes componentes utilizando software comerciales como ABAQUS® y CMG®. Se corren casos de campo para calibrar los parámetros del modelo de producción de arena resultando en bajos niveles de arena, se corre un caso con las principales características de un pozo CHOPS y se analizan sus resultados, y se realiza un estudio de sensibilidad para evaluar el impacto de variables como como el gradiente de presión, la cohesión, el ángulo de fricción interna y el régimen de esfuerzos. Finalmente, se construye un caso especial combinando todas las variables y buscando promover la producción de arena con resultados exitosos. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaGeomecánica aplicada a la ingeniería de yacimientosspa
dc.format.extent307 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83940
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbivin, P., Hénaut, I. Argillier, J. F. & Moan, M. (2008). Viscosity behavior of foamy oil: Experimental study and modeling. Petroleum Science and Technology, 26 (13): 1545-1558. https://doi.org/10.1080/10916460701208850.spa
dc.relation.referencesAbou-Kassem, J. H., Rafiqul Islam, M. & Farouq Ali, S. M. (2020). Petroleum Reservoir Simulation (Second Edition). Gulf Professional Publishing. ISBN 9780128191507, https://doi.org/10.1016/B978-0-12-819150-7.00001-3.spa
dc.relation.referencesAdil, I., & Maini, B. B. (2007). Role of Asphaltenes in Foamy Oil Reservoir. Journal of Canadian Petroleum Technology, 46(4).spa
dc.relation.referencesAlappat, C., Hager, G., Schenk, O., Thies, J., Basermann, A., Bischop, A., Fehske, H., & Wellein, G. (2020). A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Transactions on Parallel Computing, Vol. 7, No. 3(19).spa
dc.relation.referencesAlberty, J., Carstensen, C., & Funken, S. A. (1999). Remarks around 50 lines of Matlab: short finite element implementation. Numerical Algorithms, 20(2-3), 117-137. https://doi.org/10.1023/A:1019155918070.spa
dc.relation.referencesAlberty, J., Carstensen, C., Funken, S. A., & Klose, R. (2002). Matlab implementation of the finite element methods in elasticity. Computing, 69(3), 239-263. https://doi.org/10.1007/s00607-002-1459-8.spa
dc.relation.referencesAlejano, L.R., & Bobet, A. (2012). Drucker–Prager Criterion. Rock Mechanics and Rock Engineering, 45, 995-999. http://doi.org/10.1007/s00603-012-0278-2.spa
dc.relation.referencesAl-Marhoun, M. A. (1992). New correlations for formation volume factors of oil and gas mixtures. Journal Canadian Petroleum Technology, 31(3): 22. http://dx.doi.org/10.2118/92-03-02.spa
dc.relation.referencesAl-Shammasi, A. A. (2001). A review of bubble point pressure and oil formation volume factor correlations. SPE Reservoir Evaluation & Engineering, 4(2): 146-160. http://dx.doi.org/10.2118/71302-PA.spa
dc.relation.referencesAhmed, T. H. (2010). Reservoir Engineering Handbook (Fourth Edition). Gulf Professional Publishing. ISBN 978-1-85617-803-7.spa
dc.relation.referencesAraujo, E. F., Alzate-Espinosa G. A. & Arbelaez-Londoño, A., (2015, September). A Prediction and Quantification Model of Sand Production. In 2015 Heavy Oil Latin America Conference & Exhibition, Bogota, Colombia.spa
dc.relation.referencesAraujo-Guerrero, E. F. (2015). Modelo de predicción y cuantificación de la producción de arena en yacimientos de crudo pesado. (M.Sc. thesis). Universidad Nacional de Colombia, Medellin, Colombia. https://repositorio.unal.edu.co/handle/unal/59770.spa
dc.relation.referencesAraujo Guerrero, E. F., Alzate, G. A., Arbelaez-Londono, A., Pena, S., Cardona, A., & Naranjo, A. (2014, September). Analytical prediction model of sand production integrating geomechanics for open hole and cased–perforated wells. In SPE heavy and extra heavy oil conference: Latin America, Medellín, Colombia. https://doi.org/10.2118/171107-MS.spa
dc.relation.referencesAraujo-Guerrero, E. F., Alzate-Espinosa, G. A., Arbelaez-Londoño, A., & Morales-Monsalve, C. B. (2018, August). An Analytical Model for the Sand Production Potential Quantification. In ISRM VIII Brazilian Symposium on Rock Mechanics-SBMR 2018, Salvador, Bahia, Brazil.spa
dc.relation.referencesAziz, K. & Settari, A. (2002) Petroleum Reservoir Simulation. Applied Science Publishers, London, 135-139. ISBN: 0973061405.spa
dc.relation.referencesBanzer, C. (1996). Correlaciones numéricas PVT. INPELUZ, Maracaibo, Venezuela.spa
dc.relation.referencesBasilio, E., & Babadagli, T. (2020). Mechanics of foamy oil during methane-based cyclic solvent injection process for enhanced heavy oil recovery: A comprehensive review. SPE Reservoir Evaluation & Engineering, 23 (03): 1077-1092. https://doi.org/10.2118/200492-PA.spa
dc.relation.referencesBayon, Y. M., Cordelier, P. R., Coates, R. M., Lillico, D. A., & Sawatzky, R. P. (2002, November). Application and comparison of two models of foamy oil behavior of long core depletion experiments. In SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference. Calgary, Alberta, Canada. https://doi.org/10.2118/78961-MS.spa
dc.relation.referencesBeal, C. (1970). The viscosity of air, water, natural gas, crude oil, and its associated gases at oil field temperatures and pressures. Richardson, Texas, US. Reprint Series SPE (Oil and Gas Property Evaluation and Reserve Estimates), No. 3, 114–127.spa
dc.relation.referencesBeggs, H. D. & Robinson, J. R. (1975). Estimating the viscosity of crude oil systems. Journal Petroleum Technology, 27 (9): 1140-1141. http://dx.doi.org/10.2118/5434-PA.spa
dc.relation.referencesBergman, D. F. (2004). Don’t forget viscosity. In Petroleum Technology Transfer Council 2nd Annual Reservoir Engineering Symposium, 28 July, Lafayette, Louisiana, US.spa
dc.relation.referencesBratli, R. K., & Risnes, R. (1981). Stability and failure of sand arches. Society of Petroleum Engineers Journal, 21(02), 236-248. https://doi.org/10.2118/8427-PA.spa
dc.relation.referencesBrill, J. P. & Beggs, H. D. (1974). Two-phase flow in pipes. In U. Tulsa INTERCOM Course, The Hague.spa
dc.relation.referencesBrill, J. P. & Mukherjee, H. (1999). Multiphase Flow in Wells, No. 17. Richardson, Texas: Monographspa
dc.relation.referencesBrulé, M. R. & Whitson, C. H. (2000). Phase Behavior. SPE Monograph Series, Vol. 20, 233 pp., ISBN: 978-1-55563-087-4.spa
dc.relation.referencesBurton, R. C., Davis, E. R., & Morita, N. (1998, September). Application of reservoir strength characterization and formation failure modeling to analyze sand production potential and formulate sand control strategies for a series of North Sea gas reservoirs. In SPE Annual Technical Conference and Exhibition, New Orleans, LA, US. https://doi.org/10.2118/48979-MS.spa
dc.relation.referencesBybee, K. (2011). Alaskan Heavy Oil: First CHOPS at an Untapped Arctic Resource. Journal of Petroleum Technology, 63 (3), pp.87 – 88. https://doi.org/10.2118/0311-0087-JPT.spa
dc.relation.referencesCerasi, P. R., & Vardoulakis, I. (2012, June). Sand production model based on episodic functions. In 46th US Rock Mechanics/Geomechanics Symposium. Chicago, Illinois, US.spa
dc.relation.referencesChen, W. F. & Baladi, G. Y. (1985). Soil Plasticity: Theory and Implementation. Elsevier, New York, ISBN 0444565353.spa
dc.relation.referencesChen, W.F. & Han, D.J. (1988). Plasticity for Structural Engineers. Springer, New York, US.spa
dc.relation.referencesChen, T., & Leung, J. Y. (2021). Numerical Simulation of Nonequilibrium Foamy Oil for Cyclic Solvent Injection in Reservoirs after Cold Heavy Oil Production with Sand. SPE Reservoir Evaluation & Engineering, 24 (03): 675-691. https://doi.org/10.2118/205504-PA.spa
dc.relation.referencesChen, J. Z., & Maini, B. (2005, June). Numerical simulation of foamy oil depletion tests. In Canadian International Petroleum Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/78961-MS.spa
dc.relation.referencesChen, H. Y., Teufel, L. W. & Lee, R. L. (1995). Coupled fluid flow and geomechanics in reservoir study - I. Theory and governing equations. http://dx.doi.org/10.2118/30752-MS.spa
dc.relation.referencesChen, Z., Sun, J., Wang, R., & Wu, X. (2015). A pseudobubblepoint model and its simulation for foamy oil in porous media. SPE Journal, 20 (02): 239-247. https://doi.org/10.2118/172345-PA.spa
dc.relation.referencesChew, J. & Connally, C. A. Jr. (1959). A viscosity correlation for gas-saturated crude oils. In Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 216, 23. Dallas, Texas, US. Society of Petroleum Engineers of AIME.spa
dc.relation.referencesCividini, A. (1993) Constitutive behaviour and numerical modelling. Hudson J (ed) Comprehensive rock engineering, vol 1. Pergamon Press, Oxford, pp 395–426.spa
dc.relation.referencesClaridge, E. L. & Prats, M. (1995, July). A proposed model and mechanism for anomalous foamy heavy oil behavior. In 1995 International Heavy Oil Symposium, Calgary, Canada.spa
dc.relation.referencesDassault Systémes Simulia Corporation (2014). Abaqus / CAE User’s Manual, Version 6.14. Providence, RI, USA.spa
dc.relation.referencesDavid, C., Menendez, B., Zhu, W., & Wong, T.F. (2001). Mechanical compaction, microstructures and permeability evolution in sandstones. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 45-51. https://doi.org/10.1016/S1464-1895(01)00021-7.spa
dc.relation.referencesDavies, J. & Davies, D. (1999). Stress-dependent permeability: Characterization and modeling. In SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas, US. https://doi.org/10.2118/71750-PA.spa
dc.relation.referencesDavis, R. O. & Selvadurai, A. P. S. (2002). Plasticity and Geomechanics. Cambridge University Press, Cambridge, UK. ISBN 9780511614958. https://doi.org/10.1017/CBO9780511614958.spa
dc.relation.referencesDe Ghetto, G., Paone, F. & Villa, M. (1995). Pressure-Volume-Temperature correlations for heavy and extra heavy oils. SPE International Heavy Oil Symposium, 19-21 June, Calgary, Alberta, Canada. https://doi.org/10.2118/30316-MS.spa
dc.relation.referencesDe Mirabal, M., Rodriguez, H., & Gordillo, R. (1997). Production improvement strategy for foamy Hamaca crude oil: a field case. In International Thermal Operations and Heavy Oil Symposium, Bakersfield, California. https://doi.org/10.2118/37544-MS.spa
dc.relation.referencesDenbina, E. S., Baker, R. O., Gegunde, G. G., Klesken, A. J., & Sodero, S. F. (2001). Modelling cold production for heavy oil reservoirs. Journal of Canadian Petroleum Technology, 40(03). https://doi.org/10.2118/01-03-01.spa
dc.relation.referencesDetournay, C. (2009). Numerical modeling of the slit mode of cavity evolution associated with sand production. SPE Journal, 14(04), 797-804. https://doi.org/10.2118/116168-PA.spa
dc.relation.referencesDindoruk, B., & Christman, P. G. (2001). PVT properties and viscosity correlations for Gulf of Mexico oils. In SPE Annual Technical Conference and Exhibition, September 30 – October 3, New Orleans, Louisiana, US. https://doi.org/10.2118/71633-MS.spa
dc.relation.referencesDing, X. & Zhang, G. (2017). Coefficient of equivalent plastic strain based on the associated flow of the Drucker-Prager criterion. International Journal of Non-Linear Mechanics, Vol., pp. 15-20. ISSN 0020-7462. https://doi.org/10.1016/j.ijnonlinmec.2017.04.018.spa
dc.relation.referencesDodson, C. R. & Standing, M. B. (1944). Pressure-Volume-Temperature and solubility relations for natural gas-water-mixtures. Drilling and Production Practice, API, 173-179. API-44-173.spa
dc.relation.referencesDrucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics. Vol. 10, pp. 157−165.spa
dc.relation.referencesDu, Z., Jiang, W., & Chen, Z. (2009, April). A new integrated model to simulate the disturbed zone in CHOPS: spread and erosion. SPE Production and Operations Symposium, Oklahoma City, Oklahoma, USA. https://doi.org/10.2118/119587-MS.spa
dc.relation.referencesDusseault, M. B. (2002). CHOPS: Cold Heavy Oil Production with Sand in the Canadian heavy oil industry. Alberta Department of Energy.spa
dc.relation.referencesDusseault, M. B. (2009). Monitoring and modelling in coupled geomechanics processes. Journal of Canadian Petroleum Technology, Vol. 48, No. 7.spa
dc.relation.referencesDusseault, M. B., & El-Sayed, S. (2000, April). Heavy-oil production enhancement by encouraging sand production. In SPE/DOE Improved Oil Recovery Symposium. https://doi.org/10.2118/59276-MS.spa
dc.relation.referencesEshiet, K.I.-I.I & Sheng, Y. (2021) Investigating Sand Production Phenomena: An Appraisal of Past and Emerging Laboratory Experiments and Analytical Models. Geotechnics 2021, 1, 492–533. https://doi.org/10.3390/geotechnics1020023.spa
dc.relation.referencesEl-Banbi, A., Alzahabi, A. & El-Maraghi, A (2018). PVT Property Correlations Selection and Estimation. Saint Louis: Elsevier Science & Technology, pp. 432. https://doi.org/10.1016/C2016-0-01806-5.spa
dc.relation.referencesEl-Hoshoudy, A. & Desouky, S. (2019). PVT Properties of Black Crude Oil. Chapter 3. Processing of Heavy Crude Oils. IntechOpen. Ramasamy Marappa Gounder. https://doi.org/10.5772/intechopen.82278.spa
dc.relation.referencesFan, Z., & Yang, D. (2016, April). Characterization of wormhole growth and its applications for CHOPS wells using history matching. In SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, US. https://doi.org/10.2118/179617-MS.spa
dc.relation.referencesFan, Z., Yang, D., & Li, X. (2020). Characterization of Multiphase Flow in CHOPS Processes Using a Systematic Framework. SPE Reservoir Evaluation & Engineering, 23(03), 0930-0942. https://doi.org/10.2118/186080-PA.spa
dc.relation.referencesFoo, Y. Y., Chee, S. C., Zain, Z. M., & Mamora, D. D. (2011, July). Recovery Processes of Extra Heavy Oil-Mechanistic Modelling and Simulation Approach. SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. https://doi.org/10.2118/143390-MS.spa
dc.relation.referencesFiroozabadi, A. (2001). Mechanisms of solution gas drive in heavy oil reservoirs. Journal of Canadian Petroleum Technology, Vol. 40, No. 3, pp. 15-20.spa
dc.relation.referencesFitzgerald, D. J. (1994). A predictive method for estimating the viscosity of undefined hydrocarbon liquid mixtures. MS thesis, Pennsylvania State University, Pennsylvania, US.spa
dc.relation.referencesFrashad, F., LeBlanc, J. L., Garber, J. D. & Osorio, J. G. (1996). Empirical PVT correlations for Colombian crude oils. In SPE Latin American and Caribbean Petroleum Engineering Conference, Port of Spain, Trinidad and Tobago, 23–26 April. http://dx.doi.org/10.2118/36105-MS.spa
dc.relation.referencesGeilikman, M. B., Dusseault, M. B., & Dullien, F. A. (1994, February). Sand production as a viscoplastic granular flow. In SPE formation damage control symposium, Lafayette, Louisiana, US. https://doi.org/10.2118/27343-MS.spa
dc.relation.referencesGeilikman, M. B., Dusseault, M. B., & Dullien, F. A. (1994, April). Fluid production enhancement by exploiting sand production. In SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, US. https://doi.org/10.2118/27797-MS.spa
dc.relation.referencesGlasø, Ø. (1980). Generalized Pressure-Volume-Temperature correlations. Journal Petroleum Technology, 32(5): 785-795.http://dx.doi.org/10.2118/8016-PA.spa
dc.relation.referencesGockenbach, M.S. (2006).Understanding and implementing the finite element method. Siam. pp. 363. ISBN:978-0-898716-14-6. https://digitalcommons.mtu.edu/math-fp/23.spa
dc.relation.referencesGoodarzi, N., Bryan, J. L., Mai, A. T. & Kantzas, A. (2005). Heavy oil fluid testing with conventional and novel techniques. SPE International Thermal Operations and Heavy Oil Symposium, 1-3 November, Calgary, Alberta, Canada. http://dx.doi.org/10.2118/97803-MS.spa
dc.relation.referencesGuo, B., Gao, D., Ai, C., & Qu, J. (2012). Critical oil rate and well productivity in cold production from heavy-oil reservoirs. SPE Production & Operations, 27(01), 87-93. https://doi.org/10.2118/133172-PA.spa
dc.relation.referencesHan, G., Stone, T., Liu, Q., Cook, J., & Papanastasiou, P. (2005, January). 3D elastoplastic fem modelling in a reservoir simulator. In SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA. https://doi.org/10.2118/91891-MS.spa
dc.relation.referencesHandy, L.L. (1957). Effect of Local High Gas Saturations on Productivity Indices. API Drilling and Production Practice. Paper No. 57–111.spa
dc.relation.referencesHayatdavoudi, A. (1999, March). Formation sand liquefaction: A new mechanism for explaining fines migration and well sanding. In SPE Mid-Continent Operations Symposium, Oklahoma City, Oklahoma, USA. https://doi.org/10.2118/52137-MS.spa
dc.relation.referencesIstchenko, C. M., & Gates, I. D. (2011, December). The Well-Wormhole Model of Cold Production of Heavy Oil Reservoirs. In SPE Heavy Oil Conference and Exhibition, Kuwait City, Kuwait. https://doi.org/10.2118/150633-MS.spa
dc.relation.referencesIstchenko, C. M., & Gates, I. D. (2014). Well/wormhole model of cold heavy-oil production with sand. SPE Journal, 19(02), 260-269. https://doi.org/10.2118/150633-PA.spa
dc.relation.referencesItasca Consulting Group, Inc. (2005). Fast Lagrangian Analysis of Continua (FLAC). Online Version. FLAC Version 5.0. 3th Ed. Minneapolis, MN, US.spa
dc.relation.referencesJoseph, D. D., Kamp, A. M., & Bai, R. (2002). Modeling foamy oil flow in porous media. International Journal of Multiphase Flow, 28(10), 1659-1686. http://dx.doi.org/10.1016/s0301-9322(02)00051-4.spa
dc.relation.referencesKamp, A. M., Heny, C., Andarcia, L., Lago, M., & Rodriguez, A. (2001). Experimental Investigation of Foamy Oil Solution Gas Drive. In SPE International Thermal Operations and Heavy Oil Symposium, Porlamar, Margarita Island, Venezuela. https://doi.org/10.2118/69725-MS.spa
dc.relation.referencesKartoatmodjo, T. R. S. & Schmidt, Z. (1991). New correlations for crude oil physical properties. SPE-23556-MS (unsolicited paper).spa
dc.relation.referencesKim, A. S., & Sharma, M. M. (2012, June). A Predictive Model for Sand Production in Realistic Downhole Condition. In 46th US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, US.spa
dc.relation.referencesKlar, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Chenfanfu, J., & Teran, J. (2016). Drucker-Prager elastoplasticity for sand animation. ACM Transactions on Graphics. (35)1-12. https://doi.org/10.1145/2897824.2925906.spa
dc.relation.referencesKraus, W. P., McCaffrey, W. J., & Boyd, G. W. (1993). PseudoBubble Point Model For Foamy Oils. In 1993 Annual Technical Meeting, May, Calgary, Alberta. https://doi.org/10.2118/93-45.spa
dc.relation.referencesKumar, R., & Mahadevan, J. (2012). Well-performance relationships in heavy-foamy-oil reservoirs. SPE Production & Operations, 27(01), 94-105. https://doi.org/10.2118/117447-PA.spa
dc.relation.referencesLabedi, R. M. (1990, October). Use of production data to estimate the saturation pressure, solution GOR, and chemical composition of reservoir fluids. SPE Latin America Petroleum Engineering Conference, Rio de Janeiro, Brazil. https://doi.org/10.2118/21164-MS.spa
dc.relation.referencesLasater, J.A. (1958). Bubble point pressure correlations. Journal Petroleum Technology, 10(5): 65–67. http://dx.doi.org/10.2118/957-G.spa
dc.relation.referencesLebel, J. P. (1994, March). Performance implications of various reservoir access geometries. In 11th Annual Heavy Oil & Oil Sands Technology Symposium, Calgary, Canada.spa
dc.relation.referencesLee, A. L., Gonzalez, M. H., & Eakin, B. E. (1966). The viscosity of natural gases. Journal Petroleum Technology, 997. Trans., AIME, 237. https://doi.org/10.2118/1340-PA.spa
dc.relation.referencesLi, P. & Chalaturnyk, R. J. (2006). Permeability variations associated with shearing and isotropic unloading during the SAGD process. Journal of Canadian Petroleum Technology, 45(01) https://doi.org/10.2118/06-01-05.spa
dc.relation.referencesLiu, P., Mu, Z., Li, W., Wu, Y., & Li, X. (2017). A new mathematical model and experimental validation on foamy-oil flow in developing heavy oil reservoirs. Scientific Reports, 7 (1): 1-13. https://doi.org/10.1038/s41598-017-08882-2.spa
dc.relation.referencesLiu, X., & Zhao, G. (2004, June). Effects of wormholes on cold heavy oil production. In Canadian International Petroleum Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/2004-048.spa
dc.relation.referencesLiu, X., & Zhao, G. (2005). A fractal wormhole model for cold heavy oil production. Journal of Canadian Petroleum Technology, 44(09). https://doi.org/10.2118/05-09-03.spa
dc.relation.referencesLoughead, D. J., & Saltuklaroglu, M. (1992, March). Lloydminster heavy oil production: why so unusual. In 9th Annual Heavy Oil and Oil Sands Technology Symposium, Calgary, Canada.spa
dc.relation.referencesLu, X., Zhou, X., Luo, J., Zeng, F., & Peng, X. (2019). Characterization of foamy oil and gas/oil two-phase flow in porous media for a heavy oil/methane system. Journal of Energy Resources Technology, 141 (3). https://doi.org/10.1115/1.4041662.spa
dc.relation.referencesMaini, B. (1996). Foamy oil flow in heavy oil production. Journal of Canadian Petroleum Technology, 35 (06). https://doi.org/10.2118/96-06-01spa
dc.relation.referencesMaini, B. B. (2001). Foamy-oil flow. Journal of Petroleum Technology, 53(10), 54-64. https://doi.org/10.2118/68885-JPT.spa
dc.relation.referencesMaini, B. B., Sarma, H. K., & George, A. E. (1993). Significance of foamy-oil behaviour in primary production of heavy oils. Journal of Canadian petroleum technology, 32(09). https://doi.org/10.2118/93-09-07.spa
dc.relation.referencesMastmann, M., Moustakis, M. L. & Bennion, D. B. (2001). Predicting foamy oil recovery. SPE Western Regional Meeting, 26-30 March, Bakersfield, California, US. https://doi.org/10.2118/68860-MS.spa
dc.relation.referencesMehrotra, A.K. (1991a). A generalized viscosity equation for pure heavy hydrocarbons. Ind. Eng. Chem. Res., 30 (1991), pp. 420-427. https://doi.org/10.1021/ie00050a021.spa
dc.relation.referencesMehrotra, A.K. (1991b). Generalized one-parameter viscosity equation for light and medium hydrocarbons. Ind. Eng. Chem. Res., 30, pp. 1367-1372. https://doi.org/10.1021/ie00054a044.spa
dc.relation.referencesMcCain, W. D., Jr. (1990). The properties of petroleum fluids. PennWell Books. 2nd. Ed. Tulsa, OK, US.spa
dc.relation.referencesMohamad-Hussein, A., Mendoza, P. E. V., Delbosco, P. F., Sorgi, C., De Gennaro, V., Subbiah, S. K., … & Daniels, R. (2021). Geomechanical modelling of cold heavy oil production with sand. Petroleum. https://doi.org/10.1016/j.petlm.2021.02.002.spa
dc.relation.referencesMorita, N., Whitfill, D. L., Fedde, Ø. P., & Løvik, T. H. (1989). Parametric Study of Sand-Production Prediction: Analytical Approach. SPE Production Engineering 4 (1): 25–33. Trans., AIME, 287. https://doi.org/10.2118/16990-PA.spa
dc.relation.referencesMorita, N., Whitfill, D. L., Massie, I., & Knudsen, T. W. (1989). Realistic sand-production prediction: numerical approach. SPE Production Engineering, 4(01), 15-24. https://doi.org/10.2118/16989-PA.spa
dc.relation.referencesNouri, A., Vaziri, H. H., Belhaj, H. A., & Islam, M. R. (2006). Sand-production prediction: a new set of criteria for modeling based on large-scale transient experiments and numerical investigation. SPE Journal. https://doi.org/10.2118/90273-PA.spa
dc.relation.referencesOsorio, J.G. (1999). Numerical modeling of coupled fluid-flow/geomechanical behavior of reservoirs with stress-sensitive permeability. (Ph. D. Dissertation). New Mexico Institute of Mining and Technology, Socorro, New Mexico, US. 1999.spa
dc.relation.referencesOlatunji, O. O & Micheal, O. (July, 2017). Prediction of sand production from oil and gas reservoirs in the Niger Delta using Support Vector Machines SVMS: A binary classification approach. In SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria. https://doi.org/10.2118/189118-MS.spa
dc.relation.referencesPan, Y., Chen, Z., Sun, J., Bao, X., Xiao, L., & Wang, R. (2010, May). Research progress of modelling on cold heavy oil production with sand. In SPE Western Regional Meeting, Anaheim, California, US. https://doi.org/10.2118/133587-MS.spa
dc.relation.referencesPapamichos, E., & Stavropoulou, M. (1998). An erosion-mechanical model for sand production rate prediction. International Journal of Rock Mechanics and Mining Sciences, 4(35), 531-532. http://dx.doi.org/10.1016%2FS0148-9062(98)00106-5.spa
dc.relation.referencesPapamichos, E., Vardoulakis, I., Tronvoll, J. & Skjærstein, A. (2001). Volumetric sand production model and experiment. International Journal for Numerical and Analytical Methods in Geomechanics. (25) 789-808. https://doi.org/10.1002/nag.154.spa
dc.relation.referencesPapanastasiou, P. C., & Vardoulakis, I. G. (1992). Numerical treatment of progressive localization in relation to borehole stability. International Journal for Numerical and Analytical Methods in Geomechanics, 16 (6), 389-424. https://doi.org/10.1002/nag.1610160602.spa
dc.relation.referencesPerkins, T. K., & Weingarten, J. S. (1988, October). Stability and failure of spherical cavities in unconsolidated sand and weakly consolidated rock. In SPE Annual Technical Conference and Exhibition, Houston, Texas, USA. https://doi.org/10.2118/18244-MS.spa
dc.relation.referencesPetrosky, G. E. Jr. (1990). PVT Correlations for Gulf of Mexico crude oils. (M.Sc. thesis). University of Southwestern Louisiana, Lafayette, Louisiana, US.spa
dc.relation.referencesPooladi-Darvish, M., & Firoozabadi, A. (1999). Solution-gas drive in heavy oil reservoirs. Journal of Canadian Petroleum Technology, 38(04). https://doi.org/10.2118/99-04-06.spa
dc.relation.referencesPotts, D.M & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering, Theory. pp. 440. Thomas Telford Publishing. London, UK. ISBN 10: 0727727532.spa
dc.relation.referencesPuttagunta, V. R., Miadonye, A., & Singh, B. (1992). Viscosity-temperature correlation for prediction of kinematic viscosity of conventional petroleum liquid. United Kingdom.spa
dc.relation.referencesPuttagunta, V. R., Singh, B., & Miadonye, A. (1993). Correlation of bitumen viscosity with temperature and pressure. The Canadian Journal of Chemical Engineering. https://doi.org/10.1002/cjce.5450710315.spa
dc.relation.referencesRahmati, H., Jafarpour, M., Azadbakht, S., Nouri, A., Vaziri, H., Chan, D., & Xiao, Y. (2013). Review of sand production prediction models. Journal of Petroleum Engineering. http://dx.doi.org/10.1155/2013/864981.spa
dc.relation.referencesRamey Jr., H.J. (1964). Rapid Methods for Estimating Reservoir Compressibilities. J Pet Technol 16: 447–454.https://doi.org/10.2118/772-PA.spa
dc.relation.referencesRamos, G. G., Katahara, K. W., Gray, J. D., & Knox, D. J. W. (1994, August). Sand production in vertical and horizontal wells in a friable sandstone formation, North Sea. In Rock Mechanics in Petroleum Engineering, Delft, Netherlands. https://doi.org/10.2118/28065-MS.spa
dc.relation.referencesRangrizshokri, A. (2015). Evaluation of post-CHOPS (Cold Heavy Oil Production with Sands) Enhanced Oil Recovery Methods. (Ph.D. Dissertation). University of Alberta, Edmonton, Alberta, Canada. https://doi.org/10.7939/R3HX15Z95.spa
dc.relation.referencesRisnes, R. & Bratli, R. K. (1979). Stability and failure of sand arches. In the 54th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, Las Vegas, Nevada, US, September.spa
dc.relation.referencesRisnes, R., Bratli, R. K., & Horsrud, P. (1982). Sand stresses around a wellbore. Society of Petroleum Engineers Journal, 22(06), 883-898. https://doi.org/10.2118/9650-PA.spa
dc.relation.referencesRivero, J. A., Coskuner, G., Asghari, K., Law, D. H.-S., Pearce, A., Newman, R., Birchwood, R., Zhao, J. & Ingham, J. (2010, September). Modeling CHOPS using a coupled flow-geomechanics simulator with nonequilibrium foamy-oil reactions: A multiwell history matching study. In SPE Annual Technical Conference and Exhibition. Florence, Italy. https://doi.org/10.2118/135490-MS.spa
dc.relation.referencesRobertson, P. K., & Fear, C. E. (1997). Cyclic liquefaction and its evaluation based on the SPT and CPT. In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils, pp. 41-87.spa
dc.relation.referencesRomero, D. J., Fernandez, B., & Rojas, G. (2001). Thermodynamic Characterization of a PVT of Foamy Oil. SPE International Thermal Operations and Heavy Oil Symposium, 12-14 March, Porlamar, Margarita Island, Venezuela. https://doi.org/10.2118/69724-MS.spa
dc.relation.referencesRuifeng, W., Xintao, Y., Xueqing, T., Xianghong, W., Xinzheng, Z., Li, W., & Xiaoling, Y. (2011, December). Successful cold heavy oil production with sand (CHOPS) application in massive heavy oil reservoir in Sudan: A case study. In SPE Heavy Oil Conference and Exhibition, Kuwait City, Kuwait. https://doi.org/10.2118/150540-MS.spa
dc.relation.referencesSahni, A., Gadelle, F., Kumar, M., Tomutsa, L., & A. R. Kovscek (2006). Experiments and Analysis of Heavy-Oil Solution-Gas Drive. SPE Res Evaluation & Engineering, 7(3): 217–229. https://doi.org/10.2118/88442-PA.spa
dc.relation.referencesSalama, M. M., & Venkatesh, E. S. (1983, May). Evaluation of API RP 14E erosional velocity limitations for offshore gas wells. In Offshore Technology Conference, Houston, Texas, US. https://doi.org/10.4043/4485-MS.spa
dc.relation.referencesSanyal, T., & Al-Sammak, I. (2011; November). Analysis of the First CHOPS Pilot for Heavy Oil Production in Kuwait. In Canadian Unconventional Resources Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/148966-MS.spa
dc.relation.referencesShafiei, A. & Dusseault, M. B. (2013). Geomechanics of thermal viscous oil production in sandstones. Journal of Petroleum Science and Engineering, 103: 121-139, ISSN 0920-4105. https://doi.org/10.1016/j.petrol.2013.02.001.spa
dc.relation.referencesSheng, J.J., Hayes, R.E., Maini, B.B., & Tortike, W.S. (1999) Modeling foamy oil flow in porous media. Transport in Porous Media, 35: 227–258. https://doi.org/10.1023/A:1006523526802.spa
dc.relation.referencesSherif, F.N. (2012). MATLAB FEM Code – From elasticity to plasticity. Master thesis. Norwegian University of Science and Technology. Trondheim, Norway.spa
dc.relation.referencesSheng, J. J., Maini, B. B., Hayes, R. E., & Tortike, W. S. (1999a). Critical review of foamy oil flow. Transport in Porous Media, 35 (2): 157-187. https://doi.org/10.1023/A:1006575510872.spa
dc.relation.referencesSheng, J. J., Hayes, R. E., Maini, B. B., & Tortike, W. S. (1999b). Modelling foamy oil flow in porous media. Transport in Porous Media, 35 (2): 227-258. https://doi.org/10.1023/A:1006523526802.spa
dc.relation.referencesSheng, J. J., Maini, B. B., Hayes, R. E., & Tortike, W. S. (1999c). A non-equilibrium model to calculate foamy oil properties. Journal of Canadian Petroleum Technology, 38 (04). https://doi.org/10.2118/99-04-04.spa
dc.relation.referencesSmith, G. E. (1988). Fluid flow and sand production in heavy-oil reservoirs under solution-gas drive. SPE Production Engineering, 3 (02): 169-180. https://doi.org/10.2118/15094-PA.spa
dc.relation.referencesSquires, A. (1993, March). Inter-well tracer results and gel blocking program. In 10th Annual Heavy Oil and Oil Sands Technical Symposium, Calgary, Alberta, Canada.spa
dc.relation.referencesStanding, M. B. (1947). A Pressure-Volume-Temperature correlation for mixtures of California oils and gases. API Drilling and Production Practice, 275-287.spa
dc.relation.referencesStanding, M. B. (1981). Volumetric and phase behavior of oil field hydrocarbon systems. 9th edition. Richardson, Texas, US. Society of Petroleum Engineers of AIME.spa
dc.relation.referencesSutton, R. P. (1985). Compressibility factors for high-molecular-weight reservoir gases. Presented at 1985 SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, US. 22–25 September. https://doi.org/10.2118/14265-MS.spa
dc.relation.referencesSutton, R. P. (2006). Oil system correlations. Petroleum Engineering Handbook, Volume I – General Engineering, Chapter 6, Ed. John R. Fanchi: 257 – 331. Society of Petroleum Engineers. ISBN: 978-1-55563-108-6.spa
dc.relation.referencesTan, T., Slevinsky, R., & Jonasson, H. (2005). A new methodology for modelling of sand wormholes in field scale thermal simulation. Journal of Canadian Petroleum Technology, 44(04). https://doi.org/10.2118/05-04-01.spa
dc.relation.referencesTang, G. Q., Sahni, A., Gadelle, F., Kumar, M., & Kovscek, A. R. (2006). Heavy-oil solution gas drive in consolidated and unconsolidated rock. SPE Journal, 11 (02): 259-268. https://doi.org/10.2118/87226-PA.spa
dc.relation.referencesTang, G. Q., Temizel, C., & Kovscek, A. R. (2006, September). The Role of Oil Chemistry on Cold Production of Heavy Oils. In SPE Annual Technical Conference and Exhibition, San Antonio, Texas, US. https://doi.org/10.2118/102365-MS.spa
dc.relation.referencesTerzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.spa
dc.relation.referencesTremblay, B., Sedgwick, G., & Vu, D. (1999). CT imaging of wormhole growth under solution-gas drive. SPE Res Eval & Eng 2 (1999): 37-45. https://doi.org/10.2118/54658-PA.spa
dc.relation.referencesTremblay, B., & Oldakowski, K. (2003). Modeling of wormhole growth in cold production. Transport in porous media, 53(2): 197-214. https://doi.org/10.1023/A:1024017622009.spa
dc.relation.referencesTremblay, B. (2005). Modelling of sand transport through wormholes. Journal of Canadian Petroleum Technology, 44 (4). https://doi.org/10.2118/05-04-06.spa
dc.relation.referencesUddin, M. (2005). Numerical studies of gas exsolution in a live heavy oil reservoir. In SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Alberta, Canada. https://doi.org/10.2118/97739-MS.spa
dc.relation.referencesVan den Hoek, P.J., Kooijman, A.P., De Bree, P.H., Kenter, C.J., Sellmeyer, C.J., & Willson, S.M. (2000). Mechanisms of downhole sand cavity re-stabilization in weakly consolidated sandstones. In SPE European Petroleum Conference. Paris, France. https://doi.org/10.2118/65183-MS.spa
dc.relation.referencesVan den Hoek, P. J., Hertogh, G. M. M., Kooijman, A. P., De Bree, P., Kenter, C. J., & Papamichos, E. (2000). A new concept of sand production prediction: theory and laboratory experiments. SPE Drilling & Completion, 15(04), 261-273. https://doi.org/10.2118/65756-PA.spa
dc.relation.referencesVanderheyden, B., Jayaraman, B., Ma, X., & Zhang, D. (2013, February). Multiscale simulation of CHOPS wormhole networks. In SPE Reservoir Simulation Symposium, The Woodlands, Texas, US. https://doi.org/10.2118/163603-MS.spa
dc.relation.referencesVardoulakis, I., Stavropoulou, M., & Papanastasiou, P. (1996). Hydro-mechanical aspects of the sand production problem. Transport in porous media, 22 (2): 225-244. https://doi.org/10.1007/BF01143517.spa
dc.relation.referencesVazquez, M. & Beggs, H. D. (1980). Correlations for fluid physical property prediction. Journal Petroleum Technology, 32(6): 968-970. http://dx.doi.org/10.2118/6719-PA.spa
dc.relation.referencesVeeken, C. A. M., Davies, D. R., Kenter, C. J., & Kooijman, A. P. (1991, October). Sand production prediction review: developing an integrated approach. In SPE annual technical conference and exhibition, Dallas, Texas, USA. https://doi.org/10.2118/22792-MS.spa
dc.relation.referencesVelarde, J., Blasingame, T.A., & McCain Jr., W.D. (1997). Correlation of black oil properties at pressures below bubble point pressure - A new approach. In Annual Technical Meeting of CIM, Calgary, Alberta, Canada, 8–11 June. http://dx.doi.org/10.2118/97-93.spa
dc.relation.referencesWalton, I.C., Atwood, D.C., Halleck, P.M. & Bianco, L.C.B. (2002). Perforating unconsolidated sands: An experimental and theoretical investigation. SPE Drilling & Completion, 17(03): 141–150. https://doi.org/10.2118/79041-PA.spa
dc.relation.referencesWan, R.G., Chan, D.H., & Kosar, K.M. (1991). A constitutive model for the effective stress-strain behaviour of oil sands. Journal of Canadian Petroleum Technology, 30 (04): 89-98. https://doi.org/10.2118/91-04-08.spa
dc.relation.referencesWan, R. G., Liu, Y., & Wang, J. (2006). Prediction of volumetric sand production using a coupled geomechanics-hydrodynamic erosion model. Journal of Canadian Petroleum Technology, 45 (04). https://doi.org/10.2118/06-04-01.spa
dc.relation.referencesWan, R.G. & Wang, J. (2004a). Analysis of sand production in unconsolidated oil sand using a coupled erosional-stress-deformation model. Journal of Canadian Petroleum Technology, 43: 47–53. https://doi.org/10.2118/04-02-04.spa
dc.relation.referencesWan, R. G., & Wang, J. (2004b). Modelling of sand production and wormhole propagation in an oil saturated sand pack using stabilized finite element methods. Journal Canadian International Petroleum Conference, 43 (04). https://doi.org/10.2118/04-04-04.spa
dc.relation.referencesWang, Y., & Chen, C. Z. (2004). Simulating cold heavy oil production with sand by reservoir-wormhole model. Journal of Canadian Petroleum Technology, 43(04). https://doi.org/10.2118/04-04-03.spa
dc.relation.referencesWang, H., & Sharma, M.M. (2016, September). A fully 3-D, multi-phase, poro-elasto-plastic model for sand production. In SPE Annual Technical Conference and Exhibition, Dubai, UAE. https://doi.org/10.2118/181566-MS.spa
dc.relation.referencesWang, J., Walters, D., Wan, R.G., & Settari, A. (2005, June). Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes. In Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS), Anchorage, Alaska, US.spa
dc.relation.referencesWang, J., Walters, D.A., Settari, A., & Wan, R.G. (2006, November). Simulation of cold heavy oil production using an integrated modular approach with emphasis on foamy oil flow and sand production effects. In 1ST Heavy Oil Conference, Beijing, China.spa
dc.relation.referencesWang, J., Walters, D., Settari, A., Wan, R.G., & Liu, Y.N. (2004, June). Sand production and instability analysis in a wellbore using a fully coupled reservoir-geomechanics model, Gulf rocks. In 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, US.spa
dc.relation.referencesWang, Y., Chen, C. C., & Dusseault, M. B. (2001, March). An integrated reservoir model for sand production and foamy oil flow during cold heavy oil production. In SPE International Thermal Operations and Heavy Oil Symposium. Porlamar, Margarita Island, Venezuela. https://doi.org/10.2118/69714-MS.spa
dc.relation.referencesWang, R., Qin, J., Chen, Z., & Zhao, M. (2008). Performance of drainage experiments with Orinoco Belt heavy oil in a long laboratory core in simulated reservoir conditions. SPE Journal, 13(04), 474-479. https://doi.org/10.2118/104377-PA.spa
dc.relation.referencesWang, J., Yale, D., & Dasari, G. (2011). Numerical modeling of massive sand production. In SPE Annual Technical Conference and Exhibition, October. Denver, Colorado, US. https://doi.org/10.2118/147110-MS.spa
dc.relation.referencesWang, Y., & Xue, S. (2004). Simulating cold production by a coupled reservoir-geomechanics model with sand erosion. Journal of Canadian Petroleum Technology, 43(05). https://doi.org/10.2118/04-05-03.spa
dc.relation.referencesWatson, K. M. & Nelson, E. F. (1933). Improved methods for approximating critical and thermal properties of petroleum. Industrial and Engineering Chemistry, 25: 880.spa
dc.relation.referencesWatson, K. M., Nelson, E. F., & Murphy, G. B. (1935). Characterization of petroleum fractions. Industrial and Engineering Chemistry, 7: 1460–1464.spa
dc.relation.referencesWeingarten, J. S., & Perkins, T. K. (1995). Prediction of sand production in gas wells: methods and Gulf of Mexico case studies. Journal of Petroleum Technology, 47(07), 596-600. https://doi.org/10.2118/24797-PA.spa
dc.relation.referencesWhitson, C. H. (1983). Characterizing hydrocarbon plus fractions. SPE Journal, 23(4): 683-694. http://dx.doi.org/10.2118/12233-PA.spa
dc.relation.referencesWong, R. C. K (2003). A model for strain-induced permeability anisotropy in deformable granular media. Canadian Geotechnical Journal, 40(1), 95–106. https://doi.org/10.1139/t02-088.spa
dc.relation.referencesWu, B., Choi, S. K., Denke, R., Barton, T., Viswanathan, C., Lim, S., Zamberi, M., Shaffee, S., Fadhlan, N., Johar, Z., Jadid, M. B., & Madon, B. B. (2016, March). A new and practical model for amount and rate of sand production estimation. In Offshore Technology Conference Asia, Kuala Lumpur, Malaysia. https://doi.org/10.4043/26508-MS.spa
dc.relation.referencesXiao, L. (2012). Study on wormhole coverage, foamy oil phenomenon, and well interference of cold heavy oil production with sand wells. (Master thesis). The University of Regina,spa
dc.relation.referencesXiao, L., & Zhao, G. (2012, June). A novel approach for determining wormhole coverage in CHOPS wells. In SPE Heavy Oil Conference Canada, Calgary, Alberta, Canada. https://doi.org/10.2118/157935-MS.spa
dc.relation.referencesXiao, L., & Zhao, G. (2013, June). Integrated study of foamy oil flow and wormhole structure in CHOPS through transient pressure analysis. In SPE Heavy Oil Conference-Canada, Calgary, Alberta, Canada. https://doi.org/10.2118/165538-MS.spa
dc.relation.referencesXiao, L., & Zhao, G. (2017). Estimation of CHOPS wormhole coverage from rate/time flow behaviors. SPE Reservoir Evaluation & Engineering, 20 (04), 0957-0973. https://doi.org/10.2118/157935-PA.spa
dc.relation.referencesYang, Z., Li, X., Xu, X., Shen, Y., & Shi, X. (2021, June). Development Features of Cold Production with Horizontal Wells in a Foamy Extra-Heavy Oil Reservoir. In SPE Trinidad and Tobago Section Energy Resources Conference, Virtual. https://doi.org/10.2118/200974-MS.spa
dc.relation.referencesYang, J. Y., Tremblay, B., & Babchin, A. (1999, March). A wormhole network model of cold production in heavy oil. In International Thermal Operations/Heavy Oil Symposium, Bakersfield, California, US. https://doi.org/10.2118/54097-MS.spa
dc.relation.referencesYeung, K. C. (1995, February). Cold Flow Production of Crude Bitumen at the Burnt Lake Project, Northeastern Alberta. In 6th UNITAR conference on heavy crude and tar sands on fueling for a clean and safe environment, Houston, Texas, US.spa
dc.relation.referencesYi, X. (2001, June). Gas Well Sand Production Modelling With Coupled Geomechanical-Gas/Sand Flow Model. In Canadian International Petroleum Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/2001-050.spa
dc.relation.referencesYi, X., Valkó, P. P. & Russell, J. E. (2005). Effect of Rock Strength Criterion on the Predicted Onset of Sand Production. International Journal of Geomechanics. Vol. 5, Issue 1. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(66).spa
dc.relation.referencesYoung, J. P., Mathews, W. L., & Hulm, E. (2010). Alaskan Heavy Oil: First CHOPS at a vast, untapped arctic resource. In SPE Western Regional Meeting, 27-29 May, Anaheim, California, USA. https://doi.org/10.2118/133592-MS.spa
dc.relation.referencesYu, H., & Leung, J. Y. (2020). A Sand-Arch Stability Constrained Dynamic Fractal Wormhole Growth Model for Simulating Cold Heavy-Oil Production with Sand. SPE Journal, 25 (06): 3440-3456. https://doi.org/10.2118/193893-PA.spa
dc.relation.referencesZhou, X., Yuan, Q., Zeng, F, Zhang, L. & Jiang, S. (2017) Experimental study on foamy oil behavior using a heavy oil‒methane system in the bulk phase. Journal of Petroleum Science and Engineering, Vol.158, pp 309-321. ISSN 0920-4105. https://doi.org/10.1016/j.petrol.2017.07.070.spa
dc.relation.referencesZimmerman, W., Somerton, W. H., & King, M. S. (1986). Compressibility of porous rocks. Journal of Geophysical Research, 91(6), 765–777. https://doi.org/10.1029/JB091iB12p12765.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembArenaspa
dc.subject.lembSandeng
dc.subject.proposalCold heavy oil production with sandeng
dc.subject.proposalCHOPSeng
dc.subject.proposalSand productionspa
dc.subject.proposalHeavy oileng
dc.subject.proposalProducción en frío de crudo pesado con arenaspa
dc.subject.proposalProducción de arenaspa
dc.subject.proposalCrudo pesadospa
dc.titleNumerical modeling of massive sand production during cold heavy oil productioneng
dc.title.translatedModelamiento numérico de la producción masiva de arena durante la producción en frío de crudo pesadospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameEcopetrolspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43578774.2023.pdf
Tamaño:
12.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: