Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley

dc.contributor.advisorZapata Medina, David Guillermo
dc.contributor.advisorAparicio Ortube, Alan Jaret
dc.contributor.authorValencia Cifuentes, Daniel Fernando
dc.contributor.orcidAparicio Ortube, Alan Jaret [0000-0003-0114-7779]spa
dc.contributor.orcidZapata Medina, David Guillermo [0000-0001-8868-8740]spa
dc.date.accessioned2023-06-29T16:07:35Z
dc.date.available2023-06-29T16:07:35Z
dc.date.issued2023-06
dc.descriptionilustraciones, diagramas
dc.description.abstractThe dynamic growth shown by cities has generated an accelerated reduction in useful areas and therefore the need to optimize space. This implies the need to execute works with special conditions such as important excavations, often surrounded by infrastructure that is prone to suffer affectations in its functionality and stability. In these cases, a stress-strain behavior evaluation of the soil is necessary. Geotechnical modeling has become the main engineers resource, providing a tool to numerically reproduce or predict the soil behavior. Advanced constitutive models which account for soil anisotropy, stress history, hardening-softening, among other soil characteristics, have been developed in the last decades. Nevertheless, the state of local practice shows that the vast majority of analyses are approached through limit equilibrium theories, or the application of very simple constitutive models. The application of these methods leads to not very accurate predictive results. Another important identified limitation is the lack of studies focused on the mechanical behavior of residual soils and the development and validation of constitutive models, which are often carried out on sedimentary soils. In this work an evaluation of the capabilities of three (3) constitutive models to reproduce the mechanical behavior of an Igneous residual soil in south of The Aburrá Valley is presented. Starting from advanced available residual soil characterization experimental data, the predictive capacity of the evaluated constitutive models was evaluated against very small and large strain responses, drain and undrained conditions, and different shearing paths, considering one single set of constitutive parameters per model. Inverse analysis techniques were applied in order to identify correctly the constitutive parameters that could not be obtained from the experimental data, demonstrating the high applicability of these tools on geotechnical modeling.eng
dc.description.abstractEl crecimiento dinámico de las ciudades ha generado una reducción de áreas útiles, haciendo necesaria la optimización de espacio, lo que implica la ejecución de obras con condiciones especiales como excavaciones de gran magnitud, frecuentemente cerca de infraestructura existente propensa a sufrir daños. En estos casos se hace necesaria la evaluación del desempeño esfuerzo-deformación del suelo. La modelación numérica se ha convertido en el principal recurso de los ingenieros para predecir el comportamiento del suelo. A pesar de que los modelos constitutivos avanzados son capaces de reproducir aspectos del comportamiento del suelo tales como su historia de carga, anisotropía, entre otros, el estado de la práctica local se desarrolla todavía bajo teorías de equilibrio límite o modelos constitutivos muy simples, cuya aplicación resulta en predicciones poco acertadas. Otra importante falencia identificada es la falta de estudios enfocados en el comportamiento mecánico de suelos residuales, y el desarrollo y validación de modelos constitutivos aplicados a estos, que en la mayoría de casos se enfocan en suelos de origen sedimentario. En este trabajo se evalúa la capacidad de tres modelos constitutivos para reproducir el comportamiento mecánico de un suelo de origen residual de roca Ígnea del sur del Valle de Aburrá. A partir de datos experimentales avanzados de caracterización mecánica se evaluó la capacidad predictiva de los modelos ante respuesta en el rango de muy bajas y largas deformaciones, condiciones drenadas y no drenadas, y diferentes trayectorias de falla, considerando un solo set de parámetros por cada modelo. Se implementaron técnicas de análisis inverso para definir los parámetros que no pudieron ser identificados a partir de los datos experimentales disponibles, demostrando la alta aplicabilidad de este tipo de herramientas en la modelación geotécnica. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaModelación numéricaspa
dc.description.researchareaSimulación Numérica del Suelospa
dc.format.extent154 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84108
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2007). Plan de Ordenación y Manejo de la Cuenca del río Aburrá, POMCA.spa
dc.relation.referencesAlonso, E., Gens, A., and Josa, A. (1990). “A constitutive model for partially saturated soils.” Géotechnique, 40(3), 405–430.spa
dc.relation.referencesAndresen, A., and P. Kolstad. (1979). “The NGI 54-mm sampler for undisturbed sampling of clays and representative sampling of coarser materials.” In Proc., of the Int. Conf. on Soil Sampling, 13-21. Oslo, Norway: Norwegian Geotechnical Institute.spa
dc.relation.referencesArboleda-Monsalve, L. (2014). “Performance, Instrumentation and Numerical Simulation of One Museum Park West Excavation.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.spa
dc.relation.referencesArboleda-Monsalve, L., Teng, F., Kim, T. and Finno, R. (2017). “Numerical Simulation of Triaxial Stress Probes and Recent Stress-History Effects of Compressible Chicago Glacial Clays.” Journal of Geotechnical and Geoenvironmental Engineering. 143(7) 04017029.spa
dc.relation.referencesAtkinson, J. H., Richardson, D., and Stallebrass, S. E. (1990). “Effect of recent stress history on the stiffness of overconsolidated soil.” Géotechnique, 40(4), 531–540.spa
dc.relation.referencesBaba, K., Bahi, L., Ouadif, L., and Akhssas, A. (2012). "Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods Applied to a Railway in the Moroccan Rif" Open Journal of Civil Engineering, 2(1), 27-32.spa
dc.relation.referencesBaudet, B. (2001). “Modeling effects of structure in soft natural clays.” PhD thesis, City University, London.spa
dc.relation.referencesBaudet, B.A., Stallebrass, S.E. (2004). “A constitutive model for structured clays”. Géotechnique, 54(4), 269–278.spa
dc.relation.referencesBecker, D. E., J. H. A. Crooks, K. Been, and M. G. Jefferies. (1987). “Work as a criterion for determining in situ and yield stresses in clays.” Can. Geotech. J., 24 (4), 549–564.spa
dc.relation.referencesBenz, T. (2006). Small-Strain Stiffness of Soils and its Numerical Consequences. PhD thesis, Universität Stuttgart.spa
dc.relation.referencesBoulanger, R. W., and Ziotopoulou, K. (2018). “PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications.” Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp.spa
dc.relation.referencesBrinkgreve, RBJ. (2005). “Selection of soil models and parameters for geotechnical engineering application”. Geo-Frontiers Congress, Austin, Texas, Soil Constitutive Models: American Society of Civil Engineers (ASCE), Reston,Virginia, 69-98.spa
dc.relation.referencesBrinkgreve, R.B.J., Engin, E. and Swolfs, W.M. (2017). Plaxis 2D manual. Rotterdam, Netherlands, Balkema.spa
dc.relation.referencesCalvello, M. (2002). “Inverse Analysis of a Supported Excavation through Chicago Glacial Clays.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.spa
dc.relation.referencesCallisto, L., and Rampello, S. (2002). “Shear strength and small-strain stiffness of a natural clay under general stress conditions.“ Géotechnique, 52(8), 547–560.spa
dc.relation.referencesChiu, C. F., and C. W. W. Ng. (2014). “Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite.” Eng. Geol., 179, 76–89.spa
dc.relation.referencesCotecchia, F., Chandler, J. (2000). “A general framework for the mechanical behaviour of clays.” Géotechnique, 50(4), 431–447.spa
dc.relation.referencesCoop, M. R., and Cotecchia, F. (1995). “The compression of sediments at the archeological site of Sibari.” The interplay between geotechnical engineering and engineering geology: XI ECSMFE; proceedings of the eleventh European Conference on Soil Mechanics and Foundation Engineering: Vol. 8: Case histories demonstrating interplay, Danish Geotechnical Society, Copenhagen, 19-26.spa
dc.relation.referencesDearman, R. (1991). Engineering Geological Mapping, Butterworth-Heinemann Ltda., Oxford.spa
dc.relation.referencesDesai, C.S., and Zaman, M. (2014). Advanced Geotechnical Engineering, Soil–Structure Interaction Using Computer and Material Models., Taylor & Francis Group, Florida.spa
dc.relation.referencesEllison, K.C., Soga, K., and Simpson, B. (2012). “A strain space soil model with evolving stiffness anisotropy.” Géotechnique, 62(7), 627–641.spa
dc.relation.referencesFinno, R. J., and Kim, T. (2012). “Effects of Stress Path Rotation Angle on Small Strain Responses.” J. Geotech. Geoenvironmental Eng., 138(4), 526–534.spa
dc.relation.referencesFinno, R. J., and Cho, W. (2011). “Recent stress history effects on compressible Chicago glacial clays.” J. Geotech. Geoenviron. Eng.,137(3), 197–207.spa
dc.relation.referencesGaleano, D.I. (2020). “Estimation of Dynamic Parameters in Residual Soils Derived from Crystalline Rocks Based on Geophysical Multichannel Analysis of Surface Waves tests.” Doctor of Philosophy Dissertation, Universidad Nacional de Colombia, Medellin, Colombia.spa
dc.relation.referencesGraham, J., and Houlsby, G. T. (1983). “Anisotropic elasticity of a natural clay.” Géotechnique, 33(2), 354-354.spa
dc.relation.referencesGudehus, G. (1996). “A comprehensive constitutive Equation for granular materials.” Soils and Foundations, 36(1), 1–12.spa
dc.relation.referencesGudehus, G., Amorosi., A., Gens, A., Herle, I., Kolymbas, D., Mašín, D., Muir Wood, D., Nova, R., Niemunis, A., Pastor, M., Tamagnini, C., and Viggiani, G. (2008). “The soilmodels.infoproject.” International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1571-1572.spa
dc.relation.referencesHardin, B.O., Drnevich, V.P. (1972). “Shear modulus and damping in soils: Design equations and curves.” Journal of the Soil Mechanics and Foundations Division, 98(SM7), 667–692.spa
dc.relation.referencesHájek, V., Mašín, D., Boháč, J. (2009). “Capability of constitutive models to simulate soils with different OCR using a single set of parameters.” Computers and Geotechnics, 36(4), 655-664.spa
dc.relation.referencesHerle, I., and Kolymbas, D. (2004). “Hypoplasticity for soils with low friction angles.” Computers and Geotechnics, 31(5), 365–373.spa
dc.relation.referencesHill, M. C. (2000). “Methods and Guidelines for Effective Model Calibration.” Joint Conference on Water Resource Engineering and Water Resources Planning and Management, (Ed: Hotchkiss, R.H., and Glade, M.), Pullman, Washington, 124-134.spa
dc.relation.referencesHsiung, B.C.D. and Dao, S.D. (2014). “Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands”. Electronic Journal of Geotechnical Engineering, 19: 17325-17344.spa
dc.relation.referencesJaky, J. (1944). “A nyugalmi nyomas tenyezoje” [The coefficient of earth pressure at rest]. [In Hungarian]. Journal of the Society of Hungarian Engineers and Architects, 78(22), 355–358.spa
dc.relation.referencesJardine, R. J. (1992). “Some observations on the kinematic nature of soil stiffness.” Soils Found., 32(2), 111–124.spa
dc.relation.referencesKim, S. (2018). “Observed Performance and Inverse Analysis of a Sheet Pile-Supported Excavation in Chicago Clays” Doctor of Philosophy Dissertation, Northwestern University, Illinois, U.S.spa
dc.relation.referencesKim, S., and Finno, R. J (2020). “Inverse analysis of Hypoplastic Clay model for computing deformations caused by excavations” Computers and Geotechnics, 122, 103499.spa
dc.relation.referencesKnabe, T., Schweiger, H. F. and Schanz, T. (2012). “Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem”. Can. Geotech. J., 49(2), 170–183.spa
dc.relation.referencesKolymbas, D. (1978). “Eine konstitutive Theorie für Böden und andere körnige Stoffe”. Ph.D. Thesis, University of Karlsruhe.spa
dc.relation.referencesKrahn, J. (2003). “The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses”. Can. Geotech. J., 40(3), 643-660.spa
dc.relation.referencesLadd, C. C., and D. J. DeGroot. (2003). “Recommended practice for soft ground site characterization.” In Proc., of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 3–57. MIT, Cambridge: Massachusetts Institute of Technology.spa
dc.relation.referencesLade, P.V. (2005). “Overview of Constitutive Models for Soils”. ASCE Geotechnical Special Publication No.128, Soil Constitutive Models: Evaluation, Selection and Calibration, Geo-Frontiers Congress 2005, Austin, Texas, 1-34.spa
dc.relation.referencesLanier, J., Caillerie, D., Chambon, R., Viggiani, G., Bésuelle, P., and Desrues, J. (2004). “A general formulation of hypoplasticity.” International Journal for Numerical and Analytical Methods in Geomechanics, 28(15), 1461-1478.spa
dc.relation.referencesLim, J. X., Chong, S. Y., Tanaka, Y., and Lee, M. L. (2019). “CI and CK0 Triaxial Tests for Tropical Residual Soil in Malaysia.” 1st Malaysian Geotechnical Society (MGS) and Geotechnical Society of Singapore (GeoSS) Conference: Geotechnics in Urban Infrastructure, Petaling Jaya, Malaysia.spa
dc.relation.referencesLiu Xinyu, Xianwei Zhang, Lingwei Kong, Xinming Li, Gang Wang. (2021). “Effect of cementation on the small-strain stiffness of granite residual soil”. Soils and Foundations, 61(2), 520-532.spa
dc.relation.referencesLunne, T., T. Berre, K. H. Andersen, S. Strandvik, and M. Sjursen. (2006). “Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays.” Can. Geotech. J., 43 (7), 726-750.spa
dc.relation.referencesMašín, D. (2005). “A Hypoplastic constitutive model for clays.” International Journal for Numerical and Analytical Methods in Geomechanics, 29(4), 311–336.spa
dc.relation.referencesMašín, D., and Herle. I., (2005). “State boundary surface of a Hypoplastic model for clays.” Computers and Geotechnics, 32(6), 400–410.spa
dc.relation.referencesMašín, D. (2007). “A Hypoplastic constitutive model for clays with meta-stable structure”. Can. Geotech. J., 44(3), 363–375.spa
dc.relation.referencesMašín, D. (2013). “Clay hypoplasticity with explicitly defined asymptotic states.” Acta Geotechnica, 8(5), 481–496.spa
dc.relation.referencesMašín, D. (2015). Hypoplasticity for practical applications. PhD Course on hypoplasticity. Zhejiang University.spa
dc.relation.referencesMašín, D. (2017). “PLAXIS implementation of Hypoplasticity.” 35.spa
dc.relation.referencesMoré, J.J. (1978). “The Levenberg-Marquardt algorithm: Implementation and theory.” Numerical Analysis, Springer, Berlin, Heidelberg (Ed: Watson, G. A.), Dundee, Scotland, 105-116.spa
dc.relation.referencesMuir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.spa
dc.relation.referencesNg., C. W. W., Fung, W. T, Cheuk, C. Y., and Zhang. L. (2004). “Influence of Stress Ratio and Stress Path on Behavior of Loose Decomposed Granite.” Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 36–44.spa
dc.relation.referencesNg, C. W. W., D. B. Akinniyi, and C. F. Chiu. (2019). “Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength.” Eng. Geol., 249, 235-240.spa
dc.relation.referencesNiemunis, A., and Herle, I. (1997). “Hypoplastic model for cohesionless soils with elastic strain range.” Mechanics of Cohesive-Frictional Materials, 4(2), 279–299.spa
dc.relation.referencesNiemunis, A. (2002). "Extended Hypoplastic models for soils." Habilitation Thesis, Ruhr-University, Bochum.spa
dc.relation.referencesNiemunis, A. (2003). “Anisotropic effects in hypoplasticity.” 3rd International Symposium on Deformation Characteristics of Geomaterials, (Ed: Di Benedetto et al.), Lyon, France, 1211-1217.spa
dc.relation.referencesPoeter, E.P. and Hill, M.C. (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey Water-Resources, Denver, Colorado.spa
dc.relation.referencesRahardjo, H., B. H. Ong, and E. C. Leong. (2004). “Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests.” Can. Geotech J., 41 (3), 421–436.spa
dc.relation.referencesRocchi, I., and Coop., M. R. (2015). “The effects of weathering on the physical and mechanical properties of a granitic saprolite.” Géotechnique, 65(6), 482–493.spa
dc.relation.referencesRoscoe, K.H., Burland, J.B. (1968). “On the generalized stress-strain behavior of “wet” clay”. In: Heyman & Leckie, Engineering Plasticity, Cambridge University Press. 535–609.spa
dc.relation.referencesRoscoe, K.H., Schofield, A.N., Thurairajah, A. (1963). “Yielding of clays in states wetter than critical”. Géotechnique. 13(3), 211–240.spa
dc.relation.referencesSarabia, F. (2012). "Hypoplastic Constitutive Law Adapted to Simulate Excavations in Chicago Glacial Clays." Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.spa
dc.relation.referencesSchanz, T., Vermeer, A., and Bonnier, P. (1999). “The hardening soil model: formulation and verification.” Beyond 2000 in Computational Geotechnics: 10 Years of Plaxis International, Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, Netherlands, 281-296.spa
dc.relation.referencesSchofield, A.N., and Wroth, C.P. (1968). Critical state soil mechanics, McGraw-Hill, London.spa
dc.relation.referencesSchweiger, H.F. (2008), The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanics and Tunnelling, 1(5), 336-344.spa
dc.relation.referencesShu, R., Kong, L., Liu, B., Wang, J. (2021). “Stress–Strain Strength Characteristics of Undisturbed Granite Residual Soil Considering Different Patterns of Variation of Mean Effective Stress”. Appl. Sci., 11, 1874.spa
dc.relation.referencesSmith, P. R., Jardine, R. J., and Hight, D. W. (1992). “The yielding of bothkennar clay.” Géotechnique, 42(2), 257–274.spa
dc.relation.referencesTeachavorasinskun, S., and Amornwithayalax, T. (2002). “Elastic shear modulus of Bangkok clay during undrained triaxial compression.” Géotechnique, 52(7), 537–540.spa
dc.relation.referencesThe MathWorks, I. (2020). Symbolic Math Toolbox, Natick, Massachusetts, United State. Available at: https://www.mathworks.com/help/symbolic/.spa
dc.relation.referencesTimoshenko, S., and Goodier J. N. (1951). Theory of elasticity, 2nd Ed., McGraw-Hill, New York.spa
dc.relation.referencesTi, K. S., Huat, B. B., Noorzaei, J., Jaafar, M. S., & Sew, G. S. (2009). “A review of basic soil constitutive models for geotechnical application”. Electronic Journal of Geotechnical Engineering, 14, 1-18.spa
dc.relation.referencesTorres, C., and Colmenares, J. E. (2018). "Influence of ConfiningStress on the Small Strain Stiffness of a Residual Soilunder K0 Conditions," PanAm Unsaturated Soils 2017. Dallas, Texas.spa
dc.relation.referencesUnited Nations Department of Economic and Social Affairs. (2019). Revision of world population prospects. New York: UN DESAspa
dc.relation.referencesVaughan, P. R., and Kwan, C. W. (1984). “Weathering, structure and in situ stress in residual soils.” Géotechnique, 34(1), 43–59.spa
dc.relation.referencesViana da Fonseca, A., Fernandes, M. M., and Cardoso, S. A. (1997). “Interpretation of a footing load test on a saprolitic soil from granite.” Géotechnique, 47(3), 633–651.spa
dc.relation.referencesViggiani, G., and Atkinson, J. H. (1995). “Stiffness of fine–grained soil at very small strains.” Géotechnique, 45(2), 245–265.spa
dc.relation.referencesvon Wolffersdorff., P. A. (1996). “A hypoplastic relation for granular materials with a predefined limit state surface.” Mechanics of Cohesive-Frictional Materials, 1(3), 251–271.spa
dc.relation.referencesWang, Y., and Ng. (2005). “Effects of stress paths on the small strain stiffness of completely decomposed granite.” Canadian Geotechnical Journal, 42 (4), 1200–1211.spa
dc.relation.referencesWesley, L.D. (1990). “Influence of structure and composition on residual soils.” Journal of Geotechnical Engineering, 116(4), 589–603.spa
dc.relation.referencesWesley, L. D. (2009). Fundamentals of soil mechanics for sedimentary and residual soils., John Wiley & Sons, Inc., New Jersey.spa
dc.relation.referencesWesley, L. D. (2010). Geotechnical engineering in residual soils., John Wiley & Sons, Inc., New Jersey.spa
dc.relation.referencesWichtmann, T. (2016). “Soil Behaviour under Cyclic Loading – Experimental Observations”, Constitutive Description and Applications. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am KIT. Habilitation. Helft 181.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembMecánica de suelosspa
dc.subject.lembSoil mechanicseng
dc.subject.proposalResidual soileng
dc.subject.proposalConstitutive modeleng
dc.subject.proposalInverse analysiseng
dc.subject.proposalHypoplasticityeng
dc.subject.proposalMechanical behavioreng
dc.subject.proposalNumerical modellingeng
dc.subject.proposalSuelo residualspa
dc.subject.proposalModelo constitutivospa
dc.subject.proposalAnálisis inversospa
dc.subject.proposalHipoplasticidadspa
dc.subject.proposalComportamiento mecánicospa
dc.subject.proposalModelación numéricaspa
dc.titleConstitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valleyeng
dc.title.translatedEvaluación de modelos constitutivos para predecir el comportamiento mecánico de un suelo residual de roca ígnea en el sur del Valle de Aburráspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040746260.2023.pdf
Tamaño:
5.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: