Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)

dc.contributor.advisorRíos Fresneda, Camilospa
dc.contributor.authorOmen Bolaños, Jesús Leonardospa
dc.date.accessioned2022-03-25T13:01:28Z
dc.date.available2022-03-25T13:01:28Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa sostenibilidad es un tema de gran preocupación en la industria de la construcción debido a los múltiples impactos negativos que esta tiene en el medio ambiente. La elevada huella de carbono de la industria de la construcción producto del consumo insostenible de materias primas, la producción de residuos de construcción y demolición (RCDs), la disposición de dichos residuos, las emisiones de dióxido de carbono en la producción de cemento portland son sólo algunos de los marcados impactos negativos de la industria. Siendo el concreto el material más usado en la industria de la construcción a nivel global, se hacen imperativos el pensamiento de economía circular y la gestión sostenible de los recursos naturales. En el presente trabajo de investigación se llevó a cabo una revisión sistemática de literatura en donde se obtuvieron 129 artículos a los cuales se les realizó análisis bibliométrico y metaanálisis. De la identificación de los vacíos en el conocimiento se propuso la fase experimental la cual comprendió la combinación de agregado fino reciclado (FRA) y materiales cementantes suplementarios (SCMs) –Ceniza volante (FA) y Humo de sílice (SF)- en ensayos de durabilidad como carbonatación, reacción álcali-sílice (RAS) y absorción; propiedades mecánicas y físicas entre ellas módulo de elasticidad, resistencia a compresión y densidad; y ensayos de manejabilidad. En este documento se expone el estado del arte de los RAC combinados con SCMs, su influencia en las propiedades en estado fresco, endurecido y en la durabilidad del concreto hidráulico; y las líneas futuras de investigación producto de la identificación de los vacíos en el conocimiento. (Texto tomado de la fuente).spa
dc.description.abstractSustainability is an issue of great concern in the construction industry due to the multiple negative impacts it has on the environment. The high carbon footprint of the construction industry as a result of the unsustainable consumption of raw materials, the production of construction and demolition waste (RCDs), the disposal of this waste, the carbon dioxide emissions in the production of Portland cement are just some of the marked negative impacts of the industry. Since concrete is the most used material in the construction industry globally, it is mandatory to think about circular economy and the sustainable management of natural resources. In the present research work, a systematic literature review was carried out in which 129 articles were obtained. Bibliometric analysis and meta-analysis were conducted. Thanks to the identification of the gaps in knowledge, the experimental phase was proposed, which included the combination of recycled fine aggregate (FRA) and supplementary cementitious materials (SCMs) - Fly ash (FA) and Silica fume (SF) -durability properties such as carbonation, alkali-silica reaction (RAS) and absorption were studied; mechanical and physical properties including modulus of elasticity, compressive strength and density; and workability were also investigated. This document presents the state of the art of RACs combined with SCMs, their influence on the properties in fresh, hardened state and on the durability of hydraulic concrete; and future lines of research resulting from the identification of gaps in knowledge.eng
dc.description.curricularareaArquitectura y Urbanismospa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Construcciónspa
dc.description.methodsRevisión sistemática de literaturaspa
dc.description.researchareaMateriales y sostenibilidadspa
dc.format.extentxx, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81384
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Artesspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Artes - Maestría en Construcciónspa
dc.relation.referencesAbukersh, S. A., & Fairfield, C. A. (2011). Recycled aggregate concrete produced with red granite dust as a partial cement replacement. Construction and Building Materials, 25(10), 4088–4094. https://doi.org/10.1016/j.conbuildmat.2011.04.047spa
dc.relation.referencesACI. (2000). Cement and Concrete Terminology Reported. 1–73spa
dc.relation.referencesAdams, K. T., Osmani, M., Thorpe, T., & Thornback, J. (2017). Circular economy in construction: current awareness, challenges and enablers. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 170(1), 15–24. https://doi.org/10.1680/jwarm.16.00011spa
dc.relation.referencesAdnan, S. H., & Omar, A. (2016). Improvement of the compressive strength and water absorption of recycled aggregate concrete by using uncontrolled burnt rice husk ash. 11(3), 1504–1509.spa
dc.relation.referencesAkhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete : A global perspective. Journal of Cleaner Production, 186, 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085spa
dc.relation.referencesAlnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alqedra, M. A., Mo, K. H., & Sumesh, M. (2017). Evaluation of industrial by-products as sustainable pozzolanic materials in recycled aggregate concrete. Sustainability (Switzerland), 9(5). https://doi.org/10.3390/su9050767spa
dc.relation.referencesAnike, E., Saidani, M., Ganjian, E., Tyrer, M., & Olubanwo, A. (2019). The potency of recycled aggregate in new concrete: A reviewspa
dc.relation.referencesAprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010spa
dc.relation.referencesArifi, E., & Cahya, E. N. (2020). Evaluation of fly ash as supplementary cementitious material to the mechanical properties of recycled aggregate pervious concrete. International Journal of GEOMATE, 18(66), 44–49. https://doi.org/10.21660/2020.66.9270spa
dc.relation.referencesArmitage, A., & Keeble-Allen, D. (2008). Undertaking a structured literature review or structuring a literature review: Tales from the field. Electronic Journal of Business Research Methods, 6(2), 103–114.spa
dc.relation.referencesAssas, M. M. (2016). Durability of green concrete with ternary cementitious system containing recycled aggregate concrete and tire rubber wastes. 11(6), 899–915.spa
dc.relation.referencesBaikerikar, A. (2014). A Review on Green Concrete. (November 2014)spa
dc.relation.referencesBedoya, C. (2003). El concreto reciclado con escombros como generador de hábitats urbanos sostenibles. Universidad Nacional de Colombia-Sede Medellínspa
dc.relation.referencesBedoya, C., & Dzul, L. (2015). El concreto con agregados reciclados como proyecto de sostenibilidad urbana. Revista Ingenieria de Construccion, 30(2), 99–108spa
dc.relation.referencesBehera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003spa
dc.relation.referencesBehera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C & D waste & its use in concrete – A breakthrough towards sustainability in construction sector : A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003spa
dc.relation.referencesBhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for sustainable development : A review. Renewable and Sustainable Energy Reviews, 71(December 2015), 796–813. https://doi.org/10.1016/j.rser.2016.12.105spa
dc.relation.referencesBrito, J. De, Ferreira, J., Pacheco, J., Soares, D., & Guerreiro, M. (2016). Structural , material , mechanical and durability properties and behaviour of recycled aggregates concrete. Journal of Building Engineering, 6, 1–16. https://doi.org/10.1016/j.jobe.2016.02.003spa
dc.relation.referencesÇakır, Ö., & Sofyanlı, Ö. Ö. (2015). Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC Journal, 11(2), 157–166. https://doi.org/10.1016/j.hbrcj.2014.06.002spa
dc.relation.referencesCantero, B., Sáez, I. F., Matías, A., Rojas, M. I. S. De, & Medina, C. (2019). Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design. Archives of Civil and Mechanical Engineering, 19(4), 1338–1352. https://doi.org/10.1016/j.acme.2019.08.004spa
dc.relation.referencesChen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., & Pan, Z. (2019). Adopting recycled aggregates as sustainable construction materials : A review of the scientific literature. 218, 483–496. https://doi.org/10.1016/j.conbuildmat.2019.05.130spa
dc.relation.referencesChen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., … Yang, Y. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, 483–496.spa
dc.relation.referencesCorinaldesi, V., & Moriconi, G. (2009). Influence of mineral additions on the performance of 100% recycled aggregate concrete. Construction and Building Materials, 23(8), 2869–2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004spa
dc.relation.referencesCreswell, J. (1994). El procedimiento cualitativo. Diseño de Investigación. Aproximaciones Cualitativas y Cuantitativas. Sage., 143–171.spa
dc.relation.referencesDANE. (2020). Estadísticas de concreto Premezclado. 1–15.spa
dc.relation.referencesDimitriou, G., Savva, P., & Petrou, M. F. (2018). Enhancing mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 158, 228–235. https://doi.org/10.1016/j.conbuildmat.2017.09.137spa
dc.relation.referencesEl-Hassan, H., Kianmehr, P., & Zouaoui, S. (2019). Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction and Building Materials, 212, 164–175. https://doi.org/10.1016/j.conbuildmat.2019.03.325spa
dc.relation.referencesEstanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161spa
dc.relation.referencesEstanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161spa
dc.relation.referencesEstanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161spa
dc.relation.referencesFlower, D. J. M., & Sanjayan, J. G. (2007). Green House Gas Emissions due to Concrete Manufacture *. 12(5), 282–288spa
dc.relation.referencesFonseca Medina, E. E. (2018). Evaluación comparativa de concreto con agregado natural y concreto a partir de agregado reciclado de prefabricados de concreto, bajo un análisis de ciclo de vidaspa
dc.relation.referencesGonzalez, A., Etxeberria, M., & Poon, C. (2017). Influence of the Quality of Recycled Aggregates on the Mechanical and Durability Properties of High Performance Concrete. Waste and Biomass Valorization, 8(5), 1421–1432. https://doi.org/10.1007/s12649-016-9637-7spa
dc.relation.referencesGonzález, B., & Martínez, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429–437. https://doi.org/10.1016/j.buildenv.2007.01.008spa
dc.relation.referencesGuo, Z., Zhang, J., Jiang, T., Jiang, T., Chen, C., Bo, R., & Sun, Y. (2020). Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume. European Journal of Environmental and Civil Engineering, 0(0), 1–22. https://doi.org/10.1080/19648189.2020.1715847spa
dc.relation.referencesGurdián, H., García-Alcocel, E., Baeza-Brotons, F., Garcés, P., & Zornoza, E. (2014). Corrosion behavior of steel reinforcement in concrete with recycled aggregates, fly ash and spent cracking catalyst. Materials, 7(4), 3176–3197. https://doi.org/10.3390/ma7043176spa
dc.relation.referencesGutiérrez, L. (2003). El concreto y otros materiales para la construcción (2nd ed.). MANIZALES: Centro de Publicaciones Universidad Nacional de Colombia Sede Manizalesspa
dc.relation.referencesHenry, M., Pardo, G., Nishimura, T., & Kato, Y. (2011). Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures. Resources, Conservation and Recycling, 55(11), 1060–1069. https://doi.org/10.1016/j.resconrec.2011.05.020spa
dc.relation.referencesHernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la Investigación (Sexta). Méxicospa
dc.relation.referencesJadhav, R., Jhadao, P., & Shantanu, P. (2015). A Study on behavior of metakaolin base recycled aggregate concrete. 12(5), 521–538spa
dc.relation.referencesJin, R., & Chen, Q. (2013). An Investigation of Current Status of " Green " Concrete in the Construction Industry An Investigation of Current Status of “ Green ” Concrete in the Construction Industry. 49 Th ASC Annual International Conference Proceedingsspa
dc.relation.referencesJuenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122(February), 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008spa
dc.relation.referencesKalaiarase, S., & Subramanian, K. (2006). Properties of recycled aggrerate concrete with silica fume. Journal of Applied Sciencesspa
dc.relation.referencesKou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032spa
dc.relation.referencesKou, Shi-cong, & Poon, C. (2015). Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Construction and Building Materials, 77, 501–508. https://doi.org/10.1016/j.conbuildmat.2014.12.035spa
dc.relation.referencesKou, Shi Cong, Poon, C. S., & Chan, D. (2008). Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures/Materiaux et Constructions, 41(7), 1191–1201. https://doi.org/10.1617/s11527-007-9317-yspa
dc.relation.referencesKou, Shicong, & C S Poon. (2006). Compressive Strength , Pore Size Distribution and Chloride-ion Penetration of Recycled Aggregate Concrete Incorporating Class-F Fly Ash 1 Introduction 2 Experimental. 21(4)spa
dc.relation.referencesKubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172(December), 595–603. https://doi.org/10.1016/j.proeng.2017.02.186spa
dc.relation.referencesKumar, R. (2011). RESEARCH METHODOLOGY. A step by step guide for beginners. (3rd editio). London: SAGE Publications Ltdspa
dc.relation.referencesKurda, R., de Brito, J., & Silvestre, J. D. (2018). Combined economic and mechanical performance optimization of recycled aggregate concrete with high volume of fly ash. Applied Sciences (Switzerland), 8(7). https://doi.org/10.3390/app8071189spa
dc.relation.referencesKurda, R., de Brito, J., & Silvestre, J. D. (2019). Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 95(August 2018), 169–182. https://doi.org/10.1016/j.cemconcomp.2018.10.004spa
dc.relation.referencesLasso, A., & Misle, R. (2012). Evaluacion Tecnica, Economica e Institucional de la gestion de residuos de construccion y demolicion en Bogota D.C (Pontificia Universidad Javeriana). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesLaverde, J., & Torres, N. (2017). Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados. 15–23spa
dc.relation.referencesLaw, A. S. L., Koh, K. H., Hejazi, F., & Jaafar, M. S. (2019). A review on waste materials usage as partial substitution in self-compacting concrete. IOP Conference Series: Earth and Environmental Science, 357(1). https://doi.org/10.1088/1755-1315/357/1/012020spa
dc.relation.referencesLi, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458spa
dc.relation.referencesLi, Z. (2011). Advanced concrete technology. Hoboken New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesLiew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008spa
dc.relation.referencesLima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., & Realfonzo, R. (2013). Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 47, 547–559. https://doi.org/10.1016/j.conbuildmat.2013.04.051spa
dc.relation.referencesLimbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Construction and Building Materials, 27(1), 439–449. https://doi.org/10.1016/j.conbuildmat.2011.07.023spa
dc.relation.referencesLiu, K., Yan, J., Hu, Q., Sun, Y., & Zou, C. (2016). Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete. Construction and Building Materials, 106, 264–273. https://doi.org/10.1016/j.conbuildmat.2015.12.074spa
dc.relation.referencesMarie, I., & Mujalli, R. (2019). Effect of design properties of parent concrete on the morphological properties of recycled concrete aggregates. Engineering Science and Technology, an International Journal, 22(1), 334–345. https://doi.org/10.1016/j.jestch.2018.08.014spa
dc.relation.referencesMasood, B., Elahi, A., Barbhuiya, S., & Ali, B. (2020). Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117760spa
dc.relation.referencesMassaro, M., Dumay, J., & Guthrie, J. (2016). On the shoulders of giants: undertaking a structured literature review in accounting. Accounting, Auditing and Accountability Journal, 29(5), 767–801. https://doi.org/10.1108/AAAJ-01-2015-1939spa
dc.relation.referencesMattey, P., Robayo, R., Silva, Y., Álvarez, N., & Delvastro, S. (2014). Caracterización física y mecánica de agregados reciclados obtenidos a partir de escombros de la construcción. Informador Técnico, 121–127spa
dc.relation.referencesMcNeil, K., & Kang, T. H. K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5spa
dc.relation.referencesMegat, M. A., Zeyad, A. M., Muhamad, N., & Ariffin, K. S. (2012). Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Construction and Building Materials, 30, 281–288. https://doi.org/10.1016/j.conbuildmat.2011.12.007spa
dc.relation.referencesMuduli, R., & Mukharjee, B. B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete. Journal of Cleaner Production, 209, 398–414. https://doi.org/10.1016/j.jclepro.2018.10.221spa
dc.relation.referencesMuduli, R., & Mukharjee, B. B. (2020). Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Construction and Building Materials, 233, 1–22. https://doi.org/10.1016/j.conbuildmat.2019.117223spa
dc.relation.referencesOmary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174. https://doi.org/10.1016/j.conbuildmat.2016.01.042spa
dc.relation.referencesOmrane, M., Kenai, S., Kadri, E. H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415–430. https://doi.org/10.1016/j.jclepro.2017.07.139spa
dc.relation.referencesPacheco Torgal, F., Miraldo, S., Labrincha, J. A., & De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, 141–150. https://doi.org/10.1016/j.conbuildmat.2012.04.066spa
dc.relation.referencesPadmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23(2), 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006spa
dc.relation.referencesPan, Z., Zhou, J., Jiang, X., Xu, Y., Jin, R., Ma, J., … Chen, W. (2019). Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials, 200, 570–577. https://doi.org/10.1016/j.conbuildmat.2018.12.150spa
dc.relation.referencesPanesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866spa
dc.relation.referencesParis, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18spa
dc.relation.referencesParis, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18spa
dc.relation.referencesPedro, D., de Brito, J., & Evangelista, L. (2017a). Mechanical characterization of high performance concrete prepared with recycled aggregates and silica fume from precast industry. Journal of Cleaner Production, 164, 939–949. https://doi.org/10.1016/j.jclepro.2017.06.249spa
dc.relation.referencesPedro, D., de Brito, J., & Evangelista, L. (2017b). Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Construction and Building Materials, 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215spa
dc.relation.referencesPoon, C. S., & Kou, S. C. (2004). Properties of steam cured recycled aggregate concrete. Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste, (January 2004), 1–12.spa
dc.relation.referencesRadonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. https://doi.org/10.1016/j.conbuildmat.2013.06.076spa
dc.relation.referencesRattanachu, P., Karntong, I., Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2018). Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Materiales de Construccion, 68(330), 1–12. https://doi.org/10.3989/mc.2018.04717spa
dc.relation.referencesRattanashotinunt, C., Tangchirapat, W., Jaturapitakkul, C., Cheewaket, T., & Chindaprasirt, P. (2018). Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. Journal of Cleaner Production, 172, 1691–1698. https://doi.org/10.1016/j.jclepro.2017.12.044spa
dc.relation.referencesRILEM. (1994). Specifications for concrete with recycled aggregates. 557–559spa
dc.relation.referencesRomero, H. (2004). Viabilidad técnica y económica del uso del concreto reciclado como agregado. Universidad Nacional de Colombia-Sede Bogotá, Bogotáspa
dc.relation.referencesSaravanakumar, P., Dhinakaran, G., & Marimuthu, K. (2014). Performance of sustainable concrete containing HVFA and RCA. Asian Journal of Applied Sciences, Vol. 7, pp. 194–204. https://doi.org/10.3923/ajaps.2014.194.204spa
dc.relation.referencesSDA, S. D. de A. (2019). Sector Ambiente. Diagnóstico Sectorial. Bogotá D.C.spa
dc.relation.referencesSilva, R. V., De Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19(7), 825–849. https://doi.org/10.1080/19648189.2014.974831spa
dc.relation.referencesSim, J., & Park, C. (2011). Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Management, 31(11), 2352–2360. https://doi.org/10.1016/j.wasman.2011.06.014spa
dc.relation.referencesSingh, N., & Singh, S. P. (2016). Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Construction and Building Materials, 127, 828–842. https://doi.org/10.1016/j.conbuildmat.2016.10.067spa
dc.relation.referencesSomna, R., Jaturapitakkul, C., & Amde, A. M. (2012). Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cement and Concrete Composites, 34(7), 848–854. https://doi.org/10.1016/j.cemconcomp.2012.03.003spa
dc.relation.referencesSomna, R., Jaturapitakkul, C., Rattanachu, P., & Chalee, W. (2012). Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Materials and Design, 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065spa
dc.relation.referencesSumanth, C., & Rathish, P. (2013). Recycling of construction and demolition waste for sustainability - an overview of the use of recycled concrete aggregates. International Journal of 3 R´sspa
dc.relation.referencesTang, W., Khavarian, M., Yousefi, A., Chan, R. W. K., & Cui, H. (2019). Influence of Surface Treatment of Recycled Aggregates on Mechanical Properties and Bond Strength of Self-Compacting Concrete. Sustainability, 11(15), 4182. https://doi.org/10.3390/su11154182spa
dc.relation.referencesTangchirapat, W., Buranasing, R., Jaturapitakkul, C., & Chindaprasirt, P. (2008). Influence of rice husk-bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 22(8), 1812–1819. https://doi.org/10.1016/j.conbuildmat.2007.05.004spa
dc.relation.referencesTangchirapat, W., Khamklai, S., & Jaturapitakkul, C. (2012). Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates. Materials and Design, 41, 150–157. https://doi.org/10.1016/j.matdes.2012.04.054spa
dc.relation.referencesTranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375spa
dc.relation.referencesU.S.G.S. (2020). MINERAL COMMODITY SUMMARIES 2020. Virginiaspa
dc.relation.referencesVerian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133(October 2017), 30–49. https://doi.org/10.1016/j.resconrec.2018.02.005spa
dc.relation.referencesWang, L., Wang, J., Qian, X., Chen, P., Xu, Y., & Guo, J. (2017). An environmentally friendly method to improve the quality of recycled concrete aggregates. Construction and Building Materials, 144, 432–441. https://doi.org/10.1016/j.conbuildmat.2017.03.191spa
dc.relation.referencesWang, Q., Geng, Y., Wang, Y., & Zhang, H. (2020). Drying shrinkage model for recycled aggregate concrete accounting for the in fl uence of parent concrete. Engineering Structures, 202(May 2019), 109888. https://doi.org/10.1016/j.engstruct.2019.109888spa
dc.relation.referencesWu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Construction and demolition waste research: a bibliometric analysis. Architectural Science Review, 62(4), 354–365. https://doi.org/10.1080/00038628.2018.1564646spa
dc.relation.referencesXie, T., Yang, G., Zhao, X., Xu, J., & Fang, C. (2020). A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119752spa
dc.relation.referencesXuan, D., Zhan, B., & Poon, C. S. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67–74. https://doi.org/10.1016/j.cemconcomp.2015.10.018spa
dc.relation.referencesYuan, H., & Shen, L. (2010, April). Trend of the research on construction and demolition waste management. Waste Management, Vol. 31, pp. 670–679. https://doi.org/10.1016/j.wasman.2010.10.030spa
dc.relation.referencesYuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679. https://doi.org/10.1016/j.wasman.2010.10.030spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.ddc720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructuralesspa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalIndustria de la construcciónspa
dc.subject.proposalResiduos de construcción y demoliciónspa
dc.subject.proposalRCDsspa
dc.subject.proposalAgregado fino recicladospa
dc.subject.proposalFRAspa
dc.subject.proposalMateriales cementantes suplementariosspa
dc.subject.proposalDurabilidadspa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalConcreto hidráulicospa
dc.subject.proposalSustainabilityeng
dc.subject.proposalConstruction industryeng
dc.subject.proposalConstruction and demolition wasteeng
dc.subject.proposalRecycled fine aggregateeng
dc.subject.proposalSupplementary cementitious materialseng
dc.subject.proposalDurabilityeng
dc.subject.proposalMechanical propertieseng
dc.subject.proposalHydraulic concreteeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.subject.unescoIndustria de la construcciónspa
dc.subject.unescoConstruction industryeng
dc.subject.unescoHormigónspa
dc.subject.unescoConcreteeng
dc.titleInfluencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)spa
dc.title.translatedInfluence of supplementary cementitious materials (SCMs) on recycled aggregate concretes (RAC)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024539178.2021.pdf
Tamaño:
4.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: