Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva

dc.contributor.advisorGil Chaves, Iván Darío
dc.contributor.authorNava García, Paola Andrea
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2022-06-06T16:36:00Z
dc.date.available2022-06-06T16:36:00Z
dc.date.issued2022-04-22
dc.descriptionilustraciones, graficas, tablasspa
dc.description.abstractLa destilación reactiva es una operación unitaria que combina la reacción y la separación en un solo equipo, la cual la convierte en una propuesta económica y energéticamente viable. En este trabajo se estudia el proceso de producción del lactato de n-butilo por medio de la destilación reactiva, desde los fundamentos de la operación, como el equilibrio de fases y la cinética de reacción, hasta un diseño completo a partir de un enfoque conceptual. Se evaluó información experimental del equilibrio de fases y se describieron adecuadamente las interacciones de la mezcla cuaternaria usando un modelo de coeficientes de actividad para la fase líquida (NRTL, α=0,3), mientras que para la fase vapor se asumió ideal. Una expresión cinética con base en ecuaciones pseudo-homogéneas se empleó para describir el proceso de esterificación con un catalizador heterogéneo. Posteriormente, se desarrolló el diseño conceptual del proceso de destilación reactiva, empleando simultáneamente el equilibrio de fases y la cinética previamente seleccionada utilizando el simulador Aspen Plus. Finalmente, con un caso base de una simulación rigurosa de la operación, se estudió la optimización y el control del proceso de destilación reactiva, para obtener las condiciones de operación más adecuadas para la producción del lactato de n-butilo a escala industrial. (Texto tomado de la fuente)spa
dc.description.abstractReactive distillation is a unitary operation that combines reaction and separation into a single unit, thus making this technology an economic and energy-efficient proposal. This work studies the reactive distillation process for the production of n-butyl lactate, from the fundamentals of the operation, such as phase equilibria and reaction kinetics, to a complete design using a conceptual approach. Equilibrium data of the experimental phase was evaluated and the quaternary mixture interactions were accurately described using a model of activity coefficients for the liquid phase (NRTL, α=0,3), while the vapor phase was assumed to be ideal. A kinetic expression based on pseudo-homogeneous equations was used to describe the esterification process with a heterogeneous catalyst. Subsequently, the conceptual design of the reactive distillation process was developed using simultaneously the previously selected phase equilibrium and kinetics with the Aspen Plus simulator. Finally, with a base case of a rigorous simulation of the operation, optimization and control of the reactive distillation process were studied to obtain the best operating conditions for n-butyl lactate production at industrial scale.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaDiseño, Optimización y Control de Procesosspa
dc.format.extent134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81509
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAsthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res., 5251−5257.spa
dc.relation.referencesAsthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res., 5251-5257.spa
dc.relation.referencesBarbosa, D., & Doherty, M. F. (1988). Chemical Engineering Science, 1523-1537.spa
dc.relation.referencesBehroozsarand, A., & Shafiei, S. (2011). Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. Nat Gas Sci Eng, 365–374.spa
dc.relation.referencesCastillo, F., Eduardo, M., Salgado, J., Domínguez, J., Convertí, A., & Pinheiro, S. (2013). Lactic acid properties, applications and production: A review. . Trends in Food Science & Technology, 70-83.spa
dc.relation.referencesCastro Aguirre, Iñiguez Franco, F., Samsudinb, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, , and end of life. Advanced Drug Delivery Reviews, 333–366.spa
dc.relation.referencesChandrakant R., K., & Kailas L., W. (2018). Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Springer.spa
dc.relation.referencesChaves , I., López , J., Zapata , J., Robayo , A., & Niño , G. (2016). Chemical Reactors. En Process Analysis and Simulation in Chemical Engineering (págs. 195-240). Springer, Cham.spa
dc.relation.referencesChaves , I., López , J., Zapata, J., Robayo, A., & Niño, G. (2016). Process Optimization in Chemical Engineering. En Process Analysis and Simulation in Chemical Engineering (págs. 343-369). Springer, Cham.spa
dc.relation.referencesChaves, I. D., López , J. R., Zapata, J. L., Robayo , A. L., & Niño , G. R. (2016). Thermodynamic and Property Models. En Process Analysis and Simulation in Chemical Engineering. (págs. 53-102). Springer, Cham.spa
dc.relation.referencesChaves, I., López, J., Zapata, J., Robayo, A., & Niño, G. (2016). Dynamic Process Analysis. En Process Analysis and Simulation in Chemical Engineering. (págs. 371-424). Springer, Cham.spa
dc.relation.referencesDaful, A., Halgh, K., Vaskan, P., & Görgens, J. (2016). (2016). Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food and Bioproducts Processing, 58-70.spa
dc.relation.referencesDassy, S., Wiame, H., & Thyrion, F. C. (1994). Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalysed by Cation-Exchange Resin. J. Chem. Tech. Biotechnol., 149-156.spa
dc.relation.referencesDeb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective-optimization: NSGA-II, KanGAL report 200001. Kanpur: Indian Institute of Technology.spa
dc.relation.referencesDelgado, P., Sanz, M. T., & Beltrán, S. (2007). Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 17-23.spa
dc.relation.referencesDelgado, P., Sanz, M. T., & Beltrán, S. (2007). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 111–118.spa
dc.relation.referencesDelgado, P., Sanz, M. T., Beltrán, S., & Núñez, L. A. (2010). Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chemical Engineering Journal, 693–700.spa
dc.relation.referencesDey, P., & Pal, P. (2012). Direct production of L(þ) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 355-362.spa
dc.relation.referencesDoble, M., & Kruthiventi, A. K. (2007). Green Chemistry & Engineering. Academic Press, Burlington, MA.spa
dc.relation.referencesDomingues , L., Pinheiro , C., & Oliveira , N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng , 81–94.spa
dc.relation.referencesDomingues, L., Cussolin, P. A., Lopes da Silva Jr, J., Hadlich de Oliveira, L., & Aznar, M. (2013). Liquid–liquid equilibrium data for ternary systems of water + lactic acid + C4–C7 alcohols at 298.2 K and atmospheric pressure. Fluid Phase Equilibria, 12-18.spa
dc.relation.referencesDomingues, L., Pinheiro, C., & Oliveira, N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng, 81–94.spa
dc.relation.referencesEdgar, T. F., Himmelblau, D. M., & Lasdon, L. S. (2001). Optimization of chemical processes. McGraw-Hill, New York.spa
dc.relation.referencesFitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 8915-8922.spa
dc.relation.referencesFogler, H. (2008). Elementos de Ingeniería de las Reacciones Químicas. Naucalpan: Pearson Prentice Hall.spa
dc.relation.referencesGezae, A., & Görgens, J. (2017). Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chemical Engineering Science, 53-65.spa
dc.relation.referencesGoedecke , R. (2011). Fluidverfahrenstechnik: Grundlagen, Methodik, Technik. Wiley, Praxis.spa
dc.relation.referencesHalvorsen, I., & Skogestad, S. (2011). Energy Efficient Distillation. Journal of Natural Gas Science and Engineering.spa
dc.relation.referencesHernández Rodríguez, M. A., & Hernández Zárate, J. A. (2015). Verdades y Mitos de los Biocombustibles. Ciencia y Cultura, 15-88.spa
dc.relation.referencesJenkins, S. (20 de Marzo de 2020). 2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE. Obtenido de https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/spa
dc.relation.referencesJiménez, L., Wanhschafft, O., & Julka, V. (2001). Analysis of residue curve maps of reactive and extractive distillation units. Computers and Chemical Engineering, 635-642.spa
dc.relation.referencesJoglekar, H. G., Rahman, I., Babu, S., Kulkarni, B. D., & Joshi, A. (2006). Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 1-17.spa
dc.relation.referencesKasinathan, P., Lee, U., Hwang, D. W., & Chang, J.-S. (2011). Effect of solvent and impurity on synthesis of ethyl lactate from fermentation-derived ammonium lactate. Chemical Engineering Science, 4549-4554.spa
dc.relation.referencesKiss, A., Segovia-Hernández, J., Bildea, C., Miranda-Galindo, E., & Hernández, S. (2012). Reactive DWC leading the way to FAME and fortune. Fuel, 352–359.spa
dc.relation.referencesKister, H. Z. (1992). Distillation Design. United Kingdom: McGraw-Hill.spa
dc.relation.referencesKomescu, A., Wolf Maciel, M., Rocah de Oliveira, J. A., da Silva Martins, L. H., & Maciel Filho, R. (2017). Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Separation and Purification Reviews, 1-14.spa
dc.relation.referencesKumar, R., & Mahajani, S. M. (2007). Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res, 6873−6882.spa
dc.relation.referencesKumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distllation. Journal of Chemical Technology and Biotechnology, 1767-1777.spa
dc.relation.referencesLancheros, S. (2015). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.spa
dc.relation.referencesLi, K.-T., Wanga, C.-K., Wang, I., & Wang, C.-M. (2011). Esterification of lactic acid over TiO2–ZrO2 catalysts. Elsevier B.V., 180–183.spa
dc.relation.referencesLuyben, W. (2006). Distillation design and control using AspenTM simulation. Wiley, Hoboken, 232–250.spa
dc.relation.referencesLuyben, W. L. (1992). Practical Distillation Control. New York: Van Nostrand Reinhold.spa
dc.relation.referencesLuyben, W. L. (2002). Plantwide dynamic simulators in chemical processing and control. New York: Marcel Dekker.spa
dc.relation.referencesLUYBEN, W. L., & YU, C.-C. (2008). REACTIVE DISTILLATION DESIGN AND CONTROL. Hoboken, New Jersey: John Wiley & Sons, Inc.spa
dc.relation.referencesLuyben, W. L., Tyréus, D. B., & Luyben, M. L. (1998). Plantwide process control. New York: McGraw-Hill.spa
dc.relation.referencesLynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 506-577.spa
dc.relation.referencesMalone, M. F., & Doherty, M. F. (2000). Reactive distillation. Industrial and Engineering Chemistry Research, 3953-3957.spa
dc.relation.referencesMathWorks. (18 de 06 de 2021). Particle Swarm Optimization Algorithm. Obtenido de https://la.mathworks.com/help/gads/particle-swarm-optimization-algorithm.htmlspa
dc.relation.referencesMathWorks. (18 de 06 de 2021). What Is Particle Swarm Optimization? Obtenido de https://la.mathworks.com/help/gads/what-is-particle-swarm-optimization.htmlspa
dc.relation.referencesMatsumoto, M., Takahashi, T., & Fukushima, K. (2003). Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation Purification Technology, 89-93.spa
dc.relation.referencesMaya-Yescas, R., Aguilar-López, R., & Jiménez-García, G. (2016). Dynamics, Controllability, and Control of Intensified Processes. En J. Segovia-Hernández, & A. Bonilla-Petriciolet, Process Intensification in Chemical Engineering (págs. 293-325). Mexico: Springer, Cham.spa
dc.relation.referencesMerck. (06 de 12 de 2020). Amberlyst® 15 hydrogen form. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/216399spa
dc.relation.referencesMerck. (18 de 06 de 2021). Butyl lactate. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/283320spa
dc.relation.referencesMiranda-Galindo, E., Segovia-Hernández, J., Hernández, S., Gutiérrez-Antonio, C., & Briones-Ramírez, A. (2011). Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res, 926–938.spa
dc.relation.referencesNova Institute. (2016). Obtenido de http://www.nova-institut.de/bio/index.php?tpl=startlist&lng=enspa
dc.relation.referencesOrjuela, Á., Santaella, M. A., & Molano , P. A. (2016). Process Intensification by Reactive Distillation. Process Intensification in Chemical Engineering.spa
dc.relation.referencesParrado, E. (2016). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.spa
dc.relation.referencesPeña Tejedor, S., Murga, R., Sanz, M. T., & Beltrán, S. (2005). Vapor–liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa. Fluid Phase Equilibria, 197–203.spa
dc.relation.referencesPereira M., C. S., Silva, V., & Rodrígues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chemistry.spa
dc.relation.referencesQU , Y., PENG , S., WANG , S., ZHANG , Z., & WANG , J. (2009). Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chin. J. Chem. Eng., 773-780.spa
dc.relation.referencesQuiroga, I. G. (1995). Introducción a la Ingeniería Química. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesRangaiah, G. P. (2009). Multi-Objective Optimization- Techniques and Applications in Chemical Engineering. Singapur: World Scientific.spa
dc.relation.referencesRangaiah, G. P. (2010). Stochastic Global Optimization. Singapore: World Scientific Publishing.spa
dc.relation.referencesRathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor. Procedia Engineering, 456 – 460.spa
dc.relation.referencesReid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1978). The properties of gases and liquids. McGraw-Hill.spa
dc.relation.referencesSatyro, M. A. (2008). Thermodynamics and the simulation engineer. Chem Prod Process Model , 1–41.spa
dc.relation.referencesSchembecker, G., & Tlatlik, S. (2003). Process synthesis for reactive separations. Chemical Engineering and Processing, 179-189.spa
dc.relation.referencesSegovia-Hernández , J., Hernández-Vargas, E., Márquez-Muñoz, J., Hernández , S., & Jiménez, A. (2005). Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chem Biochem Eng, 325–332.spa
dc.relation.referencesSeider, J., & Warren, D. (2003). roduct & process design principles: synthesis, analysis and evaluation. Wiley, Somerset.spa
dc.relation.referencesSeider, W. D., Seader, J., & Lewin, D. R. (2003). Product & Process Design Principles: Synthesis, Analysis and Evaluation. Pennsylvania: Wiley.spa
dc.relation.referencesShatma, N., & Singh, K. (2010). Control of reactive distillation column: a review. Int J Chem React Eng, 1542–6580.spa
dc.relation.referencesSmith, J., Van Ness, H., & Abbot, M. (2007). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill.spa
dc.relation.referencesStichlmair, J., & Frey, T. (1999). Review: Reactive distillation process. Chemical Engineering and Technology, 95-103.spa
dc.relation.referencesSu, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2013). Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res., 11070−11083.spa
dc.relation.referencesSu, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2015). Control of Highly Interconnected Reactive Distillation Processes: Purification of Raw Lactic Acid by Esterification and Hydrolysis. Industrial & Engineering Chemistry Research, 6932−6940.spa
dc.relation.referencesSubawalla, H., & Fair, J. (1999). Design guidelines for solid-catalyzed reactive distillation systems. Industrial and Engineering Chemistry Research, 3696-3709.spa
dc.relation.referencesSundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and future directions.spa
dc.relation.referencesTsai, M.-L., & Chien, I.-L. (2021). Design and control of an energy-efficient process for the separation of benzene/isopropanol/water ternary mixture. Separation and Purification Technology, 255.spa
dc.relation.referencesUrselmann , M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng, 787–805.spa
dc.relation.referencesVázquez-Ojeda, M., Segovia-Hernández, J., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Ind Eng Chem, 5856–5865.spa
dc.relation.referencesYadav, G. D., & Kulkarni, H. B. (2000). Ion-exchange resin catalysis in the synthesis of isopropyl lactate. Reactive & Functional Polymers, 153 –165.spa
dc.relation.referencesZhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive & Functional Polymers, 101–114.spa
dc.relation.referencesZhongkai, J., Jumei , X., Zuoxiang , Z., Weilan , X., & Shating , L. (2018). Kinetics of the Esterification between Lactic Acid and Isoamyl Alcohol in the Presence of Silica Gel-Supported Sodium Hydrogen Sulphate. Can. J. Chem. Eng., 1–7.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.lembDistillationeng
dc.subject.lembDESTILACIONspa
dc.subject.lembLactic acideng
dc.subject.lembACIDO LACTICOspa
dc.subject.proposalDestilación reactivaspa
dc.subject.proposalAlcohol butílicospa
dc.subject.proposalLactato de n-butilospa
dc.subject.proposalDiseño conceptualspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalControlspa
dc.subject.proposalReactive distillationeng
dc.subject.proposalButyl alcoholeng
dc.subject.proposalN-butyl lactateeng
dc.subject.proposalConceptual designeng
dc.subject.proposalOptimization and controleng
dc.titleEsterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactivaspa
dc.title.translatedEsterification between lactic acid and butyl alcohol to obtain n-butyl lactate by reactive distillationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075670829.2022.pdf
Tamaño:
3.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: