Caracterización fisiológica, bioquímica y anatómica de especies de árboles nodriza formadores de islas de recursos en La Guajira, Colombia

dc.contributor.advisorÁlvarez Flórez, Fagua Virginia
dc.contributor.advisorMelgarejo Muñoz, Luz Marina
dc.contributor.authorToro Tobón, Gabriela
dc.contributor.financerMinisterio de Ciencia, Tecnología e Innovación
dc.contributor.researchgroupFisiología del estrés y biodiversidad en plantas y microorganismosspa
dc.coverage.countryColombia
dc.date.accessioned2022-09-12T16:29:58Z
dc.date.available2022-09-12T16:29:58Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficas, tablasspa
dc.description.abstractLos ambientes semiáridos caracterizados por poseer bajas precipitaciones, están sujetos a procesos de desertificación del suelo. Estos ambientes poseen paisajes heterogéneos con parches de vegetación, conocidos como islas de recursos, que son generadas por especies nodriza que retrasan los procesos de desertificación, pues aumentan la disponibilidad de agua y de nutrientes en el suelo. El presente proyecto tuvo como objetivo caracterizar algunas estrategias fisiológicas, bioquímicas y anatómicas de tres especies de árboles nodriza formadores de islas de recursos en un ambiente semiárido de la Guajira. Las especies de árboles trabajadas fueron Haematoxylum brasiletto, Pithecellobium dulce y Pereskia guamacho. Se evaluaron rasgos fisiológicos foliares (Área, área foliar específica, conductancia estomática contenido foliar de masa seca, contenido hídrico relativo, contenido hídrico, déficit por saturación hídrica, densidad estomática, espesor foliar, pH), y se realizó el análisis de los parámetros de la emisión de la fluorescencia de la clorofila a, donde se tuvieron en cuenta los flujos de energía específicos (ABS/RC, Dio/RC, Tro/RC, Eto/RC, REo/RC) y fenomenológicos (ABS/Cso, Dio/Cso, Tro/Cso, Eto/Cso, REo/Cso), las eficiencias cuánticas (ΦPo, ΦEo, Ψo), el índice de desempeño (PIABS) y la curva OJIP. A partir de esto, se evidenciaron las estrategias esclerófilas con alto desempeño fotoquímico de las especies H. brasiletto y P. dulce. Contrario a esto, P. guamacho posee hojas suculentas que disipan el exceso de energía lumínica en forma de calor. En la caracterización bioquímica, H. brasiletto y P. dulce presentaron los mayores contenidos de pigmentos fotosintéticos (Chl a, Chl b, Chl total y Carotenoides) y de nitrógeno foliar, mientras que P. guamacho obtuvo el mayor contenido de proteína, y fue H. brasiletto la especie con mayor contenido de prolina en las hojas. En la caracterización anatómica foliar, se observó una hoja compacta con un mesófilo dorsiventral similar en las especies H. brasiletto y P. dulce, y una hoja equifacial suculenta en P. guamacho. Este estudio proporciona una base de información integrada para la compresión de las estrategias fisiológicas, bioquímicas y anatómicas que poseen especies de árboles nodriza formadores de islas de recursos en la Guajira, Colombia. (Texto tomado de la fuente)spa
dc.description.abstractSemi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation, known as resource islands, which are generated by nurse species that delay desertification processes, as they increase the availability of water and nutrients in the soil. The present project aimed to characterize some physiological, biochemical, and anatomical strategies of three species of nurse trees that form resource islands in a semi-arid environment of La Guajira. The tree species studied were Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. Foliar physiological traits were evaluated (Area, specific leaf area, stomatal conductance, leaf dry mass content, relative water content, water content, water saturation deficit, stomatal density, leaf thickness, pH), and the analysis of the parameters of the emission of the fluorescence of chlorophyll a was carried out, taking into account the specific energy flows (ABS / RC, Dio / RC, Tro / RC, Eto / RC, REo / RC) and phenomenological ones (ABS / Cso, Dio / Cso, Tro / Cso, Eto / Cso, REo / Cso), the quantum efficiencies (ΦPo, ΦEo, Ψo), the performance index (PIABS) and the OJIP curve. From this, the sclerophyllous strategies with a high photochemical performance of the H. brasiletto and P. dulce species were evidenced. Contrary to this, P. guamacho has succulent leaves that dissipate excess light energy in the form of heat. In the biochemical characterization, H. brasiletto and P. dulce had the highest content of photosynthetic pigments (Chl a, Chl b, total Chl, and Carotenoids) and foliar nitrogen, while P. guamacho obtained the highest protein content, and was H. brasiletto the species with the highest proline content in the leaves. In the foliar anatomical characterization, a compact leaf with a similar dorsiventral mesophyll was observed in H. brasiletto and P. dulce species, and a succulent equifacial leaf in P. guamacho. This study provides an integrated information base for understanding the physiological, biochemical, and anatomical strategies of nurse tree species forming resource islands in La Guajira, Colombia.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaFisiología vegetalspa
dc.description.sponsorshipLa presente tesis de maestría se desarrolló en el marco del Proyecto de MinCiencias - UNAL: Caracterización de microbiota y rasgos funcionales de flora asociada a islas de recursos en un ambiente semiárido de la alta Guajira y su relación con la materia orgánica y la calidad del suelo. Contrato N°80740-244-2019 del día 27 de marzo del 2019.spa
dc.format.extentxvi, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82280
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAfzal, A., Duiker, S. W., & Watson, J. E. (2017). Leaf thickness to predict plant water status. Biosystems Engineering, 156, 148-156.spa
dc.relation.referencesAguiar FC, Fabião AM, Bejarano MD, Merritt D, Nilsson C, Martins MJ. (2013). FLOWBASE – a riparian plant traitbase (http://www.isa.ulisboa.pt/proj/flowbase/). Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.spa
dc.relation.referencesAhmad, I., Kamran, M., Su, W., Haiqi, W., Ali, S., Bilegjargal, B., ... & Han, Q. (2019). Application of uniconazole improves photosynthetic efficiency of maize by enhancing the antioxidant defense mechanism and delaying leaf senescence in semiarid regions. Journal of Plant Growth Regulation, 38(3), 855-869.spa
dc.relation.referencesAhmad, S., Su, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., ... & Han, Q. (2020). Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma, 257(4), 1079-1092.spa
dc.relation.referencesAmstrong, W.P. 1992. Logwood and Brazilwood: Trees that spawned 2 Nations. (Modificado de: Pacific Horticulture 53:38-43). Recuperado el 8 de noviembre del 2011 de: http://waynesword.palomar.edu/ecoph4.htmspa
dc.relation.referencesAn, Y., & Liang, Z. (2013). Drought tolerance of Periploca sepium during seed germination: antioxidant defense and compatible solutes accumulation. Acta physiologiae plantarum, 35(3), 959-967.spa
dc.relation.referencesAponte, M. (2010). Organización espacial de la región geográfica de la Alta Guajira colombiana. Perspectiva Geográfica, (15), 157-176.spa
dc.relation.referencesAragón-Gastélum, J. L., Ramírez-Benítez, J. E., González-Durán, E., González-Salvatierra, C., Ramírez-Tobías, H. M., Flores, J., ... & Jarquín-Gálvez, R. (2020). Photochemical activity in early-developmental phases of Agave angustifolia subsp. tequilana under induced global warming: Implications to temperature stress and tolerance. Flora, 263, 151535.spa
dc.relation.referencesÁvila-Calderón, L. E. A., & Rutiaga-Quiñones, J. G. (2014). Componentes químicos de la madera y la corteza de Haematoxylum brasiletto Karsten (Leguminosae). Madera y bosques, 20(2), 153-158.spa
dc.relation.referencesAyyaz, A., Amir, M., Umer, S., Iqbal, M., Bano, H., Gul, H. S., ... & Farooq, M. A. (2020). Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon, 6(7), e04364.spa
dc.relation.referencesBacelar, E. A., Correia, C. M., Moutinho-Pereira, J. M., Gonçalves, B. C., Lopes, J. I., & Torres-Pereira, J. M. (2004). Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree physiology, 24(2), 233-239.spa
dc.relation.referencesBailey, I. W. (1961). Comparative anatomy of the leaf-bearing Cactaceae, III: form and distribution of crystals in Pereskia, Pereskiopsis and Quiabentia. Journal of the Arnold Arboretum, 42(3), 334-346.spa
dc.relation.referencesBarclay, R., McElwain, J., DilchEr, D., & SagEMan, B. (2007). The cuticle database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. Courier-Forschungsinstitut Senckenberg, 258, 39.spa
dc.relation.referencesBarros, V., Melo, A., Santos, M., Nogueira, L., Frosi, G., & Santos, M. G. (2020). Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry, 147, 181-190.spa
dc.relation.referencesBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.spa
dc.relation.referencesBaunthiyal, M., & Sharma, V. (2014). Response of three semi-arid plant species to fluoride; consequences for chlorophyll florescence. International journal of phytoremediation, 16(4), 397-414.spa
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento & M. Gutiérrez. (2012a). Brasil. (Haematoxylum brasiletto). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/12940/spa
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento y M. Gutiérrez. (2012b). chiminango. (Pithecellobium dulce). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/16827/spa
dc.relation.referencesBernal, R., G. Galeano, A. Rodríguez, H. Sarmiento y M. Gutiérrez. (2012c). Guamacho. (Pereskia guamacho). En Nombres Comunes de las Plantas de Colombia. www.biovirtual.unal.edu.co/nombrescomunes/detalle/ncientifico/6626/spa
dc.relation.referencesBertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.spa
dc.relation.referencesBestric, M. & Zivcak, M., (2013). PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and aplications. En Banjan, G. & Bandhu, A. (Ed.). Molecular Stress Physiology of Plants. New York, USA, Springer. 87-133.spa
dc.relation.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.spa
dc.relation.referencesBroetto, F., Duarte, H. M., & Lüttge, U. (2007). Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3–CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. Journal of plant physiology, 164(7), 904-912.spa
dc.relation.referencesBonanomi, G., Rietkerk, M., Dekker, S. C., & Mazzoleni, S. (2008). Islands of fertility induce co-occurring negative and positive plant-soil feedbacks promoting coexistence. Plant Ecology, 197(2), 207-218.spa
dc.relation.referencesBoughalleb, F., Abdellaoui, R., Ben-Brahim, N. and Neffati, M. 2014. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 9, 1215-12125.spa
dc.relation.referencesButterworth, C., & Edwards, E. J. (2008). Investigating Pereskia and the earliest divergences in Cactaceae. Haseltonia, 2008(14), 46-53.spa
dc.relation.referencesCarrillo-López, A., & Yahia, E. M. (2019). Morphology and anatomy. In Yahia, E. M & Carrillo-López, A. (Eds.). Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 113-130). Woodhead Publishing.spa
dc.relation.referencesCarvalho, E. C. D., Martins, F. R., Soares, A. A., Oliveira, R. S., Muniz, C. R., & Araújo, F. S. (2015). Hydraulic architecture of lianas in a semiarid climate: efficiency or safety?. Acta Botanica Brasilica, 29, 198-206.spa
dc.relation.referencesCelaya, H., & Castellanos, A. E. (2011). Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana, 29(3), 343-356.spa
dc.relation.referencesChaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011). Plant functional traits with particular reference to tropical deciduous forests: A review. Journal of biosciences, 36(5), 963-981.spa
dc.relation.referencesChaturvedi, R. K., Tripathi, A., Raghubanshi, A. S., & Singh, J. S. (2021). Functional traits indicate a continuum of tree drought strategies across a soil water availability gradient in a tropical dry forest. Forest Ecology and Management, 482, 118740.spa
dc.relation.referencesChaves, M. M., Costa, J. M., Zarrouk, O., Pinheiro, C., Lopes, C. M., & Pereira, J. S. (2016). Controlling stomatal aperture in semi-arid regions—the dilemma of saving water or being cool?. Plant Science, 251, 54-64.spa
dc.relation.referencesCornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., ... & Pausas, J. G. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian journal of Botany, 51(4), 335-380.spa
dc.relation.referencesCornelissen, J. H., Quested, H. M., Van Logtestijn, R. S. P., Pérez-Harguindeguy, N., Gwynn-Jones, D., Díaz, S., ... & Aerts, R. (2006). Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?. Oecologia, 147(2), 315-326. DOI 10.1007/s00442-005-0269-zspa
dc.relation.referencesCornelissen, J. H., Sibma, F., Van Logtestijn, R. S., Broekman, R. A., & Thompson, K. (2011). Leaf pH as a plant trait: Species‐driven rather than soil‐driven variation. Functional Ecology, 25(3), 449-455.spa
dc.relation.referencesCosentino, S. L., Patanè, C., Sanzone, E., Testa, G., & Scordia, D. (2016). Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax L.) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area. European Journal of Agronomy, 72, 56-69.spa
dc.relation.referencesCousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. The Plant Journal, 101(4), 816-830.spa
dc.relation.referencesCrespo, S. C., Moreno-Chacón, A. L., Rojas, A., & Melgarejo, L. M. (2011). Principal component analysis of changes due to water stress for some osmolytes, pigments and antioxidant enzymes in Gmelina arborea Robx: leaves from trees planted in northern Colombia. Journal of the Brazilian Chemical Society, 22(12), 2275-2280.spa
dc.relation.referencesCroft, H., Chen, J. M., Wang, R., Mo, G., Luo, S., Luo, X., ... & Bonal, D. (2020). The global distribution of leaf chlorophyll content. Remote Sensing of Environment, 236, 111479.spa
dc.relation.referencesCruz, R. & Jiménez, J. (2008). Haematoxylum sousanum (Leguminosae, Caesalpinioideae), una especie nueva del sur de México. Novon: A Journal for Botanical Nomenclature, 18(1), 25-28.spa
dc.relation.referencesDave, Y. S., & Patel, N. D. (1976). Structure of Stomatal Complexes in Pedilanthus tithymaloides POIT. III. Flora, 165(3), 235-241.spa
dc.relation.referencesDe Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In Plant responses to drought stress (pp. 37-61). Springer, Berlin, Heidelberg.spa
dc.relation.referencesDe Oliveira, A. C. P., Nunes, A., Rodrigues, R. G., & Branquinho, C. (2020). The response of plant functional traits to aridity in a tropical dry forest. Science of The Total Environment, 747, 141177. https://doi.org/10.1016/j.scitotenv.2020.141177spa
dc.relation.referencesDe Pinto, G. L., De Moncada, N. P., Martínez, M., De Gotera, O. G., Rivas, C., & Ocando, E. (1994). Composition of Pereskia guamacho gum exudates. Biochemical systematics and ecology, 22(3), 291-295.spa
dc.relation.referencesDe Waroux, Y. L. P., & Lambin, E. F. (2011). Monitoring degradation in arid and semi-arid forests and woodlands: the case of the argan woodlands (Morocco). Applied Geography, 32(2), 777-786.spa
dc.relation.referencesDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.spa
dc.relation.referencesEdwards, E. J., & Diaz, M. (2006). Ecological physiology of Pereskia guamacho, a cactus with leaves. Plant, cell & environment, 29(2), 247-256.spa
dc.relation.referencesEdwards, E. J., & Donoghue, M. J. (2006). Pereskia and the origin of the cactus life-form. The American Naturalist, 167(6), 777-793.spa
dc.relation.referencesEsfandiari, E., Shakiba, M. R., Mahboob, S. A., Alyari, H., & Toorchi, M. (2007). Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Journal of Food Agriculture and Environment, 5(1), 149.spa
dc.relation.referencesEstrada-Castillo, S., Negritto, M. A., Fernández-Alonso, J. L., & Carbonó-Delahoz, E. (2019). The species of Pereskia (Pereskioideae, Cactaceae) from Colombia. Caldasia, 41(2), 289-300.spa
dc.relation.referencesEvans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of Experimental Botany, 70(1), 7-15.spa
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture, 29, 153-188.spa
dc.relation.referencesFeyera, S., Beck, E., & Lüttge, U. (2002). Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees, 16(4-5), 245-249.spa
dc.relation.referencesFlores, J., & Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14: 911-916.spa
dc.relation.referencesFradera-Soler, M., Rudall, P. J., Prychid, C. J., & Grace, O. M. (2021). Evolutionary success in arid habitats: Morpho-anatomy of succulent leaves of Crassula species from southern Africa. Journal of Arid Environments, 185, 104319.spa
dc.relation.referencesFrosi, G., Oliveira, M. T., Almeida-Cortez, J., & Santos, M. G. (2013). Ecophysiological performance of Calotropis procera: an exotic and evergreen species in Caatinga, Brazilian semi-arid. Acta Physiologiae Plantarum, 35(2), 335-344.spa
dc.relation.referencesFuentes, J., Varga, D., & Pintó, J. (2018). The Use of High-Resolution Historical Images to Analyse the Leopard Pattern in the Arid Area of La Alta Guajira, Colombia. Geosciences, 8(10), 366.spa
dc.relation.referencesGarcia‐Forner, N., Adams, H. D., Sevanto, S., Collins, A. D., Dickman, L. T., Hudson, P. J., ... & Mcdowell, N. G. (2016). Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant, cell & environment, 39(1), 38-49.spa
dc.relation.referencesGarcía-Martí, M., Piñero, M. C., García-Sanchez, F., Mestre, T. C., López-Delacalle, M., Martínez, V., & Rivero, R. M. (2019). Amelioration of the oxidative stress generated by simple or combined abiotic stress through the K+ and Ca2+ supplementation in tomato plants. Antioxidants, 8(4), 81.spa
dc.relation.referencesGarrido, I., Uriarte, D., Hernández, M., Llerena, J. L., Valdés, M. E., & Espinosa, F. (2016). The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: Effects of cluster thinning and water deficit. International journal of molecular sciences, 17(11), 1923.spa
dc.relation.referencesGarrido, I., Uriarte, D., Hernández, M., Llerena, J. L., Valdés, M. E., & Espinosa, F. (2016). The evolution of total phenolic compounds and antioxidant activities during ripening of grapes (Vitis vinifera L., cv. Tempranillo) grown in semiarid region: Effects of cluster thinning and water deficit. International journal of molecular sciences, 17(11), 1923.spa
dc.relation.referencesGómez-Espinoza, O., González-Ramírez, D., Méndez-Gómez, J., Guillén-Watson, R., Medaglia-Mata, A., & Bravo, L. A. (2021). Calcium Oxalate Crystals in Leaves of the Extremophile Plant Colobanthus quitensis (Kunth) Bartl.(Caryophyllaceae). Plants, 10(9), 1787.spa
dc.relation.referencesGonçalves, A. Z., Latansio, S., Detmann, K. C., Marabesi, M. A., Neto, A. A., Aidar, M. P., ... & Mercier, H. (2020). What does the RuBisCO activity tell us about a C3-CAM plant?. Plant Physiology and Biochemistry, 147, 172-180.spa
dc.relation.referencesGonçalves, C., & Santos Júnior, D. (2005). Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance. Brazilian Journal of Plant Physiology, 17, 307-313.spa
dc.relation.referencesGonzález‐Rodríguez, Á. M., Brito, P., & Fernández‐Marín, B. (2020). Summit evergreen shrubs living at a semi‐arid treeline: photoprotection systems activation in an open vs an understory site. Physiologia Plantarum, 169, 228–243.spa
dc.relation.referencesGoremykina, E. V., & Ryabysheva, A. A. (2019). Spatial Distribution of Sclerenchyma in Leaf Blades of Some Fescues (Festuca L., Gramineae Juss.). Moscow University Biological Sciences Bulletin, 74(3), 127-132.spa
dc.relation.referencesGriffiths, H., & Males, J. (2017). Succulent plants. Current Biology, 27(17), R890-R896.spa
dc.relation.referencesGu, D., Wang, Q., & Mallik, A. (2018). Non-convergent transpiration and stomatal conductance response of a dominant desert species in central Asia to climate drivers at leaf, branch and whole plant scales. Journal of Agricultural Meteorology, 74(1), 9-17.spa
dc.relation.referencesGuerra, A., & Scremin-Dias, E. (2018). Leaf traits, sclerophylly and growth habits in plant species of a semiarid environment. Brazilian Journal of Botany, 41(1), 131-144.spa
dc.relation.referencesGururani, M. A., Venkatesh, J., Ganesan, M., Strasser, R. J., Han, Y., Kim, J. I., ... & Song, P. S. (2015). In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One, 10(5).spa
dc.relation.referencesHaase, P., Pugnaire, F. I., Clark, S. C., & Incoll, L. D. (2000). Photosynthetic rate and canopy development in the drought-deciduous shrub Anthyllis cytisoides L. Journal of Arid Environments, 46(1), 79-91.spa
dc.relation.referencesHacke, U. G., Sperry, J. S., & Pittermann, J. (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1(1), 31-41.spa
dc.relation.referencesHajihashemi, S., Brestic, M., Kalaji, H. M., Skalicky, M., & Noedoost, F. (2020). Environmental pollution is reflected in the activity of the photosynthetic apparatus. Photosynthetica, 58(Special Issue), 529-539.spa
dc.relation.referencesHansatech Instruments Ltd. (2017). Handy PEA and Pocket PEA. System manual. Version 2.00.spa
dc.relation.referencesHernández-Pérez, V., Márquez-Guzmán, J., Sánchez-Nieto, S., & Cruz-Ortega, R. (2015). Alvaradoa amorphoides germination at low water potential and the role of the antioxidant system. Botanical Sciences, 93(2), 283-291.spa
dc.relation.referencesHeyduk, K. (2021). The genetic control of succulent leaf development. Current Opinion in Plant Biology, 59, 101978.spa
dc.relation.referencesHien, V., Lee, B. R., Islam, M. T., Park, S. H., Jung, H. I., Bae, D. W., & Kim, T. H. (2019). Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and Experimental Botany, 157, 1-10.spa
dc.relation.referencesHulshof, C. M., Martínez-Yrízar, A., Burquez, A., Boyle, B., & Enquist, B. J. (2013). Plant functional trait variation in tropical dry forests: A review and synthesis. Tropical Dry Forests in the Americas: Ecology, Conservation, and Management; Sánchez-Azofeifa, A., Powers, JS, Fernandes, GW, Quesada, M., Eds, 129-140.spa
dc.relation.referencesInoue, S., Dang, Q. L., Man, R., & Tedla, B. (2019). Northward migration of trembling aspen will increase growth but reduce resistance to drought-induced xylem cavitation. Botany, 97(11), 627-638.spa
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM. (2021). Tiempo y clima, recuperado el 6 de noviembre del 2021 de http://www.ideam.gov.co/web/tiempo-y-clima/climaspa
dc.relation.referencesIzaguirre, M. M., Mazza, C. A., SvatoŠ, A., Baldwin, I. T., & BallarÉ, C. L. (2007). Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Annals of Botany, 99(1), 103-109.spa
dc.relation.referencesJacobsen, A. L., Pratt, R. B., Davis, S. D., & Ewers, F. W. (2008). Comparative community physiology: nonconvergence in water relations among three semi‐arid shrub communities. New Phytologist, 180(1), 100-113.spa
dc.relation.referencesJardim, A., Santos, H., Alves, H., Ferreira-Silva, S., de Souza, L., Júnior, G., ... & da Silva, T. (2021). Genotypic differences relative photochemical activity, inorganic and organic solutes and yield performance in clones of the forage cactus under semi-arid environment. Plant Physiology and Biochemistry, 162, 421-430.spa
dc.relation.referencesJohansen, D. A. 1940. Plant microtechnique. New York: McGraw-Hill. ▪spa
dc.relation.referencesKalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., ... & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta physiologiae plantarum, 38(4), 102.spa
dc.relation.referencesKarwowska, K., Brzezicka, E., Kozieradzka-Kiszkurno, M., & Chernetskyy, M. (2015). Anatomical structure of the leaves of Crassula cordata (Crassulaceae). Modern Phytomorphology, (8), 53-54.spa
dc.relation.referencesKjeldahl, J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius, Zeitschrift f. anal. Chemie 22(1): 366-382. doi: 10.1007/BF01338151.spa
dc.relation.referencesKim, H. S., Oren, R., & Hinckley, T. M. (2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology, 28(4), 559-577.spa
dc.relation.referencesKoźmińska, A., Al Hassan, M., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., & Vicente, O. (2019). Responses of succulents to drought: comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 243, 235-242.spa
dc.relation.referencesKuang, Y.W., Xu, Y.M., Zhang, L.L., Hou, E.Q. & Shen, W.J. (2017). Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front. Plant Sci, 8 - 802. doi: 10.3389/fpls.2017.00802spa
dc.relation.referencesKumar, D., Singh, H., Raj, S., & Soni, V. (2020). Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, 24, 100813. https://doi.org/10.1016/j.bbrep.2020.100813spa
dc.relation.referencesKumar, M., Nehra, K., & Duhan, J. S. (2013). Phytochemical analysis and antimicrobial efficacy of leaf extracts of Pithecellobium dulce. Asian Journal of Pharmaceutical and Clinical Research, 6(1), 70-76.spa
dc.relation.referencesLambers, H., & Oliveira, R. S. (2019). Role in Ecosystem and Global Processes: Decomposition. In Plant Physiological Ecology (pp. 665-676). Springer, Cham.spa
dc.relation.referencesLaxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94.spa
dc.relation.referencesLeón, E. & Acosta, C. M. (2015). Análisis de vulnerabilidad del territorio por sequía en el departamento de la Guajira, Colombia, a partir de una visión basada en necesidades básicas insatisfechas. Tesis de pregrado no publicada. Universidad Católica de Colombia, Bogotá, Colombia.spa
dc.relation.referencesLi, R. H., Guo, P. G., Michael, B., Stefania, G., & Salvatore, C. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5(10), 751-757.spa
dc.relation.referencesLi, L., Li, X. Y., Xu, X. W., Lin, L. S., & Zeng, F. J. (2013). Effects of high temperature on the chlorophyll a fluorescence of Alhagi sparsifolia at the southern Taklamakan Desert. Acta physiologiae plantarum, 36(2), 243-249.spa
dc.relation.referencesLi, Y., Ma, Q., Chen, J. M., Croft, H., Luo, X., Zheng, T., ... & Liu, J. (2021). Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data. Remote Sensing of Environment, 264, 112618.spa
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology 148: 350-382.spa
dc.relation.referencesLichtenthaler, H. K. (1992). The Kautsky effect: 60 tears of chlorophyll fluorescence induction kinetics. Photosynthetica 27 (1-2): 45-55.spa
dc.relation.referencesFilho, J. M. P. (2004). Gas exchange of the umbu tree under semi-arid conditions. Revista Brasileira de Fruticultura, 26(2), 206-208.spa
dc.relation.referencesLima, M., Soares, A., Porto, J., Sá, F., Carvalho, M., & Braga, F. (2020). Leaf anatomy of Rubiaceae species in a semiarid area of Brazil. Rodriguésia, 71.spa
dc.relation.referencesLiu, C., Li, Y., Xu, L., Chen, Z., & He, N. (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific reports, 9(1), 1-8.spa
dc.relation.referencesLiu, S., An, S., Yan, Z., Ren, J., Lu, X., Ge, F., & Han, W. (2021). Variation and potential influence factors of foliar pH in land-water ecozones of three small plateau lakes. Journal of Plant Ecology, 14(3), 504-514.spa
dc.relation.referencesLiu, S., Yan, Z., Chen, Y., Zhang, M., Chen, J., Han, W. (2018). Foliar pH, an emerging plant functional trait: Biogeography and variability across northern China. Global Ecol Biogeogr, 1–12. https://doi.org/10.1111/geb.12860spa
dc.relation.referencesLiu, Y., Lei, S. G., Chen, X. Y., Chen, M., Zhang, X. Y., & Long, L. L. (2020). Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O–J–I–P chlorophyll a fluorescence analysis. Photosynthetica, 58(5), 1178-1187.spa
dc.relation.referencesLopez, F. B., & Barclay, G. F. (2017). Plant anatomy and physiology. In Badal, S. & Delgoda, R. (Eds.). Pharmacognosy (pp. 45-60). Academic Press.spa
dc.relation.referencesLozano, Y. M., Hortal, S., Armas, C., & Pugnaire, F. I. (2020). Complementarity in nurse plant systems: soil drives community composition while microclimate enhances productivity and diversity. Plant and Soil, 1-12.spa
dc.relation.referencesMadhumitha, G., Fowsiya, J., Gupta, N., Kumar, A., & Singh, M. (2019). Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. Journal of Physics and Chemistry of Solids, 127, 43-51.spa
dc.relation.referencesManimaran, P., Sanjay, M. R., Senthamaraikannan, P., Yogesha, B., Barile, C., & Siengchin, S. (2018). A new study on characterization of Pithecellobium dulce fiber as composite reinforcement for light-weight applications. Journal of Natural Fibers.spa
dc.relation.referencesMarques, T. V., Mendes, K., Mutti, P., Medeiros, S., Silva, L., Perez-Marin, A. M., ... & Bezerra, B. (2020). Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology, 287, 107957.spa
dc.relation.referencesMaxwell, K. (2002). Resistance is useful: diurnal patterns of photosynthesis in C3 and crassulacean acid metabolism epiphytic bromeliads. Functional Plant Biology, 29(6), 679-687.spa
dc.relation.referencesMaxwell, K., Badger, M. R., & Osmond, C. B. (1998). A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Functional Plant Biology, 25(1), 45-52.spa
dc.relation.referencesMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.spa
dc.relation.referencesMaxwell, K., von Caemmerer, S., & Evans, J. R. (1997). Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?. Functional Plant Biology, 24(6), 777-786.spa
dc.relation.referencesMedina, A., Roldán, A., & Azcón, R. (2010). The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of environmental management, 91(12), 2547-2553.spa
dc.relation.referencesMedina, E., Garcia, V., & Cuevas, E. (1990). Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Rio Negro region. Biotropica, 51-64.spa
dc.relation.referencesMendes, K., Granja, J. A., Ometto, J. P., Antonino, A. C., Menezes, R. S., Pereira, E. C., & Pompelli, M. F. (2017). Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Functional Plant Biology, 44(10), 1039-1051.spa
dc.relation.referencesMendes, M., Lacerda, C. F. D., Fernandes, F. É. P., Cavalcante, A. C. R., & Oliveira, T. S. D. (2013). Ecophysiology of deciduous plants grown at different densities in the semiarid region of Brazil. Theoretical and Experimental Plant Physiology, 25(2), 94-105.spa
dc.relation.referencesMihaljević, I., Viljevac Vuletić, M., Šimić, D., Tomaš, V., Horvat, D., Josipović, M., ... & Vuković, D. (2021). Comparative Study of Drought Stress Effects on Traditional and Modern Apple Cultivars. Plants, 10(3), 561.spa
dc.relation.referencesMoncayo, M. C., & Gálvez, A. (2018). Islas de fertilidad: una revisión sistemática de su estructura y operación. IDESIA, 36(1), 115-122.spa
dc.relation.referencesMonroy, R., & Colín, H. (2004). El guamúchil Pithecellobium dulce (Roxb.) Benth, un ejemplo de uso múltiple. Madera y bosques, 10(1), 35-53.spa
dc.relation.referencesMontesinos‐Navarro, A., Verdú, M., Querejeta, J. I., & Valiente‐Banuet, A. (2017). Nurse plants transfer more nitrogen to distantly related species. Ecology, 98(5), 1300-1310.spa
dc.relation.referencesMora‐Poblete, F., Ballesta, P., Lobos, G. A., Molina‐Montenegro, M., Gleadow, R., Ahmar, S., & Jiménez‐Aspee, F. (2021). Genome‐wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers. Physiologia Plantarum.spa
dc.relation.referencesMoreno-Galván, A. E., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. R. (2020a). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147, 103367.spa
dc.relation.referencesMoreno-Galván, A., Romero-Perdomo, F. A., Estrada-Bonilla, G., Meneses, C. H. S. G., & Bonilla, R. R. (2020b). Dry-caribbean Bacillus spp. strains ameliorate drought stress in maize by a strain-specific antioxidant response modulation. Microorganisms, 8(6), 823.spa
dc.relation.referencesMoreno, L., Crespo, S., Pérez, W. & Melgarejo, L. M. (2010). Capítulo X. Pruebas bioquímicas como herramientas para estudios en fisiología. En Melgarejo, L. M. (Eds.). Experimentos de fisiología vegetal. Bogotá, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesMoreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119-129.spa
dc.relation.referencesNassar, J. M., Hamrick, J. L., & Fleming, T. H. (2002). Allozyme diversity and genetic structure of the leafy cactus (Pereskia guamacho [Cactaceae]). Journal of Heredity, 93(3), 193-200.spa
dc.relation.referencesNautiyal, S., Bhaskar, K., & Khan, I. (2015). Biodiversity of Semiarid Landscape: Baseline Study for Understanding the Impact of Human Development on Ecosystems. New York, USA, Springer.spa
dc.relation.referencesNavarro‐Cano, J. A., Verdú, M., & Goberna, M. (2018). Trait‐based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of applied ecology, 55(3), 1195-1206.spa
dc.relation.referencesOgburn, R. M., & Edwards, E. J. (2009). Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. American Journal of Botany, 96(2), 391-408.karspa
dc.relation.referencesOliveira, D., Medeiros, M., Pereira, S., Oliveira, M., Frosi, G., Arruda, E., & Santos, M. (2016). Ecophysiological leaf traits of native and exotic palm tree species under semi-arid conditions. Bragantia, 75, 128-134.spa
dc.relation.referencesOliveira, M., Matzek, V., Dias Medeiros, C., Rivas, R., Marinho Falcão, H., & Santos, M. G. (2014). Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest. PloS one, 9(8), e105514.spa
dc.relation.referencesPabón, J. & Alarcón, C. J. (2016). El efecto del cambio climático sobre las zonas áridas y semiaridas de Colombia. In Материалы Международной конференции «ИнтерКарто/ИнтерГИС», 1 (22): 56-62.spa
dc.relation.referencesPadilla, F., & Pugnaire, F. (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4(4): 196–202.spa
dc.relation.referencesParrotta, J. (1991). Pithecellobium dulce (Roxb.) Benth. Guamúchil, Madras thorn. SO-ITF-SM-40. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 5p.spa
dc.relation.referencesPerea, R., Cunha, J. S., Spadeto, C., Gomes, V. M., Moura, A. L., Rúbia, B., & Fernandes, G. W. (2019). Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecological Engineering, 136, 193-196.spa
dc.relation.referencesPérez, L. V., Rojas, Y. & Melgarejo, L. M. (2010). Capítulo IV. Agua. En Melgarejo, L. M. (Eds.). Experimentos de fisiología vegetal. Bogotá, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesPivovaroff, A. L., Pasquini, S. C., De Guzman, M. E., Alstad, K. P., Stemke, J. S., & Santiago, L. S. (2016). Multiple strategies for drought survival among woody plant species. Functional Ecology, 30(4), 517-526.spa
dc.relation.referencesPizzani, P., Godoy, S., Arias, A., García, D. E., & Linares, Z. (2009). Fósforo total, fósforo fítico y actividad fitásica en los frutos de árboles forrajeros de los Llanos Centrales de Venezuela. Pastos y Forrajes, 32(2), 1-1.spa
dc.relation.referencesPowers, J. S., & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology, 24(4), 927-936.spa
dc.relation.referencesR Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria. Descargado de https://www.R-project.org/spa
dc.relation.referencesRapacz, M., Sasal, M., Kalaji, H. M., & Kościelniak, J. (2015). Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PloS one, 10(7), 1-18.spa
dc.relation.referencesRedha, A., Al-Mansour, N., Suleman, P., Afzal, M., & Al-Hasan, R. (2011). Leaf traits and histochemistry of trichomes of Conocarpus lancifolius a Combretaceae in semi-arid conditions. American Journal of Plant Sciences, 2(02), 165.spa
dc.relation.referencesResco, V., Ignace, D. D., Sun, W., Huxman, T. E., Weltzin, J. F., & Williams, D. G. (2008). Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse‐driven ecosystems–implications for ecological studies. Functional Ecology, 22(3), 479-483.spa
dc.relation.referencesRey, A., Pegoraro, E., Oyonarte, C., Were, A., Escribano, P. & Raimundo, J. (2011). Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biology & Biochemistry, 43, 393-403.spa
dc.relation.referencesRivas, R., Barros, V., Falcão, H., Frosi, G., Arruda, E., & Santos, M. (2020). Ecophysiological Traits of Invasive C3 Species Calotropis procera to Maintain High Photosynthetic Performance Under High VPD and Low Soil Water Balance in Semi-Arid and Seacoast Zones. Front. Plant Sci. 11:717. doi: 10.3389/fpls.2020.00717spa
dc.relation.referencesRobles, A., Raz, L., & Marquínez, X. 2016. Floral anatomy of Peristethium leptostachyum 534 (Loranthaceae). Revista de Biología Tropical, 64: 341-352.spa
dc.relation.referencesRosado, J. R., & Moreno, M. I. (2015). The role of myths and plant diseases in the Wayuu ethnic group, Guajira, Colombia. Pharmacology Online, 2, 124-130.spa
dc.relation.referencesSade, N., Gebremedhin, A., & Moshelion, M. (2012). Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant signaling & behavior, 7(7), 767-770.spa
dc.relation.referencesSalazar, P. C., Navarro-Cerrillo, R. M., Grados, N., Cruz, G., Barrón, V., & Villar, R. (2019). Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru. Plant and soil, 437, 117-135.spa
dc.relation.referencesSalgado-Negret, B., Pulido, E., Cabrera, M., Ruíz, C. & Paz, H. (2015). Protocolo para la medición de rasgos funcionales en plantas. pp 38-81. En: Salgado-Negret, B. (ed). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Bogotá, D. C. Colombia. 236 pp.spa
dc.relation.referencesSchlesinger, W. H., & Pilmanis, A. M. (1998). Plant-soil interactions in deserts. Biogeochemistry, 42, 169-187.spa
dc.relation.referencesSecorun, A. C., & Souza, L. A. D. (2011). Morphology and anatomy of Rhipsalis cereuscula, Rhipsalis floccosa subsp. hohenauensis and Lepismium cruciforme (Cactaceae) seedlings. Revista mexicana de biodiversidad, 82(1), 131-143.spa
dc.relation.referencesSilva, A. M. L., de Faria Lopes, S., Vitorio, L. A. P., Santiago, R. R., de Mattos, E. A., & Trovao, D. M. D. B. M. (2014). Plant functional groups of species in semiarid ecosystems in Brazil: wood basic density and SLA as an ecological indicator. Brazilian Journal of Botany, 37(3), 229-237.spa
dc.relation.referencesSitko, K., Rusinowski, S., Kalaji, H. M., Szopiński, M., & Małkowski, E. (2017). Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. Plant Physiology, 175(1), 290-302.spa
dc.relation.referencesSiyag, P. (2014). Afforestation, Reforestation and Forest Restoration in Arid and Semi-arid Tropics. A Manual of Technology & Management. Springer Science & Business Media.spa
dc.relation.referencesSolarte, M. E., Moreno, L., and Melgarejo, L. M. 2010. VI. Fotosíntesis y pigmentos vegetales. In L. M., Melgarejo [eds.]. Experimentos en Fisiología Vegetal, 107-122. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesSotomayor, D. A., & Drezner, T. D. (2019). Dominant plants alter the microclimate along a fog gradient in the Atacama Desert. Plant Ecology, 220(4-5), 417-432.spa
dc.relation.referencesSouza, B. C. D., Oliveira, R. S., Araújo, F. S. D., Lima, A. L. A. D., & Rodal, M. J. N. (2015). Divergências funcionais e estratégias de resistência à seca entre espécies decíduas e sempre verdes tropicais 1. Rodriguésia, 66, 21-32.spa
dc.relation.referencesSrinivasarao, C., Shanker, A. K., Kundu, S., & Reddy, S. (2016). Chlorophyll fluorescence induction kinetics and yield responses in rainfed crops with variable potassium nutrition in K deficient semi-arid alfisols. Journal of Photochemistry and Photobiology B: Biology, 160, 86-95.spa
dc.relation.referencesStirbet, A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 236-257.spa
dc.relation.referencesStrasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation, 445-483.spa
dc.relation.referencesStrasser, R. J., Tsimilli, M., & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence. Springer, Dordrecht. 321-362.spa
dc.relation.referencesStuart, F., Matson, P., & Vitousek, P. (2011). Principles of Terrestrial Ecosystem Ecology. Second Edition. Springer, New York, USA.spa
dc.relation.referencesSuárez, J. C., Melgarejo, L. M., Casanoves, F., Di Rienzo, J. A., DaMatta, F. M., & Armas, C. (2018). Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PloS one, 13(11), e0206149.spa
dc.relation.referencesSundberg, M. D. (1986). A comparison of stomatal distribution and length in succulent and non-succulent desert plants. Phytomorphology, 36(1-2), 53-66.spa
dc.relation.referencesTaiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.spa
dc.relation.referencesTakahashi, S., Bauwe, H., & Badger, M. (2007). Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant physiology, 144(1), 487-494.spa
dc.relation.referencesTeixeira, L. H., Oliveira, B. F., Krah, F. S., Kollmann, J., & Ganade, G. (2020). Linking plant traits to multiple soil functions in semi-arid ecosystems. Journal of Arid Environments, 172, 104040.spa
dc.relation.referencesTrofimov, D., & Rohwer, J. G. (2018). Epidermal features allowing identification of evolutionary lineages in the Ocotea complex (Lauraceae). Perspectives in Plant Ecology, Evolution and Systematics, 31, 17-35.spa
dc.relation.referencesTucker, S. C., & Kantz, K. E. (1997). Comparative floral development and evolution in tribe Caesalpinieae (Leguminosae: Caesalpinioideae). Haematoxylum. American Journal of Botany, 84(8), 1047-1063.spa
dc.relation.referencesVasellati, V., Oesterheld, M., Medan, D. and Loreti, J. (2001). Efects of Flooding and Drought on the Anatomy of Paspalum dilatatum. Annals of Botany, 88, 355-360.spa
dc.relation.referencesVendramini, F., Díaz, S., Gurvich, D. E., Wilson, P. J., Thompson, K., & Hodgson, J. G. (2002). Leaf traits as indicators of resource‐use strategy in floras with succulent species. New Phytologist, 154(1), 147-157.spa
dc.relation.referencesVourlitis, G. L., de Souza Nogueira, J., de Almeida Lobo, F., Sendall, K. M., de Paulo, S. R., Antunes Dias, C. A., ... & de Andrade, N. L. R. (2008). Energy balance and canopy conductance of a tropical semi‐deciduous forest of the southern Amazon Basin. Water Resources Research, 44(3).spa
dc.relation.referencesWada, S., Miyake, C., Makino, A., & Suzuki, Y. (2020). Photorespiration coupled with CO2 assimilation protects Photosystem I From photoinhibition under moderate Poly (Ethylene Glycol)-Induced osmotic stress in Rice. Frontiers in Plant Science, 11.spa
dc.relation.referencesWarwick, N. W., Hailey, L., Clarke, K. L., & Gasson, P. E. (2017). Climate trends in the wood anatomy of Acacia sensu stricto (Leguminosae: Mimosoideae). Annals of botany, 119(8), 1249-1266.spa
dc.relation.referencesWhite, R. P., Tunstall, D. B., & Henninger, N. (2002). An ecosystem approach to drylands: building support for new development policies. Washington, DC: World Resources Institute.spa
dc.relation.referencesXavier, L. D. P., & Arruda, E. C. P. D. (2021). Leaf anatomy of Senna cana (Fabaceae) in a seasonally dry tropical forest. Revista Caatinga, 34, 155-165.spa
dc.relation.referencesYang, L., Ren, H., Liu, N., & Wang, J. (2013). Can perennial dominant grass Miscanthus sinensis be nurse plant in recovery of degraded hilly land landscape in South China? Landscape and ecological engineering, 9(2), 213-225.spa
dc.relation.referencesYeats, T. H., & Rose, J. K. (2013). The formation and function of plant cuticles. Plant physiology, 163(1), 5-20.spa
dc.relation.referencesYücedağ, C., Sanders, J., Musah, M., & Gailing, O. (2019). Stomatal density in Quercus petraea and Q. robur natural populations in Northern Turkey. Dendrobiology, 81, 58-64.spa
dc.relation.referencesZhang, Y., & Liu, G. J. (2018). Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L. Journal of environmental radioactivity, 195, 26-32.spa
dc.relation.referencesZor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical biochemistry, 236(2), 302-308.spa
dc.relation.referencesZúñiga-Feest, A., Muñoz, G., Bustos-Salazar, A., Ramírez, F., Delgado, M., Valle, S., & Díaz, L. (2018). The nitrogen fixing specie Sophora cassioides (Fabaceae), is nutritionally favored and their rhizosphere bacteria modified when is co-cultivated with the cluster root forming Embothrium coccineum (Proteaceae). Journal of soil science and plant nutrition, 18(3), 597-616.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.lembÁrboles - fisiologíaspa
dc.subject.lembTrees - physiologyeng
dc.subject.lembÁrboles - análisisspa
dc.subject.lembTrees - analysiseng
dc.subject.proposalPigmentosspa
dc.subject.proposalÁrboles nodrizaspa
dc.subject.proposalFluorescencia de la clorofila aspa
dc.subject.proposalRasgos fisiológicos foliaresspa
dc.subject.proposalAnatomía foliarspa
dc.subject.proposalOsmolitosspa
dc.subject.proposalFoliar physiological traitseng
dc.subject.proposalChlorophyll a fluorescenceeng
dc.subject.proposalPigmentseng
dc.subject.proposalOsmolyteseng
dc.subject.proposalFoliar anatomyeng
dc.titleCaracterización fisiológica, bioquímica y anatómica de especies de árboles nodriza formadores de islas de recursos en La Guajira, Colombiaspa
dc.title.translatedPhysiological, biochemical and anatomical characterization of nurse tree species that form resource islands in La Guajira, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCaracterización de microbiota y rasgos funcionales de flora asociada a islas de recursos en un ambiente semiárido de la alta Guajira y su relación con la materia orgánica y la calidad del suelo.spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016083353.2022.pdf
Tamaño:
2.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: