Desarrollo de sistemas fotocatalíticos tipo Ba1-xMxTiO3 (M = Fe, Al) soportados en biocarbonos activados para la remoción de contaminantes emergentes presentes en matrices acuosas
dc.contributor.advisor | Moreno Aldana, Luis Carlos | spa |
dc.contributor.advisor | Agamez-Pertuz, Yazmin Yaneth | spa |
dc.contributor.author | Varela Olivera, Christian Fabian | spa |
dc.contributor.cvlac | Varela Olivera, Christian Fabian [0001586304] | spa |
dc.contributor.googlescholar | Varela Olivera, Christian Fabian [Christian F. Varela] | spa |
dc.contributor.orcid | Varela Olivera, Christian Fabian [0000-0002-1691-542X] | spa |
dc.contributor.researchgroup | laboratorio de Investigación en Combustibles y Energía | spa |
dc.contributor.scopus | Varela Olivera, Christian Fabian [57222088629] | spa |
dc.date.accessioned | 2025-07-03T21:48:59Z | |
dc.date.available | 2025-07-03T21:48:59Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La presencia de contaminantes emergentes en el agua representa graves riesgos para el medio ambiente y la salud humana, por lo que es necesario investigar nuevas y menores metodologías que permitan la eliminación eficiente de estos contaminantes. En este contexto, la presente tesis doctoral se enfocó en el desarrollo de nuevos materiales para la remoción mediante adsorción/fotocatálisis de contaminantes emergentes en matriz acuosa. Los estudios se realizaron en tres etapas, en la primera se prepararon biocarbonos activados, y se evaluó su desempeño en la remoción adsorptiva de acetaminofén y amoxicilina, con el fin de seleccionar el material adecuado a ser empleado como soporte carbonoso. En la segunda etapa, se sintetizaron materiales tipo BaTiO3 sustituidos con hierro y aluminio, y se determinó el efecto de la sustitución en la actividad fotocatalítica de los materiales obtenidos. En la tercera etapa se prepararon varios materiales compuestos a partir de un biocarbón de tusa de maíz activado en ZnCl2 y el semiconductor con Ba0.90Fe0.10TiO3, los cuales habían demostrado individualmente la mayor capacidad de remoción. Se demostró que el soporte carbonoso, los semiconductores, y subsecuentemente, los materiales compuestos preparados presentan una alta efectividad en la remoción de fármacos y microplástico presentes en matrices acuosas. De esta manera, la presente investigación presenta un aporte significativo en el desarrollo de alternativas metodológicas para lograr una remoción eficiente y asequible de contaminantes emergentes mediante adsorción/fotocatálisis. (Texto tomado de la fuente). | spa |
dc.description.abstract | The presence of emerging pollutants in water poses serious risks to the environment and human health, making it necessary to investigate new and less costly methodologies that efficiently remove these contaminants. In this sense, the present doctoral thesis focused on developing new materials for the removal of emerging pollutants in aqueous matrices through adsorption/photocatalysis. The studies were conducted in three stages. In the first stage, activated biochars were prepared, and their performance in the adsorptive removal of acetaminophen and amoxicillin was evaluated, aiming to select the appropriate material to be used as a carbonaceous support. In the second stage, BaTiO3-type materials substituted with iron and aluminum were synthesized, and the effect of substitution on the photocatalytic activity of the obtained materials was determined. In the third stage, several composites were prepared using corn corn-bob biochar activated with ZnCl2 and the semiconductor Ba0.90Fe0.10TiO3, which had individually demonstrated the highest removal capacity. It was proven that the carbonaceous support, semiconductors, and subsequently, the prepared composites exhibit high effectiveness in removing drugs and microplastics in aqueous matrices. This research represents a significant contribution to developing methodological alternatives for achieving efficient and affordable removal of emerging contaminants through adsorption/photocatalysis. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.description.researcharea | Nuevos materiales y procesos | spa |
dc.format.extent | xxiv, 264 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88288 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Química | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | [0-1] J.P. Rodríguez-Miranda, C.A. García-Ubaque, J.C. García-Ubaque, Enfermedades Transmitidas por el agua y saneamiento básico en Colombia, Revista De Salud Pública. 18 (2017) 738. doi:10.15446/rsap.v18n5.54869. | spa |
dc.relation.references | [0-2] K. Samal, S. Mahapatra, M. Hibzur Ali, Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health, Energy Nexus. 6 (2022) 100076. doi:10.1016/j.nexus.2022.100076 | spa |
dc.relation.references | [0-3] L.H. Santos, A.N. Araújo, A. Fachini, A. Pena, C. Delerue-Matos, M.C.B.S.M. Montenegro, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, Journal of Hazardous Materials. 175 (2010) 45–95. doi:10.1016/j.jhazmat.2009.10.100. | spa |
dc.relation.references | [0-4] B. Dhir, Removal of pharmaceuticals and personal care products by Aquatic plants, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. (2019) 321–340. doi:10.1016/b978-0-12-816189-0.00014-7. | spa |
dc.relation.references | [0-5] WHO, “Pharmaceuticals in drinking-water”. 22026. [en línea]. Disponible en: https://www.who.int/water_sanitation_health/diseases-risks/risks/info_sheet_pharmaceuticals/en/. | spa |
dc.relation.references | [0-6] H. H. Publishing, “Drugs in the water”. [en línea]. Disponible en: https://www.health.harvard.edu/newsletter_article/drugs-in-the-water. | spa |
dc.relation.references | [0-7] S.A. Strungaru, R. Jijie, M. Nicoara, G. Plavan, C. Faggio, Micro- (nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology, TrAC Trends in Analytical Chemistry. 110 (2019) 116–128. doi:10.1016/j.trac.2018.10.025. | spa |
dc.relation.references | [0-8] D. Lithner, J. Damberg, G. Dave, Å. Larsson, Leachates from plastic consumer products – Screening for toxicity with Daphnia magna, Chemosphere. 74 (2009) 1195–1200. doi:10.1016/j.chemosphere.2008.11.022. | spa |
dc.relation.references | [0-9] D. Lithner, Å. Larsson, G. Dave, Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition, Science of The Total Environment. 409 (2011) 3309–3324. doi:10.1016/j.scitotenv.2011.04.038. | spa |
dc.relation.references | [0-10] A.L. Andrady, Microplastics in the marine environment, Marine Pollution Bulletin. 62 (2011) 1596–1605. doi:10.1016/j.marpolbul.2011.05.030. | spa |
dc.relation.references | [0-11] X.T. Bui, T.D.H. Vo, P.T. Nguyen, V.-T. Nguyen, T.-S. Dao, P.-D. Nguyen, Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies, Environmental Technology & Innovation. 19 (2020) 101013. doi:10.1016/j.eti.2020.101013. | spa |
dc.relation.references | [0-12] A.W. Verla, C.E. Enyoh, E.N. Verla, K.O. Nwarnorh, Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication, SN Applied Sciences. 1 (2019) 1400. doi:10.1007/s42452-019-1352-0. | spa |
dc.relation.references | [0-13] E.L. Teuten, S.J. Rowland, T.S. Galloway, R.C. Thompson, Potential for Plastics to Transport Hydrophobic Contaminants, Environmental Science & Technology. 41 (2007) 7759–7764. doi:10.1021/es071737s. | spa |
dc.relation.references | [0-14] J.C. Anderson, B.J. Park, V.P. Palace, Microplastics in aquatic environments: Implications for Canadian ecosystems, Environmental Pollution. 218 (2016) 269–280. doi:10.1016/j.envpol.2016.06.074. | spa |
dc.relation.references | [0-15] H. Dhila, A. Bhapkar, S. Bhame, Metal oxide/biochar hybrid nanocomposites for adsorption and photocatalytic degradation of textile dye effluents: A Review, Desalination and Water Treatment. 321 (2025) 101004. doi:10.1016/j.dwt.2025.101004. | spa |
dc.relation.references | [0-16] L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of Olive Stone, Environmental Science and Pollution Research. 24 (2016) 9993–10004. doi:10.1007/s11356-016-7404-8. | spa |
dc.relation.references | [0-17] S.M. Ali, M.A. El Mansop, A. Galal, S.M. Abd El Wahab, W.M. El-Etr, H.A. Zein El-Abdeen, A correlation of the adsorption capacity of perovskite/biochar composite with the metal ion characteristics, Scientific Reports. 13 (2023). doi:10.1038/s41598-023-36592-5. | spa |
dc.relation.references | [0-18] G. Obey, M. Adelaide, R. Ramaraj, Biochar derived from non-customized Matamba Fruit Shell as an adsorbent for wastewater treatment, Journal of Bioresources and Bioproducts. 7 (2022) 109–115. doi:10.1016/j.jobab.2021.12.001. | spa |
dc.relation.references | [0-19] H. Dhila, A. Bhapkar, S. Bhame, Metal oxide/biochar hybrid nanocomposites for adsorption and photocatalytic degradation of textile dye effluents: A Review, Desalination and Water Treatment. 321 (2025) 101004. doi:10.1016/j.dwt.2025.101004. | spa |
dc.relation.references | [1-1] D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environmental waters and wastewater: Current State of Knowledge and future research, Analytical and Bioanalytical Chemistry. 399 (2010) 251–275. doi:10.1007/s00216-010-4300-9. | spa |
dc.relation.references | [1-2] Y. Xiang, H. Wu, L. Li, M. Ren, H. Qie, A. Lin, A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China, Ecotoxicology and Environmental Safety. 213 (2021) 112044. doi:10.1016/j.ecoenv.2021.112044. | spa |
dc.relation.references | [1-3] C.A. Rey-Mafull, J.E. Tacoronte, R. Garcia, J. Tobella, J.C. Llópiz, A. Iglesias, et al., Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid, SpringerPlus. 3 (2014). doi:10.1186/2193-1801-3-48. | spa |
dc.relation.references | [1-4] A. Dhiman, S. Kushwaha, A.L. Ramanathan, Occurrence and fate of emerging contaminants in groundwater, Legacy, Pathogenic and Emerging Contaminants in the Environment. (2021) 3–22. doi:10.1201/9781003157465-2. | spa |
dc.relation.references | [1-5] J. Wu, Z. Liu, Q. Ma, L. Dai, Z. Dang, Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: A critical review, Science of The Total Environment. 891 (2023) 164600. doi:10.1016/j.scitotenv.2023.164600. | spa |
dc.relation.references | [1-6] H.N. Phong Vo, G.K. Le, T.M. Hong Nguyen, X.-T. Bui, K.H. Nguyen, E.R. Rene, et al., Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments, Chemosphere. 236 (2019) 124391. doi:10.1016/j.chemosphere.2019.124391. | spa |
dc.relation.references | [1-7] Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: Comparison with activated carbon, Process Biochemistry. 40 (2005) 831–847. doi:10.1016/j.procbio.2004.02.014. | spa |
dc.relation.references | [1-8] A. Garciareiriz, P. Damiani, A. Olivieri, Different strategies for the direct detérmication of amoxicillin in human urine by second-order multivariate analysis of Kinetic–Spectrophotometric Data, Talanta. 71 (2007) 806–815. doi:10.1016/j.talanta.2006.05.050. | spa |
dc.relation.references | [1-9] X. Q. Liu, W. J. Chen, H. Jiang, Facile synthesis of Ag/Ag3PO4/AMB composite with improved photocatalytic performance, Chemical Engineering Journal. 308 (2017) 889–896. doi:10.1016/j.cej.2016.09.125. | spa |
dc.relation.references | [1-10] L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of Olive Stone, Environmental Science and Pollution Research. 24 (2016) 9993–10004. doi:10.1007/s11356-016-7404-8. | spa |
dc.relation.references | [1-11] R. N. Coimbra, C. Escapa, M. Otero, Removal of pharmaceuticals from water: Conventional and alternative treatments, Water. 13 (2021) 487. doi:10.3390/w13040487. | spa |
dc.relation.references | [1-12] S. Neogi, V. Sharma, N. Khan, D. Chaurasia, A. Ahmad, S. Chauhan, et al., Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy, Chemosphere. 293 (2022) 133474. doi:10.1016/j.chemosphere.2021.133474. | spa |
dc.relation.references | [1-13] P. A. Veiga, M. H. Cerqueira, M. G. Gonçalves, T. T. Matos, G. Pantano, J. Schultz, et al., Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced, Journal of Environmental Management. 285 (2021) 112145. doi:10.1016/j.jenvman.2021.112145. | spa |
dc.relation.references | [1-14] J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A Review, Journal of Bioresources and Bioproducts. 6 (2021) 292–322. doi:10.1016/j.jobab.2021.03.003. | spa |
dc.relation.references | [1-15] Z. Liu, Y. Sun, X. Xu, X. Meng, J. Qu, Z. Wang, et al., Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of hg(ii) from Aqueous Solution, Bioresource Technology. 306 (2020) 123154. doi:10.1016/j.biortech.2020.123154. | spa |
dc.relation.references | [1-16] G. Obey, M. Adelaide, R. Ramaraj, Biochar derived from non-customized Matamba Fruit Shell as an adsorbent for wastewater treatment, Journal of Bioresources and Bioproducts. 7 (2022) 109–115. doi:10.1016/j.jobab.2021.12.001. | spa |
dc.relation.references | [1-17] Aceites Vegetales y Biodiversidad, IUCN. (2024). https://iucn.org/es/resources/resumen-informativo/aceites-vegetales-y-biodiversidad (consultado enero 15, 2025). | spa |
dc.relation.references | [1-18] Minagricultura, CADENA DE PALMA DE ACEITE, Indicadores e Instrumentos. (2019). https://sioc.minagricultura.gov.co/Palma/Documentos/2019-09-30%20Cifras%20Sectoriales.pdf (consultado enero 15, 2025). | spa |
dc.relation.references | [1-19] L. J. Quiroz-Mojica, G. A. Peñuela-Mesa, L. C. Diaz-Muegue, C. Martinez-Smit, M. J. Bastidas-Barranco, Exergo-economic study of the process for obtaining biochar derived from oil palm kernel shell on an experimental and pilot scale, DYNA. 89 (2022) 133–140. doi:10.15446/dyna.v89n223.99359. | spa |
dc.relation.references | [1-20] A. A. Lawal, M. A. Hassan, M. A. Ahmad Farid, T. A. Tengku Yasim-Anuar, M. H. Samsudin, M.Z. Mohd Yusoff, et al., Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis, Environmental Pollution. 269 (2021) 116197. doi:10.1016/j.envpol.2020.116197. | spa |
dc.relation.references | [1-21] Recent advances in the preparation of oil palm waste-based adsorbents for removal of environmental pollutants - A Review, Malaysian Journal of Analytical Science. 22 (2018). doi:10.17576/mjas-2018-2202-02. | spa |
dc.relation.references | [1-22] H. Ma, Z. Xu, W. Wang, X. Gao, H. Ma, Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution, RSC Advances. 9 (2019) 39282–39293. doi:10.1039/c9ra07943b. | spa |
dc.relation.references | [1-23] S. Minaei, K. Zoroufchi Benis, K.N. McPhedran, J. Soltan, Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole, Chemical Engineering Research and Design. 190 (2023) 407–420. doi:10.1016/j.cherd.2022.12.038. | spa |
dc.relation.references | [1-24] M. E. Saied, S. A. Shaban, M. S. Mostafa, A. O. Naga, Efficient adsorption of acetaminophen from the aqueous phase using low-cost and renewable adsorbent derived from Orange Peels, Biomass Conversion and Biorefinery. 14 (2022) 2155–2172. doi:10.1007/s13399-022-02541-x. | spa |
dc.relation.references | [1-25] S. Jabeen, X. Gao, M. Altarawneh, J. Hayashi, M. Zhang, B.Z. Dlugogorski, Analytical procedure for proximate analysis of algal biomass: Case study forspirulina platensisandchlorella vulgaris, Energy & Fuels. 34 (2019) 474–482. doi:10.1021/acs.energyfuels.9b03156. | spa |
dc.relation.references | [1-26] A. R. Sahito, R. B. Mahar, Z. Siddiqui, K. M. Brohi, Estimating calorific values of lignocellulosic biomass from volatile and fixed solids, International Journal of Biomass and Renewables. 2 (2013) 1. doi:10.61762/ijbrvol2iss1art13847. | spa |
dc.relation.references | [1-27] S. Soloi, E. K. Hou, The potential of oil palm leaf fibre in paper-making industry, Journal of Physics: Conference Series. 1358 (2019) 012005. doi:10.1088/1742-6596/1358/1/012005. | spa |
dc.relation.references | [1-28] D. Yaylali, C. Uraz, E. Gümüşkaya, Evaluating the performance of hemp bast fibres in the production of packaging paper using different wastepaper blends, Drewno. Prace Naukowe, Doniesienia, Komunikaty = Wood. Research Papers, Reports, Announcements. 65 (2022). doi:10.12841/wood.1644-3985.400.02. | spa |
dc.relation.references | [1-29] M. Khalid, C.T. Ratnam, T.G. Chuah, S. Ali, T.S.Y. Choong, Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose, Materials & Design. 29 (2008) 173–178. doi:10.1016/j.matdes.2006.11.002. | spa |
dc.relation.references | [1-30] J. A. Sirviö, K. Hyypiö, S. Asaadi, K. Junka, H. Liimatainen, High-strength cellulose nanofibers producedviaswelling pretreatment based on a choline chloride–imidazole deep eutectic solvent, Green Chemistry. 22 (2020) 1763–1775. doi:10.1039/c9gc04119b. | spa |
dc.relation.references | [1-31] R. Bardestani, S. Kaliaguine, Steam activation and mild air oxidation of vacuum pyrolysis biochar, Biomass and Bioenergy. 108 (2018) 101–112. doi:10.1016/j.biombioe.2017.10.011. | spa |
dc.relation.references | [1-32] H. N. Tran, S. J. You, H. P. Chao, Effect of pyrolysis temperatures and times on the adsorption of cadmium onto Orange Peel derived biochar, Waste Management & Research: The Journal for a Sustainable Circular Economy. 34 (2015) 129–138. doi:10.1177/0734242x15615698. | spa |
dc.relation.references | [1-33] C. F. Varela, L.C. Moreno-Aldana, Y.Y. Agámez-Pertuz, Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from Corn Cob: Efficiency, selectivity and mechanism, Journal of Bioresources and Bioproducts. 9 (2024) 58–73. doi:10.1016/j.jobab.2023.10.003. | spa |
dc.relation.references | [1-34] Z.Z. Chowdhury, S.B. Hamid, S.M. Zain, Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu (II) cations using Lignocellulosic Wastes, BioResources. 10 (2014). doi:10.15376/biores.10.1.732-749. | spa |
dc.relation.references | [1-35] S. Chang, H. Fu, X. Wu, C. Liu, Z. Li, Y. Dai, et al., Batch and fixed-bed column studies for selective removal of cesium ions by compressible Prussian blue/polyurethane sponge, RSC Advances. 8 (2018) 36459–36467. doi:10.1039/c8ra07665k. | spa |
dc.relation.references | [1-36] H. K. Agbovi, L. D. Wilson, Adsorption processes in biopolymer systems: Fundamentals to Practical Applications, Natural Polymers-Based Green Adsorbents for Water Treatment. (2021) 1–51. doi:10.1016/b978-0-12-820541-9.00011-9. | spa |
dc.relation.references | [1-37] T. R. Sahoo, B. Prelot, Adsorption processes for the removal of contaminants from wastewater, Nanomaterials for the Detection and Removal of Wastewater Pollutants. (2020) 161–222. doi:10.1016/b978-0-12-818489-9.00007-4. | spa |
dc.relation.references | [1-38] J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, Chemosphere. 258 (2020) 127279. doi:10.1016/j.chemosphere.2020.127279. | spa |
dc.relation.references | [1-39] S. Azizian, S. Eris, Adsorption isotherms and kinetics, Interface Science and Technology. (2021) 445–509. doi:10.1016/b978-0-12-818805-7.00011-4. | spa |
dc.relation.references | [1-40] D. L. Sparks, B. Singh, M. G. Siebecker, Sorption phenomena on soils, Environmental Soil Chemistry. (2024) 203–281. doi:10.1016/b978-0-443-14034-1.00005-8. | spa |
dc.relation.references | [1-41] T. A. Saleh, M. Mustaqeem, M. Khaled, Water treatment technologies in removing heavy metal ions from wastewater: A Review, Environmental Nanotechnology, Monitoring & Management. 17 (2022) 100617. doi:10.1016/j.enmm.2021.100617 | spa |
dc.relation.references | [1-42] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, et al., Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 583 (2019) 123966. doi:10.1016/j.colsurfa.2019.123966. | spa |
dc.relation.references | [1-43] S. Bhuvaneshwari, V. Sivasubramanian, Equilibrium, Kinetics, and Breakthrough Studies for adsorption of Cr(VI) on Chitosan, Chemical Engineering Communications. 201 (2014) 834–854. doi:10.1080/00986445.2013.793674. | spa |
dc.relation.references | [1-44] S. V. Gokhale, K. K. Jyoti, S. S. Lele, Modeling of chromium (VI) biosorption by immobilized spirulina platensis in packed column, Journal of Hazardous Materials. 170 (2009) 735–743. doi:10.1016/j.jhazmat.2009.05.005. | spa |
dc.relation.references | [1-45] A. H. F. Tahir, A. H. Al-Obaidy, F. H. Mohammed, Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review, IOP Conference Series: Materials Science and Engineering. 737 (2020) 012171. doi:10.1088/1757-899x/737/1/012171. | spa |
dc.relation.references | [1-46] U. Tyagi, N. Anand, Prospective of waste lignocellulosic biomass as precursors for the production of biochar: Application, performance, and mechanism—a review, BioEnergy Research. 16 (2023) 1335–1360. doi:10.1007/s12155-022-10560-9. | spa |
dc.relation.references | [1-47] V. Lévesque, B. Gagnon, N. Ziadi, Soil mehlich-3-extractable elements as affected by the addition of biochars to a clay soil co-amended with or without a compost, Canadian Journal of Soil Science. 102 (2022) 97–107. doi:10.1139/cjss-2020-0087. | spa |
dc.relation.references | [1-48] A. Korus, A. Szlęk, A. Samson, Physicochemical properties of biochars prepared from raw and acetone-extracted Pine Wood, Fuel Processing Technology. 185 (2019) 106–116. doi:10.1016/j.fuproc.2018.12.004. | spa |
dc.relation.references | [1-49] L. Khezami, A. Chetouani, B. Taouk, R. Capart, Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, Xylan, Powder Technology. 157 (2005) 48–56. doi:10.1016/j.powtec.2005.05.009. | spa |
dc.relation.references | [1-50] S. E. Ban, E. J. Lee, J. Yoon, D. J. Lim, I. S. Kim, J. W. Lee, Role of cellulose and lignin on biochar characteristics and removal of diazinon from biochar with a controlled chemical composition, Industrial Crops and Products. 200 (2023) 116913. doi:10.1016/j.indcrop.2023.116913. | spa |
dc.relation.references | [1-51] S. Wang, G. Dai, H. Yang, Z. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review, Progress in Energy and Combustion Science. 62 (2017) 33–86. doi:10.1016/j.pecs.2017.05.004. | spa |
dc.relation.references | [1-52] F. Ateş, Ö. Özcan, Preparation and characterization of activated carbon from Poplar Sawdust by chemical activation: Comparison of different activating agents and carbonization temperature, European Journal of Engineering and Technology Research. 3 (2018) 6–11. doi:10.24018/ejeng.2018.3.11.939. | spa |
dc.relation.references | [1-53] H. L. Ornaghi, F. M. Monticeli, R. M. Neves, L. D. Agnol, O. Bianchi, Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: Prediction and optimization, Biomass Conversion and Biorefinery. 13 (2021) 7775–7782. doi:10.1007/s13399-021-01651-2. | spa |
dc.relation.references | [1-54] T. S. Mogaji, E. O. Moses, E. T. Idowu, T. C. Jen, Thermal degradation conditions effects on selected biomass wastes and characterization of their produced biochar, Journal of Energy Research and Reviews. (2020) 46–59. doi:10.9734/jenrr/2020/v4i330131. | spa |
dc.relation.references | [1-55] Y. Chen, Q. Wu, P. Ning, G. Jinghua, P. Ding, Rayon-based activated carbon fibers treated with both alkali metal salt and Lewis acid, Microporous and Mesoporous Materials. 109 (2008) 138–146. doi:10.1016/j.micromeso.2007.04.032. | spa |
dc.relation.references | [1-56] C. F. Varela, I.M. Saavedra Gaona, A.C. Barrera Angarita, A.M. Morales Rivera, C.A. Parra Vargas, Ultra-fast and highly-reversible dyes adsorption using a prepared in-situ fe(po3)2/biochar composite from Corn Cob, Industrial Crops and Products. 218 (2024) 118966. doi:10.1016/j.indcrop.2024.118966. | spa |
dc.relation.references | [1-57] V. Saadattalab, J. Wu, C.-W. Tai, Z. Bacsik, N. Hedin, Adsorption of volatile organic compounds on activated carbon with included Iron Phosphate, Carbon Trends. 11 (2023) 100259. doi:10.1016/j.cartre.2023.100259. | spa |
dc.relation.references | [1-58] R. Nandi, M.K. Jha, S.K. Guchhait, D. Sutradhar, S. Yadav, Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity, ACS Omega. 8 (2023) 4802–4812. doi:10.1021/acsomega.2c06955. | spa |
dc.relation.references | [1-59] K. Jedynak, B. Charmas, Adsorption properties of biochars obtained by KOH Activation, Adsorption. 30 (2023) 167–183. doi:10.1007/s10450-023-00399-7. | spa |
dc.relation.references | [1-60] T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layer capacitance of carbons from waste biomass, Journal of Materials Research. 25 (2010) 1451–1459. doi:10.1557/jmr.2010.0186. | spa |
dc.relation.references | [1-61] J. Yuan, Y. Amano, M. Machida, Characterization of high-performance zinc chloride activated biochar modified by thermal chemical vapor deposition (CVD) and its removal mechanism of aqueous nitrate ions, International Journal of Environmental Research. 16 (2022). doi:10.1007/s41742-022-00430-9. | spa |
dc.relation.references | [1-62] D. I. Arango, Z. Zapata-Benabithe, E. C. Arenas, J. C. Perez-Osorno, Influence of surface modification with nitric acid on electrochemical performance of agroindustrial waste-based activated carbon, Journal of Materials Science: Materials in Electronics. 29 (2018) 15557–15569. doi:10.1007/s10854-018-9132-y. | spa |
dc.relation.references | [1-63] C. Zhang, Y. Ji, C. Li, Y. Zhang, S. Sun, Y. Xu, et al., The application of Biochar for CO2 Capture: Influence of biochar preparation and CO2 capture reactors, Industrial & Engineering Chemistry Research. 62 (2023) 17168–17181. doi:10.1021/acs.iecr.3c00445. | spa |
dc.relation.references | [1-64] Y. Chen, S. R. Zhai, N. Liu, Y. Song, Q.-D. An, X. W. Song, Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation, Bioresource Technology. 144 (2013) 401–409. doi:10.1016/j.biortech.2013.07.002. | spa |
dc.relation.references | [1-65] A. Y. Elnour, A. A. Alghyamah, H. M. Shaikh, A. M. Poulose, S.M. Al-Zahrani, A. Anis, et al., Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites, Applied Sciences. 9 (2019) 1149. doi:10.3390/app9061149. | spa |
dc.relation.references | [1-66] X. Jiang, X. Tan, J. Cheng, M.L. Haddix, M.F. Cotrufo, Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations, Geoderma. 333 (2019) 99–107. doi:10.1016/j.geoderma.2018.07.016. | spa |
dc.relation.references | [1-67] M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environmental Science & Technology. 44 (2010) 1247–1253. doi:10.1021/es9031419. | spa |
dc.relation.references | [1-68] M. Ahmad, M. Ahmad, A. R. Usman, A. S. Al-Faraj, A. Abduljabbar, Y. S. Ok, et al., Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential, Environmental Geochemistry and Health. 41 (2017) 1687–1704. doi:10.1007/s10653-017-9947-0. | spa |
dc.relation.references | [1-69] S. Li, D. Tasnady, Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives, C. 9 (2023) 67. doi:10.3390/c9030067. | spa |
dc.relation.references | [1-70] S. Krishnan, R. P, Ftir, XRD, EDX with SEM Spectroscopic Studies on Sedimentary Rocks of Bodamalai Hills, South India. (2024). doi:10.21203/rs.3.rs-4487593/v1. | spa |
dc.relation.references | [1-71] R. Ji, Y. Wu, Y. Bian, Y. Song, Q. Sun, X. Jiang, et al., Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution, Journal of Hazardous Materials. 407 (2021) 124785. doi:10.1016/j.jhazmat.2020.124785. | spa |
dc.relation.references | [1-72] J. McDonald-Wharry, M. Manley-Harris, K. Pickering, Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy, Carbon. 59 (2013) 383–405. doi:10.1016/j.carbon.2013.03.033. | spa |
dc.relation.references | [1-73] A. Samsul Kamal, N. Hafidzah Jabarullah, R. Othman, Catalytic graphitization of oil palm frond using iron and silica, Materials Today: Proceedings. 31 (2020) 211–216. doi:10.1016/j.matpr.2020.05.138. | spa |
dc.relation.references | [1-74] M. Ayiania, E. Weiss-Hortala, M. Smith, J.-S. McEwen, M. Garcia-Perez, Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles, Carbon. 167 (2020) 559–574. doi:10.1016/j.carbon.2020.05.055. | spa |
dc.relation.references | [1-75] C. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel. 86 (2007) 2316–2324. doi:10.1016/j.fuel.2007.01.029. | spa |
dc.relation.references | [1-76] Y. Yin, Z. Wu, J. Tao, C. Qi, W. Zhang, S. Cheng, Investigation of the evolution of the chemical structure of bituminous coals and lignite during pyrolysis, Crystals. 12 (2022) 444. doi:10.3390/cryst12040444. | spa |
dc.relation.references | [1-77] J. Hülstede, D. Schonvogel, H. Schmies, P. Wagner, F. Schröter, A. Dyck, et al., Relevant properties of carbon support materials in successful Fe-N-C synthesis for the oxygen reduction reaction: Study of carbon blacks and biomass-based carbons, Materials. 14 (2020) 45. doi:10.3390/ma14010045. | spa |
dc.relation.references | [1-78] Y. Yu, C. Huang, J. Xu, J. Zhu, M. Cong, J. Song, et al., Effect of the graphitization level of the free carbon on the temperature sensitivity of silicon carbonitride‐based pressure sensors, Journal of the American Ceramic Society. 104 (2021) 5067–5076. doi:10.1111/jace.17737. | spa |
dc.relation.references | [1-79] G. Mujtaba, R. Hayat, Q. Hussain, M. Ahmed, Physio-chemical characterization of biochar, compost and co-composted biochar derived from Green Waste, Sustainability. 13 (2021) 4628. doi:10.3390/su13094628. | spa |
dc.relation.references | [1-80] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, et al., FTIR‐spectroscopic characterization of humic acids and humin fractions obtained by Advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures, Journal of Plant Nutrition and Soil Science. 170 (2007) 522–529. doi:10.1002/jpln.200622082. | spa |
dc.relation.references | [1-81] S. Ramola, T. Mishra, G. Rana, R.K. Srivastava, Characterization and pollutant removal efficiency of biochar derived from Baggase, bamboo and Tyre, Environmental Monitoring and Assessment. 186 (2014) 9023–9039. doi:10.1007/s10661-014-4062-5. | spa |
dc.relation.references | [1-82] F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, Low-cost activated carbon preparation from corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Industrial Crops and Products. 178 (2022) 114546. doi:10.1016/j.indcrop.2022.114546. | spa |
dc.relation.references | [1-83] I. Ozdemir, M. Şahin, R. Orhan, M. Erdem, Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Processing Technology. 125 (2014) 200–206. doi:10.1016/j.fuproc.2014.04.002. | spa |
dc.relation.references | [1-84] O. Mašek, W. Buss, P. Brownsort, M. Rovere, A. Tagliaferro, L. Zhao, et al., Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from Soil Improvement, Scientific Reports. 9 (2019). doi:10.1038/s41598-019-41953-0. | spa |
dc.relation.references | [1-85] Y. Zhang, X. Xu, L. Cao, Y.S. Ok, X. Cao, Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses, Chemosphere. 211 (2018) 1073–1081. doi:10.1016/j.chemosphere.2018.08.033. | spa |
dc.relation.references | [1-86] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119. | spa |
dc.relation.references | [1-87] S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, (photo)catalyst characterization techniques, Heterogeneous Photocatalysis. (2019) 87–152. doi:10.1016/b978-0-444-64015-4.00004-3. | spa |
dc.relation.references | [1-88] A. Ameen Hezam Saeed, N. Yub Harun, M. Mahmoud Nasef, A. Al-Fakih, A. Abdulhakim Saeed Ghaleb, H. Kolawole Afolabi, Removal of cadmium from aqueous solution by optimized rice husk biochar using response surface methodology, Ain Shams Engineering Journal. 13 (2022) 101516. doi:10.1016/j.asej.2021.06.002. | spa |
dc.relation.references | [1-89] E. M. Saad, R.F. Elshaarawy, S. A. Mahmoud, K. M. El-Moselhy, New Ulva Lactuca algae based chitosan bio-composites for bioremediation of CD(II) ions, Journal of Bioresources and Bioproducts. 6 (2021) 223–242. doi:10.1016/j.jobab.2021.04.002. | spa |
dc.relation.references | [1-90] M. Doğan, Y. Özdemir, M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, Dyes and Pigments. 75 (2007) 701–713. doi:10.1016/j.dyepig.2006.07.023 | spa |
dc.relation.references | [1-91] S. Chen, C. Qin, T. Wang, F. Chen, X. Li, H. Hou, et al., Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, Journal of Molecular Liquids. 285 (2019) 62–74. doi:10.1016/j.molliq.2019.04.035. | spa |
dc.relation.references | [1-92] L. Chen, B. Bai, Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres, Industrial & Engineering Chemistry Research. 52 (2013) 15568–15577. doi:10.1021/ie4020364. | spa |
dc.relation.references | [1-93] Y. Shang, Y. Cui, R. Shi, P. Yang, J. Wang, Y. Wang, Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: Kinetics, isotherm, thermodynamics, mechanism, Journal of Hazardous Materials. 379 (2019) 120834. doi:10.1016/j.jhazmat.2019.120834. | spa |
dc.relation.references | [1-94] Y. Ma, S. Chen, Y. Qi, L. Yang, L. Wu, L. He, et al., An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal, Chemosphere. 291 (2022) 132707. doi:10.1016/j.chemosphere.2021.132707. | spa |
dc.relation.references | [1-95] H. Xu, G. Boeuf, Z. Jia, K. Zhu, M. Nikravech, A. Kanaev, et al., Solvent-free synthesized monolithic ultraporous aluminas for highly efficient removal of Remazol Brilliant Blue R: Equilibrium, kinetic, and thermodynamic studies, Materials. 14 (2021) 3054. doi:10.3390/ma14113054. | spa |
dc.relation.references | [1-96] M. Patel, R. Kumar, C.U. Pittman, D. Mohan, Ciprofloxacin and acetaminophen sorption onto Banana Peel biochars: Environmental and process parameter influences, Environmental Research. 201 (2021) 111218. doi:10.1016/j.envres.2021.111218. | spa |
dc.relation.references | [1-97] Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, Journal of Industrial and Engineering Chemistry. 36 (2016) 198–205. doi:10.1016/j.jiec.2016.01.040. | spa |
dc.relation.references | [1-98] H. Chakhtouna, H. Benzeid, N. Zari, A. el Qaiss, R. Bouhfid, Functional CoFe2O4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water, Separation and Purification Technology. 266 (2021) 118592. doi:10.1016/j.seppur.2021.118592. | spa |
dc.relation.references | [1-99] A. Maged, S. Kharbish, I.S. Ismael, A. Bhatnagar, Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from Aqueous Solution, Environmental Science and Pollution Research. 27 (2020) 32980–32997. doi:10.1007/s11356-020-09267-1. | spa |
dc.relation.references | [1-100] Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, A. Li, Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A Review, Science of The Total Environment. 646 (2019) 265–279. doi:10.1016/j.scitotenv.2018.07.279. | spa |
dc.relation.references | [1-101] X. Peng, F. Hu, F.L.Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon, Journal of Colloid and Interface Science. 460 (2015) 349–360. doi:10.1016/j.jcis.2015.08.050. | spa |
dc.relation.references | [1-102] K. K. Katibi, K. F. Yunos, H. C. Man, A. Z. Aris, M. Z. Mohd Nor, R. S. Azis, An insight into a sustainable removal of bisphenol A from aqueous solution by novel palm kernel shell magnetically induced biochar: Synthesis, characterization, kinetic, and thermodynamic studies, Polymers. 13 (2021) 3781. doi:10.3390/polym13213781. | spa |
dc.relation.references | [1-103] Y. Wang, J. Luo, J. Qin, Y. Huang, T. Ke, Y. Luo, et al., Efficient removal of phytochrome using rice straw-derived biochar: Adsorption performance, mechanisms, and practical applications, Bioresource Technology. 376 (2023) 128918. doi:10.1016/j.biortech.2023.128918. | spa |
dc.relation.references | [1-104] D. L. Sparks, B. Singh, M. G. Siebecker, Sorption phenomena on soils, Environmental Soil Chemistry. (2024) 203–281. doi:10.1016/b978-0-443-14034-1.00005-8. | spa |
dc.relation.references | [1-105] C. F. Varela, M. C. Pazos, M. D. Alba, Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from Aqueous Solutions, Journal of Water Process Engineering. 40 (2021) 101949. doi:10.1016/j.jwpe.2021.101949. | spa |
dc.relation.references | [1-106] A. R. Cestari, E. F. S. Vieira, G. S. Vieira, L. E. Almeida, Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica, Journal of Colloid and Interface Science. 309 (2007) 402–411. doi:10.1016/j.jcis.2006.11.049. | spa |
dc.relation.references | [1-107] C. Saucier, P. Karthickeyan, V. Ranjithkumar, E.C. Lima, G.S. dos Reis, I.A. de Brum, Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon, Environmental Science and Pollution Research. 24 (2017) 5918–5932. doi:10.1007/s11356-016-8304-7. | spa |
dc.relation.references | [1-108] L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: Equilibrium and positional entropy studies, Journal of Molecular Liquids. 234 (2017) 375–381. doi:10.1016/j.molliq.2017.03.111. | spa |
dc.relation.references | [1-109] M. Iqbal, M. Shahid, Z. Ali, A. Nazir, F.O. Alqahtani, M. Zaheer, et al., Paracetamol and amoxicillin adsorptive removal from aqueous solution using phosphoric acid activated-carbon, Zeitschrift Für Physikalische Chemie. 237 (2023) 257–271. doi:10.1515/zpch-2021-3149. | spa |
dc.relation.references | [1-110] R. Natarajan, S. Venkataraman, D.S. Rajendran, B. Tamilselvam, H. Zaveri, N. Jeyachandran, et al., Adsorption performance of magnetic mesoporous silica microsphere support toward the remediation of acetaminophen from aqueous solution, Journal of Water Process Engineering. 48 (2022) 102835. doi:10.1016/j.jwpe.2022.102835. | spa |
dc.relation.references | [1-111] A. O. Egbedina, C. G. Ugwuja, P. A. Dare, H. D. Sulaiman, B. I. Olu-Owolabi, K. O. Adebowale, CTAB-activated carbon from peanut husks for the removal of antibiotics and antibiotic-resistant bacteria from water, Environmental Processes. 10 (2023). doi:10.1007/s40710-023-00636-9. | spa |
dc.relation.references | [1-112] N. Bilgin, E. Bulut, E. Sabah, Mechanistic insight into amoxicillin removal by natural sepiolite, International Journal of Environmental Science and Technology. 20 (2023) 8897–8912. doi:10.1007/s13762-023-04988-5. | spa |
dc.relation.references | [1-1113] C. H. Lee, M. G. Lee, C. G. Hu, S. K. Kam, Adsorption characteristics analysis of trimethoprim in aqueous solution by magnetic activated carbon prepared from waste citrus peel using box-behnken design, Journal of Environmental Science International. 31 (2022) 691–706. doi:10.5322/jesi.2022.31.8.691. | spa |
dc.relation.references | [1-114] D. T. Nguyen, H. N. Tran, R.-S. Juang, N. D. Dat, F. Tomul, A. Ivanets, et al., Adsorption process and mechanism of acetaminophen onto commercial activated carbon, Journal of Environmental Chemical Engineering. 8 (2020) 104408. doi:10.1016/j.jece.2020.104408. | spa |
dc.relation.references | [1-115] I. Cabrita, B. Ruiz, A.S. Mestre, I.M. Fonseca, A.P. Carvalho, C.O. Ania, Removal of an analgesic using activated carbons prepared from urban and industrial residues, Chemical Engineering Journal. 163 (2010) 249–255. doi:10.1016/j.cej.2010.07.058. | spa |
dc.relation.references | [1-116] F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kendüzler, E.C. Lima, et al., Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water, Science of The Total Environment. 726 (2020) 137828. doi:10.1016/j.scitotenv.2020.137828. | spa |
dc.relation.references | [1-117] C. A. Sáenz-Alanís, R. B. García-Reyes, E. Soto-Regalado, A. García-González, Phenol and methylene blue adsorption on heat-treated activated carbon: Characterization, Kinetics, and Equilibrium Studies, Adsorption Science & Technology. 35 (2017) 789–805. doi:10.1177/0263617416684517. | spa |
dc.relation.references | [1-118] J. Lach, Adsorption of chloramphenicol on commercial and modified activated carbons, Water. 11 (2019) 1141. doi:10.3390/w11061141. | spa |
dc.relation.references | [1-119] Y. Huang, Comment on “Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes,” Journal of Environmental Management. 249 (2019) 107782. doi:10.1016/j.jenvman.2018.07.061. | spa |
dc.relation.references | [1-120] D. D. Sewu, H. Jung, S.S. Kim, D. S. Lee, S. H. Woo, Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate, Bioresource Technology. 277 (2019) 77–86. doi:10.1016/j.biortech.2019.01.034. | spa |
dc.relation.references | [1-121] L. A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chemical Engineering Journal. 248 (2014) 191–199. doi:10.1016/j.cej.2014.03.023. | spa |
dc.relation.references | [2-1] S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, Fabrication of mesoporous BaTiO3/SnO2 nanorods with highly enhanced photocatalytic degradation of organic pollutants, Journal of Industrial and Engineering Chemistry. 53 (2017) 201–212. doi:10.1016/j.jiec.2017.04.026. | spa |
dc.relation.references | [2-2] S.K. Ray, J. Cho, J. Hur, A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment, Journal of Environmental Management. 290 (2021) 112679. doi:10.1016/j.jenvman.2021.112679. | spa |
dc.relation.references | [2-3] S. Kappadan, S. Thomas, N. Kalarikkal, BaTiO3/ZnO heterostructured photocatalyst with improved efficiency in Dye degradation, Materials Chemistry and Physics. 255 (2020) 123583. doi:10.1016/j.matchemphys.2020.123583. | spa |
dc.relation.references | [2-4] N. Labhasetwar, G. Saravanan, S. Kumar Megarajan, N. Manwar, R. Khobragade, P. Doggali, et al., Perovskite-type catalytic materials for environmental applications, Science and Technology of Advanced Materials. 16 (2015) 036002. doi:10.1088/1468-6996/16/3/036002. | spa |
dc.relation.references | [2-5] A.S. Basaleh, R.M. Mohamed, Synthesis and characterization of Cu-BaTiO3 nanocomposite for atrazine remediation under visible-light radiation from wastewater, Journal of Materials Research and Technology. 9 (2020) 9550–9558. doi:10.1016/j.jmrt.2020.06.081. | spa |
dc.relation.references | [2-6] Z. Hu, W. Dong, Z. Dong, Q. Bao, P. Li, T. Cao, Enhancement of the Piezocatalytic Properties of BaTiO3 Dendrite by Annealing Modulation, Journal of Alloys and Compounds. 25 (2024) 171339. doi:10.2139/ssrn.4425462. | spa |
dc.relation.references | [2-7] W.W. Lee, W.H. Chung, W.S. Huang, W.C. Lin, W.-Y. Lin, Y.-R. Jiang, et al., Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method, Journal of the Taiwan Institute of Chemical Engineers. 44 (2013) 660–669. doi:10.1016/j.jtice.2013.01.005. | spa |
dc.relation.references | [2-8] D. An, M. Ye, R. Zheng, H. Li, S. Ke, Boosting Piezocatalytic Performance of BaTiO3 by Tuning Defects at Room Temperature. Nanomaterials. 14 (2024) 276. doi:10.2139/ssrn.4369227. | spa |
dc.relation.references | [2-9] S.W. Zhang, B.P. Zhang, S. Li, X.Y. Li, Z.C. Huang, SPR enhanced photocatalytic properties of au-dispersed amorphous BaTiO3 nanocomposite thin films, Journal of Alloys and Compounds. 654 (2016) 112–119. doi:10.1016/j.jallcom.2015.09.053. | spa |
dc.relation.references | [2-10] X. Zhang, X. Wang, J. Chai, S. Xue, R. Wang, L. Jiang, et al., Construction of novel symmetric double Z-scheme BiFeO3/CuBi2O4/BaTiO3 photocatalyst with enhanced solar-light-driven photocatalytic performance for degradation of norfloxacin, Applied Catalysis B: Environmental. 272 (2020) 119017. doi:10.1016/j.apcatb.2020.119017. | spa |
dc.relation.references | [2-11] A. Billah, A.N. Anju, F. Hirose, B. Ahmmad, Visible-light-driven oxygen evolution by a batio3 based ferroelectric photocatalyst via water splitting, Journal of Materials Chemistry A. (2024). doi:10.1039/d4ta00900b. | spa |
dc.relation.references | [2-12] M. Arshad, M. Abushad, M. Azhar, H. Ahmed, M. Nadeem, A. Ansari, et al., Origin of enhanced dielectric and multiferroic properties in Pb-doped BaTiO3 Ceramics, Applied Physics A. 128 (2022). doi:10.1007/s00339-022-06239-9. | spa |
dc.relation.references | [2-13] K.P. Singh, G. Singh, R. Vaish, Utilizing the localized surface piezoelectricity of centrosymmetric Sr1-xFexTiO3 (x≤0.2) ceramics for piezocatalytic Dye degradation, Journal of the European Ceramic Society. 41 (2021) 326–334. doi:10.1016/j.jeurceramsoc.2020.08.064. | spa |
dc.relation.references | [14] R. Liu, Y. Zhang, L. Duan, X. Zhao, Effect of Fe2+/Fe3+ ratio on photocatalytic activities of Zn1-xFexO nanoparticles fabricated by the auto combustion method, Ceramics International. 46 (2020) 1–7. doi:10.1016/j.ceramint.2019.08.074. | spa |
dc.relation.references | [2-15] Y.R. Wang, H.L. Tao, Y. Cui, S.M. Liu, M. He, B. Song, et al., Investigations on tuning the band gaps of al doped SrTiO3, Chemical Physics Letters. 757 (2020) 137879. doi:10.1016/j.cplett.2020.137879. | spa |
dc.relation.references | [2-16] T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, et al., Photocatalytic water splitting with a quantum efficiency of almost unity, Nature. 581 (2020) 411–414. doi:10.1038/s41586-020-2278-9. | spa |
dc.relation.references | [2-17] Y. Ham, T. Hisatomi, Y. Goto, Y. Moriya, Y. Sakata, A. Yamakata, et al., Flux-mediated doping of srtio3photocatalysts for efficient overall water splitting, Journal of Materials Chemistry A. 4 (2016) 3027–3033. doi:10.1039/c5ta04843e. | spa |
dc.relation.references | [2-18] M. Chen, S. Li, S. Zhong, X. Zhou, Y. Ge, J. Luo, et al., Al-SrTiO3 decorated with non-noble metal co-catalyst NC-W2N for boosting photocatalytic overall water splitting via enhancing interfacial redox activity and charge separation, Journal of Alloys and Compounds. 947 (2023) 169515. doi:10.1016/j.jallcom.2023.169515. | spa |
dc.relation.references | [2-19] S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants, Materials Science in Semiconductor Processing. 51 (2016) 42–47. doi:10.1016/j.mssp.2016.04.019. | spa |
dc.relation.references | [2-20] F. Gheorghiu, M. Simenas, C.E. Ciomaga, M. Airimioaei, V. Kalendra, J. Banys, et al., Preparation and structural characterization of Fe-doped BaTiO3 diluted magnetic ceramics, Ceramics International. 43 (2017) 9998–10005. doi:10.1016/j.ceramint.2017.05.013. | spa |
dc.relation.references | [2-21] A. Rani, J. Kolte, S.S. Vadla, P. Gopalan, Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics, Ceramics International. 42 (2016) 8010–8016. doi:10.1016/j.ceramint.2016.01.205. | spa |
dc.relation.references | [2-22] D. Singh, A. Dixit, P.S. Dobal, Ferroelectricity and ferromagnetism in Fe-doped barium titanate ceramics, Ferroelectrics. 573 (2021) 63–75. doi:10.1080/00150193.2021.1890464. | spa |
dc.relation.references | [2-23] S. Rajan, P.M.M. Gazzali, G. Chandrasekaran, Impact of Fe on structural modification and room temperature magnetic ordering in BaTiO3, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 171 (2017) 80–89. doi:10.1016/j.saa.2016.07.037. | spa |
dc.relation.references | [2-24] M. Tihtih, K. Limame, Y. Ababou, S. Sayouri, J.E.F. Ibrahim, Sol-gel synthesis and structural characterization of Fe doped barium titanate nanoceramics, Epitoanyag - Journal of Silicate Based and Composite Materials. 71 (2019) 190–193. doi:10.14382/epitoanyag-jsbcm.2019.33. | spa |
dc.relation.references | [2-25] R. Lontio Fomekong, S. You, F. Enrichi, A. Vomiero, B. Saruhan, Impact of oxalate ligand in co-precipitation route on morphological properties and phase constitution of undoped and Rh-doped BaTiO3 nanoparticles, Nanomaterials. 9 (2019) 1697. doi:10.3390/nano9121697. | spa |
dc.relation.references | [2-26] S.S. Tripathy, A.M. Raichur, Dissolution properties of BaTiO3 nanoparticles in aqueous suspensions, Journal of Experimental Nanoscience. 6 (2011) 127–137. doi:10.1080/17458080.2010.483695. | spa |
dc.relation.references | [2-27] T. M. Usher, B. Kavey, G. Caruntu, K. Page, Effect of BaCO3 impurities on the structure of BaTiO3 Nanocrystals: Implications for multilayer ceramic capacitors, ACS Applied Nano Materials. 3 (2020) 9715–9723. doi:10.1021/acsanm.0c01809. | spa |
dc.relation.references | [2-28] E. Rivera, C.P. Fernández-Perdomo, J.E. Rodríguez-Páez, Efecto de los parámetros de síntesis sobre las características del batio3 obtenido por coprecipitación, Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 33 (2023) 93–102. doi:10.18257/raccefyn.33(126).2009.1814. | spa |
dc.relation.references | [2-29] S. Choudhury, A review of the sol-gel process and its Application, International Education and Research Journal. 10 (2024) 122-125. doi:10.21276/ierj24449856325648. | spa |
dc.relation.references | [2-30] S. Rajan, P.M. Gazzali, L. Okrasa, G. Chandrasekaran, Multiferroic and Magneto-dielectric properties in Fe doped BaTiO3, Journal of Materials Science: Materials in Electronics. 29 (2018) 11215–11228. doi:10.1007/s10854-018-9208-8. | spa |
dc.relation.references | [2-31] A. Kumar, D. Bérardan, F. Brisset, D. Dragoe, N. Dragoe, Novel entropy-stabilized fluorite oxides with multifunctional properties, Journal of Materials Chemistry A. 11 (2023) 14320–14332. doi:10.1039/d3ta02124f. | spa |
dc.relation.references | [2-32] C.F. Varela, Y.D. Molina, S.S. Gutiérrez, L.C. Moreno-Aldana, C.A. Vargas, Optical and structural properties of the Fe3+-doped Lu3Al5O12:Ce3+ garnet phosphor, RSC Advances. 11 (2021) 11804–11812. doi:10.1039/d1ra01345a. | spa |
dc.relation.references | [2-33] Y. Liang, W. Zhu, C. Wang, W. Hui, X. Huang, C. Yang, Intrinsically Morphological Effect of Perovskite BaTiO3 Boosting Piezocatalytic Uranium Extraction Efficiency and Mechanism Investigation, Journal of Hazardous Materials 445 (2023) 131578. doi:10.2139/ssrn.4394139. | spa |
dc.relation.references | [2-34] D. Masekela, N.C. Hintsho-Mbita, S. Sam, T.L. Yusuf, N. Mabuba, Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review, Arabian Journal of Chemistry. 16 (2023) 104473. doi:10.1016/j.arabjc.2022.104473. | spa |
dc.relation.references | [2-35] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- A comparative study, Materials Chemistry and Physics. 239 (2020) 122021. doi:10.1016/j.matchemphys.2019.122021. | spa |
dc.relation.references | [2-36] S. Khan, N. Humera, S. Niaz, S. Riaz, S. Atiq, S. Naseem, Simultaneous normal – anomalous dielectric dispersion and room temperature ferroelectricity in CBD perovskite BaTiO3 thin films, Journal of Materials Research and Technology. 9 (2020) 11439–11452. doi:10.1016/j.jmrt.2020.08.009. | spa |
dc.relation.references | [2-37] E. Sediva, T. Defferriere, N.H. Perry, H.L. Tuller, J.L. Rupp, In situ method correlating Raman vibrational characteristics to chemical expansion via oxygen nonstoichiometry of perovskite thin films, Advanced Materials. 31 (2019). doi:10.1002/adma.201902493. | spa |
dc.relation.references | [2-38] A.M. Morales Rivera, J.E.R. López, J. Munevar, E.B. Saitovitch, L.C.M. Aldana, C.A.P. Vargas, Synthesis and characterization of the structural and magnetic properties of the Sm3-xGdxFe5O12 (x = 0.0–1.0) garnets using solid-state reaction and citrate methods, Journal of Alloys and Compounds. 859 (2021) 157883. doi:10.1016/j.jallcom.2020.157883. | spa |
dc.relation.references | [2-39] F. Zhang, D. Xu, T. Liu, B. Niu, D. Wu, M. Xu, et al., The magnetic properties of multiferroic Ba5Fe3F19−δ, Journal of Magnetism and Magnetic Materials. 541 (2022) 168541. doi:10.1016/j.jmmm.2021.168541. | spa |
dc.relation.references | [2-40] B. Luo, X. Wang, E. Tian, H. Song, Q. Zhao, Z. Cai, et al., Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations, Journal of the European Ceramic Society. 38 (2018) 1562–1568. doi:10.1016/j.jeurceramsoc.2017.10.014. | spa |
dc.relation.references | [2-41] E. Ciftyurek, Z. Li, K. Schierbaum, Adsorbed oxygen ions and oxygen vacancies: Their concentration and distribution in metal oxide chemical sensors and influencing role in sensitivity and sensing mechanisms, Sensors. 23 (2022) 29. doi:10.3390/s23010029. | spa |
dc.relation.references | [2-42] J. Cai, A. Cao, J. Huang, W. Jin, J. Zhang, Z. Jiang, et al., Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution, Applied Catalysis B: Environmental. 267 (2020) 118378. doi:10.1016/j.apcatb.2019.118378. | spa |
dc.relation.references | [2-43] F. Zhang, Y. Tang, R. Li, T. Liu, D. Xu, Y. Chen, et al., Magnetic phase transition induced ferroelectric polarization in BaFeF4 with room-temperature weak ferromagnetism, Physical Review Materials. 6 (2022) 044408. doi:10.1103/physrevmaterials.6.044408. | spa |
dc.relation.references | [2-44] W. Liu, Q. Liu, J. Ni, Z. Zhou, G. Liu, (Ba,Sr)TiO3:Re Perovskite Phosphors (Re = Dy, EU): Nitrate pyrolysis synthesis, enhanced photoluminescence, and reversible emission against heating, RSC Advances. 8 (2018) 20781–20789. doi:10.1039/c8ra01249k. | spa |
dc.relation.references | [2-45] M. H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. Stojak Repa, et al., Exchange bias effects in iron oxide-based nanoparticle systems, Nanomaterials. 6 (2016) 221. doi:10.3390/nano6110221. | spa |
dc.relation.references | [2-46] S. Goumri-Said, M.B. Kanoun, Insight into the effect of anionic–anionic co-doping on BaTiO3 for visible light photocatalytic water splitting: A first-principles hybrid computational study, Catalysts. 12 (2022) 1672. doi:10.3390/catal12121672. | spa |
dc.relation.references | [2-47] B. Lin, G. Yang, B. Yang, Y. Zhao, Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity, Applied Catalysis B: Environmental. 198 (2016) 276–285. doi:10.1016/j.apcatb.2016.05.069 | spa |
dc.relation.references | [2-48] A. Koleżyński, K. Tkacz-Śmiech, From the molecular picture to the band structure of cubic and tetragonal barium titanate, Ferroelectrics. 314 (2005) 123–134. doi:10.1080/00150190590926300. | spa |
dc.relation.references | [2-49] Q. Liu, D. Zhai, Z. Xiao, C. Tang, Q. Sun, C.R. Bowen, et al., Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation, Nano Energy. 92 (2022) 106702. doi:10.1016/j.nanoen.2021.106702. | spa |
dc.relation.references | [2-50] Z. Mengting, T.A. Kurniawan, S. Fei, T. Ouyang, M.H. Othman, M. Rezakazemi, et al., Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation, Environmental Pollution. 255 (2019) 113182. doi:10.1016/j.envpol.2019.113182. | spa |
dc.relation.references | [2-51] R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity, Electrochimica Acta. 91 (2013) 30–35. doi:10.1016/j.electacta.2012.12.073. | spa |
dc.relation.references | [2-52] M. Nageri, V. Kumar, Manganese-doped BaTiO3 nanotube arrays for enhanced visible light photocatalytic applications, Materials Chemistry and Physics. 213 (2018) 400–405. doi:10.1016/j.matchemphys.2018.04.003. | spa |
dc.relation.references | [2-53] P. Senthilkumar, D.A. Jency, T. Kavinkumar, D. Dhayanithi, S. Dhanuskodi, M. Umadevi, et al., Built-in electric field assisted photocatalytic dye degradation and photoelectrochemical water splitting of ferroelectric Ce doped BaTiO3 nanoassemblies, ACS Sustainable Chem. Eng. 7 (2019) 12032−12043. doi:10.1021/acssuschemeng.9b00679. | spa |
dc.relation.references | [2-54] Y. Chen, D. Ma, G. He, S. Pan, Effects of ph on the photocatalytic activity and degradation mechanism of rhodamine B over fusiform bi photocatalysts under visible light, Water. 16 (2024) 2389. doi:10.3390/w16172389. | spa |
dc.relation.references | [2-55] H. Chakhtouna, H. Benzeid, N. Zari, A. el Qaiss, R. Bouhfid, Functional cofe2o4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water, Separation and Purification Technology. 266 (2021) 118592. doi:10.1016/j.seppur.2021.118592. | spa |
dc.relation.references | [2-56] A. Bensedira, N. Haddaoui, R. Doufnoune, O. Meziane, N.S. Labidi, Study of methylene blue dye elimination from water using polyaniline (PANI) and PANI/SiO2 composite, Polymers and Polymer Composites. 30 (2022). doi:10.1177/09673911221141747. | spa |
dc.relation.references | [2-57] A. Khlyustova, N. Khomyakova, N. Sirotkin, Y. Marfin, The effect of pH on OH radical generation in aqueous solutions by atmospheric pressure glow discharge, Plasma Chemistry and Plasma Processing. 36 (2016) 1229–1238. doi:10.1007/s11090-016-9732-3. | spa |
dc.relation.references | [3-1] S. Dey, F. Bano, A. Malik, Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. (2019) 1–26. doi:10.1016/b978-0-12-816189-0.00001-9. | spa |
dc.relation.references | [3-2] K. Samal, S. Mahapatra, M. Hibzur Ali, Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health, Energy Nexus. 6 (2022) 100076. doi:10.1016/j.nexus.2022.100076. | spa |
dc.relation.references | [3-3] C. F. Varela, L. C. Moreno-Aldana, Y.Y. Agámez-Pertuz, Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism, Journal of Bioresources and Bioproducts. 9 (2024) 58–73. doi:10.1016/j.jobab.2023.10.003. | spa |
dc.relation.references | [3-4] B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach, Bioresource Technology. 224 (2017) 1–12. doi:10.1016/j.biortech.2016.11.042. | spa |
dc.relation.references | [3-5] M. Kardoost, E. Hajizadeh-Saffar, M.T. Ghorbanian, Z. Ghezelayagh, K. Pooshang Bagheri, M. Behdani, et al., Genotoxicity assessment of Antiepileptic Drugs (aeds) in human embryonic stem cells, Epilepsy Research. 158 (2019) 106232. doi:10.1016/j.eplepsyres.2019.106232. | spa |
dc.relation.references | [3-6] S. Richardson, M. Plewa, E. wagner, R. Schoeny, D. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research, Mutation Research/Reviews in Mutation Research. 636 (2007) 178–242. doi:10.1016/j.mrrev.2007.09.001. | spa |
dc.relation.references | [3-7] J. Picinini-Zambelli, A.L. Garcia, J. Da Silva, Emerging pollutants in the Aquatic Environments: A review of genotoxic impacts, Mutation Research - Reviews in Mutation Research. 795 (2025) 108519. doi:10.1016/j.mrrev.2024.108519. | spa |
dc.relation.references | [3-8] N.P.P.S. Nugawela, A.S. Mahaliyana, G. Abhiram, A.P. Abeygunawardena, A meta-analytic review of microplastic pollution in the Indian Ocean: Ecological health and seafood safety risk implications, Marine Pollution Bulletin. 193 (2023) 115213. doi:10.1016/j.marpolbul.2023.115213. | spa |
dc.relation.references | [3-9] M. Sadia, A. Mahmood, M. Ibrahim, M.K. Irshad, A.H. Quddusi, A. Bokhari, et al., Microplastics pollution from wastewater treatment plants: A critical review on challenges, detection, sustainable removal techniques and circular economy, Environmental Technology & Innovation. 28 (2022) 102946. doi:10.1016/j.eti.2022.102946. | spa |
dc.relation.references | [3-10] K. Bucci, M. Tulio, C.M. Rochman, What is known and unknown about the effects of plastic pollution: A meta‐analysis and systematic review, Ecological Applications. 30 (2020). doi:10.1002/eap.2044. | spa |
dc.relation.references | [3-11] D. Kim, S.A. Kim, S. H. Nam, J.I. Kwak, L. Kim, T. Y. Lee, et al., Microplastic ingestion in aquatic and soil biota: A comprehensive review of laboratory studies on Edible Size and intake pattern, Marine Pollution Bulletin. 200 (2024) 116056. doi:10.1016/j.marpolbul.2024.116056. | spa |
dc.relation.references | [3-12] F. Yu, Q. Qin, X. Zhang, J. Ma, Characteristics and adsorption behavior of typical microplastics in long-term accelerated weathering simulation, Environmental Science: Processes & Impacts. 26 (2024) 882–890. doi:10.1039/d4em00062e. | spa |
dc.relation.references | [3-13] M. Adeel, C. Cirillo, M. Sarno, L. Rizzo, Urban wastewater disinfection by FeCl3-activated biochar/peroxymonosulfate system: Escherichia coli inactivation and microplastics interference, Environmental Pollution. 359 (2024) 124607. doi:10.1016/j.envpol.2024.124607. | spa |
dc.relation.references | [3-14] H. Dhila, A. Bhapkar, S. Bhame, Metal oxide/biochar hybrid nanocomposites for adsorption and photocatalytic degradation of textile dye effluents: A Review, Desalination and Water Treatment. 321 (2025) 101004. doi:10.1016/j.dwt.2025.101004. | spa |
dc.relation.references | [3-15] S.M. Ali, M.A. El Mansop, A. Galal, S.M. Abd El Wahab, W.M. El-Etr, H.A. Zein El-Abdeen, A correlation of the adsorption capacity of perovskite/biochar composite with the metal ion characteristics, Scientific Reports. 13 (2023). doi:10.1038/s41598-023-36592-5. | spa |
dc.relation.references | [3-16] V. Yogeshwaran, A.K. Priya, Adsorption of lead ion concentration from the aqueous solution using tobacco leaves, Materials Today: Proceedings. 37 (2021) 489–496. doi:10.1016/j.matpr.2020.05.467. | spa |
dc.relation.references | [3-17] N. Jagadeesh, B. Sundaram, Adsorption of pollutants from wastewater by biochar: A Review, Journal of Hazardous Materials Advances. 9 (2023) 100226. doi:10.1016/j.hazadv.2022.100226. | spa |
dc.relation.references | [3-18] S. Neogi, V. Sharma, N. Khan, D. Chaurasia, A. Ahmad, S. Chauhan, et al., Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy, Chemosphere. 293 (2022) 133474. doi:10.1016/j.chemosphere.2021.133474. | spa |
dc.relation.references | [3-19] H. Ma, Z. Xu, W. Wang, X. Gao, H. Ma, Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution, RSC Advances. 9 (2019) 39282–39293. doi:10.1039/c9ra07943b. | spa |
dc.relation.references | [3-20] M.E. Saied, S.A. Shaban, M.S. Mostafa, A.O. Naga, Efficient adsorption of acetaminophen from the aqueous phase using low-cost and renewable adsorbent derived from Orange Peels, Biomass Conversion and Biorefinery. 14 (2022) 2155–2172. doi:10.1007/s13399-022-02541-x. | spa |
dc.relation.references | [3-21] Md. Ahmaruzzaman, Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater, Materials Research Bulletin. 140 (2021) 111262. doi:10.1016/j.materresbull.2021.111262. | spa |
dc.relation.references | [3-22] Y. Liu, X. Dai, J. Li, S. Cheng, J. Zhang, Y. Ma, Recent progress in TiO2–biochar-based photocatalysts for water contaminants treatment: Strategies to improve photocatalytic performance, RSC Advances. 14 (2024) 478–491. doi:10.1039/d3ra06910a. | spa |
dc.relation.references | [3-23] S. Minaei, K. Zoroufchi Benis, K.N. McPhedran, J. Soltan, Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole, Chemical Engineering Research and Design. 190 (2023) 407–420. doi:10.1016/j.cherd.2022.12.038. | spa |
dc.relation.references | [3-24] M. Vinayagam, S. Ramachandran, V. Ramya, A. Sivasamy, Photocatalytic degradation of Orange G dye using ZnO/biomass activated carbon nanocomposite, Journal of Environmental Chemical Engineering. 6 (2018) 3726–3734. doi:10.1016/j.jece.2017.06.005. | spa |
dc.relation.references | [3-25] S. Zhang, X. Lu, Treatment of wastewater containing reactive brilliant blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent, Chemosphere. 206 (2018) 777–783. doi:10.1016/j.chemosphere.2018.05.073. | spa |
dc.relation.references | [3-26] M. Li, H. Huang, S. Yu, N. Tian, F. Dong, X. Du, et al., Simultaneously promoting charge separation and photoabsorption of BIOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar, Applied Surface Science. 386 (2016) 285–295. doi:10.1016/j.apsusc.2016.05.171. | spa |
dc.relation.references | [3-27] L. Pi, R. Jiang, W. Zhou, H. Zhu, W. Xiao, D. Wang, et al., G-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants, Applied Surface Science. 358 (2015) 231–239. doi:10.1016/j.apsusc.2015.08.176. | spa |
dc.relation.references | [3-28] H.B. Huang, Y. Wang, W.-B. Jiao, F. Y. Cai, M. Shen, S. G. Zhou, et al., Lotus-leaf-derived activated-carbon-supported nano-cds as energy-efficient photocatalysts under visible irradiation, ACS Sustainable Chemistry & Engineering. 6 (2018) 7871–7879. doi:10.1021/acssuschemeng.8b01021. | spa |
dc.relation.references | [3-29] N. Zhu, C. Li, L. Bu, C. Tang, S. Wang, P. Duan, et al., Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and bi/bi2o3 for a high photocatalytic performance, Journal of Hazardous Materials. 384 (2020) 121258. doi:10.1016/j.jhazmat.2019.121258. | spa |
dc.relation.references | [3-30] A. Kumar, A. Kumar, G. Sharma, Mu. Naushad, F.J. Stadler, A.A. Ghfar, et al., Sustainable nano-hybrids of magnetic biochar supported G-C3N4/FeVO4 for solar powered degradation of noxious pollutants- synergism of adsorption, photocatalysis & Photo-ozonation, Journal of Cleaner Production. 165 (2017) 431–451. doi:10.1016/j.jclepro.2017.07.117. | spa |
dc.relation.references | [3-31] A. Khataee, B. Kayan, P. Gholami, D. Kalderis, S. Akay, L. Dinpazhoh, Sonocatalytic degradation of reactive yellow 39 using synthesized ZrO2 nanoparticles on biochar, Ultrasonics Sonochemistry. 39 (2017) 540–549. doi:10.1016/j.ultsonch.2017.05.023. | spa |
dc.relation.references | [3-32] F. Jahani, B. Maleki, M. Mansouri, Z. Noorimotlagh, S.A. Mirzaee, Enhanced photocatalytic performance of milkvetch-derived biochar via ZnO–Ce nanoparticle decoration for Reactive Blue 19 dye removal, Scientific Reports. 13 (2023). doi:10.1038/s41598-023-45145-9. | spa |
dc.relation.references | [3-33] A.A. Bayode, O.T. Ore, E.A. Nnamani, B. Sotunde, D.T. Koko, E.I. Unuabonah, et al., Perovskite oxides: Syntheses and perspectives on their application for nitrate reduction, ACS Omega. 9 (2024) 19770–19785. doi:10.1021/acsomega.4c01487. | spa |
dc.relation.references | [34] G. Nandikes, P. Pathak, M. Karthikeyan, A.A.M. Abahussain, L. Singh, Mesoporous LaFeO3 perovskite as an efficient and cost-effective oxygen reduction reaction catalyst in an air cathode microbial fuel cell, International Journal of Hydrogen Energy. 52 (2024) 627–641. doi:10.1016/j.ijhydene.2023.01.123. | spa |
dc.relation.references | [3-35] S. M. Ali, M. A. El Mansop, A. Galal, S.M. Abd El Wahab, W.M. El-Etr, H.A. Zein El-Abdeen, A correlation of the adsorption capacity of perovskite/biochar composite with the metal ion characteristics, Scientific Reports. 13 (2023). doi:10.1038/s41598-023-36592-5. | spa |
dc.relation.references | [3-36] L. Zhang, Y. Yang, Y. Xiao, X. Li, Construction of perovskite oxide/modified biochar for photothermal synergistic catalytic degradation of vocs, New Journal of Chemistry. (2025). doi:10.1039/d4nj05408c. | spa |
dc.relation.references | [3-37] T. Wang, S. Liu, W. Mao, Y. Bai, K. Chiang, K. Shah, et al., Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and cr(vi), Journal of Hazardous Materials. 389 (2020) 121827. doi:10.1016/j.jhazmat.2019.121827. | spa |
dc.relation.references | [3-38] S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, Fabrication of mesoporous BaTiO3/SnO2 nanorods with highly enhanced photocatalytic degradation of organic pollutants, Journal of Industrial and Engineering Chemistry. 53 (2017) 201–212. doi:10.1016/j.jiec.2017.04.026. | spa |
dc.relation.references | [3-39] S.K. Ray, J. Cho, J. Hur, A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment, Journal of Environmental Management. 290 (2021) 112679. doi:10.1016/j.jenvman.2021.112679. | spa |
dc.relation.references | [3-40] A.S. Basaleh, R.M. Mohamed, Synthesis and characterization of Cu-BaTiO3 nanocomposite for atrazine remediation under visible-light radiation from wastewater, Journal of Materials Research and Technology. 9 (2020) 9550–9558. doi:10.1016/j.jmrt.2020.06.081. | spa |
dc.relation.references | [3-41] Z. Hu, W. Dong, Z. Dong, Q. Bao, P. Li, T. Cao, Enhancement of the Piezocatalytic Properties of BaTiO3 Dendrite by Annealing Modulation, Journal of Alloys and Compounds. 25 (2024) 171339. doi:10.2139/ssrn.4425462. | spa |
dc.relation.references | [3-42] W.W. Lee, W.H. Chung, W.S. Huang, W.C. Lin, W.-Y. Lin, Y.-R. Jiang, et al., Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method, Journal of the Taiwan Institute of Chemical Engineers. 44 (2013) 660–669. doi:10.1016/j.jtice.2013.01.005. | spa |
dc.relation.references | [3-43] M. Tihtih, K. Limame, Y. Ababou, S. Sayouri, J.E.F. Ibrahim, Sol-gel synthesis and structural characterization of Fe doped barium titanate nanoceramics, Epitoanyag - Journal of Silicate Based and Composite Materials. 71 (2019) 190–193. doi:10.14382/epitoanyag-jsbcm.2019.33. | spa |
dc.relation.references | [3-44] S. Jabeen, X. Gao, M. Altarawneh, J. Hayashi, M. Zhang, B.Z. Dlugogorski, Analytical procedure for proximate analysis of algal biomass: Case study forspirulina platensisandchlorella vulgaris, Energy & Fuels. 34 (2019) 474–482. doi:10.1021/acs.energyfuels.9b03156. | spa |
dc.relation.references | [3-45] A. R. Sahito, R. B. Mahar, Z. Siddiqui, K. M. Brohi, Estimating calorific values of lignocellulosic biomass from volatile and fixed solids, International Journal of Biomass and Renewables. 2 (2013) 1. doi:10.61762/ijbrvol2iss1art13847. | spa |
dc.relation.references | [3-46] R. Bardestani, S. Kaliaguine, Steam activation and mild air oxidation of vacuum pyrolysis biochar, Biomass and Bioenergy. 108 (2018) 101–112. doi:10.1016/j.biombioe.2017.10.011. | spa |
dc.relation.references | [3-47] H. N. Tran, S. J. You, H. P. Chao, Effect of pyrolysis temperatures and times on the adsorption of cadmium onto Orange Peel derived biochar, Waste Management & Research: The Journal for a Sustainable Circular Economy. 34 (2015) 129–138. doi:10.1177/0734242x15615698. | spa |
dc.relation.references | [3-48] Y. Liang, W. Zhu, C. Wang, W. Hui, X. Huang, C. Yang, Intrinsically Morphological Effect of Perovskite BaTiO3 Boosting Piezocatalytic Uranium Extraction Efficiency and Mechanism Investigation, Journal of Hazardous Materials 445 (2023) 131578. doi:10.2139/ssrn.4394139. | spa |
dc.relation.references | [3-49] J. Huang, Y. Zhang, M. Wu, S. Zuo, C. Yao, C. Ni, et al., Photothermal catalytic oxidation of toluene by perovskite oxide/biochar nanocomposite: Effect of biomass incorporation, Separation and Purification Technology. 330 (2024) 125316. doi:10.1016/j.seppur.2023.125316. | spa |
dc.relation.references | [3-50] M. Ahmad, M. Ahmad, A. R. Usman, A. S. Al-Faraj, A. Abduljabbar, Y. S. Ok, et al., Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential, Environmental Geochemistry and Health. 41 (2017) 1687–1704. doi:10.1007/s10653-017-9947-0. | spa |
dc.relation.references | [3-51] D. Singh, A. Dixit, P.S. Dobal, Ferroelectricity and ferromagnetism in Fe-doped barium titanate ceramics, Ferroelectrics. 573 (2021) 63–75. doi:10.1080/00150193.2021.1890464. | spa |
dc.relation.references | [3-52] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- A comparative study, Materials Chemistry and Physics. 239 (2020) 122021. doi:10.1016/j.matchemphys.2019.122021. | spa |
dc.relation.references | [3-53] S. Rajan, P.M. Gazzali, L. Okrasa, G. Chandrasekaran, Multiferroic and Magneto-dielectric properties in Fe doped BaTiO3, Journal of Materials Science: Materials in Electronics. 29 (2018) 11215–11228. doi:10.1007/s10854-018-9208-8. | spa |
dc.relation.references | [3-54] S. Khan, N. Humera, S. Niaz, S. Riaz, S. Atiq, S. Naseem, Simultaneous normal – anomalous dielectric dispersion and room temperature ferroelectricity in CBD perovskite BaTiO3 thin films, Journal of Materials Research and Technology. 9 (2020) 11439–11452. doi:10. 1016/j.jmrt.2020.08.009. | spa |
dc.relation.references | [3-55] R. Ji, Y. Wu, Y. Bian, Y. Song, Q. Sun, X. Jiang, et al., Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution, Journal of Hazardous Materials. 407 (2021) 124785. doi:10.1016/j.jhazmat.2020.124785. | spa |
dc.relation.references | [3-56] J. McDonald-Wharry, M. Manley-Harris, K. Pickering, Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy, Carbon. 59 (2013) 383–405. doi:10.1016/j.carbon.2013.03.033. | spa |
dc.relation.references | [3-57] A. Samsul Kamal, N. Hafidzah Jabarullah, R. Othman, Catalytic graphitization of oil palm frond using iron and silica, Materials Today: Proceedings. 31 (2020) 211–216. doi:10.1016/j.matpr.2020.05.138. | spa |
dc.relation.references | [3-58] C. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel. 86 (2007) 2316–2324. doi:10.1016/j.fuel.2007.01.029. | spa |
dc.relation.references | [3-59] Y. Yin, Z. Wu, J. Tao, C. Qi, W. Zhang, S. Cheng, Investigation of the evolution of the chemical structure of bituminous coals and lignite during pyrolysis, Crystals. 12 (2022) 444. doi:10.3390/cryst12040444. | spa |
dc.relation.references | [3-60] J. Hülstede, D. Schonvogel, H. Schmies, P. Wagner, F. Schröter, A. Dyck, et al., Relevant properties of carbon support materials in successful Fe-N-C synthesis for the oxygen reduction reaction: Study of carbon blacks and biomass-based carbons, Materials. 14 (2020) 45. doi:10.3390/ma14010045. | spa |
dc.relation.references | [3-61] A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene, AIP Advances. 2 (2012). doi:10.1063/1.4756995. | spa |
dc.relation.references | [3-62] Y. Yu, C. Huang, J. Xu, J. Zhu, M. Cong, J. Song, et al., Effect of the graphitization level of the free carbon on the temperature sensitivity of silicon carbonitride‐based pressure sensors, Journal of the American Ceramic Society. 104 (2021) 5067–5076. doi:10.1111/jace.17737. | spa |
dc.relation.references | [3-63] K.P. Singh, G. Singh, R. Vaish, Utilizing the localized surface piezoelectricity of centrosymmetric Sr1-xFexTiO3 (x≤0.2) ceramics for piezocatalytic Dye degradation, Journal of the European Ceramic Society. 41 (2021) 326–334. doi:10.1016/j.jeurceramsoc.2020.08.064. | spa |
dc.relation.references | [3-64] M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, et al., FTIR‐spectroscopic characterization of humic acids and humin fractions obtained by Advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures, Journal of Plant Nutrition and Soil Science. 170 (2007) 522–529. doi:10.1002/jpln.200622082. | spa |
dc.relation.references | [3-65] S. Ramola, T. Mishra, G. Rana, R.K. Srivastava, Characterization and pollutant removal efficiency of biochar derived from Baggase, bamboo and Tyre, Environmental Monitoring and Assessment. 186 (2014) 9023–9039. doi:10.1007/s10661-014-4062-5. | spa |
dc.relation.references | [3-66] S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal Batio3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants, Materials Science in Semiconductor Processing. 51 (2016) 42–47. doi:10.1016/j.mssp.2016.04.019. | spa |
dc.relation.references | [3-67] S. Sipahioğlu, S. Madakbaş, L. Arda, K. Esmer, Structural and dielectric properties of two different BaTiO3/polyaniline nanocomposites, Journal of Inorganic and Organometallic Polymers and Materials. 23 (2012) 333–339. doi:10.1007/s10904-012-9781-x. | spa |
dc.relation.references | [3-68] S. Hao, D. Fu, J. Li, W. Wang, B. Shen, Preparation and characterization of Ag-doped BaTiO3 conductive powders, International Journal of Inorganic Chemistry. 2011 (2011) 1–4. doi:10.1155/2011/837091. | spa |
dc.relation.references | [3-69] T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, J. Dai, Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity, Nanoscale Research Letters. 9 (2014). doi:10.1186/1556-276x-9-327. | spa |
dc.relation.references | [3-70] V. G. Baldovino Medrano, V. Niño Celis, R. Isaacs Giraldo, Systematic Analysis of the Nitrogen Adsorption-Desorption Isotherms Recorded for a Series of Microporous – Mesoporous Amorphous Aluminosilicates Using Classical Methods. (2022). doi:10.26434/chemrxiv-2022-8v4h3. | spa |
dc.relation.references | [3-71] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119. | spa |
dc.relation.references | [3-72] L. Song, Z. Sun, L. Duan, S. Jiang, L.V.C. Rees, Investigation of adsorption hysteresis in microporous materials, Studies in Surface Science and Catalysis. (2004) 1797–1803. doi:10.1016/s0167-2991(04)80711-0. | spa |
dc.relation.references | [3-73] X. Fan, L. Hao, X. Gu, S. Li, Low-temperature selective catalytic reduction of no with NH3 over a biochar-supported perovskite oxide catalyst, Energy & Fuels. 37 (2023) 7339–7352. doi:10.1021/acs.energyfuels.2c04291. | spa |
dc.relation.references | [3-74] H. Liu, Y. Zhang, Q. Ke, K.H. Ho, Y. Hu, J. Wang, Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature, Journal of Materials Chemistry A. 1 (2013) 12962. doi:10.1039/c3ta12649h. | spa |
dc.relation.references | [3-75] L. Karam, J. Reboul, N. El Hassan, J. Nelayah, P. Massiani, Nanostructured nickel aluminate as a key intermediate for the production of highly dispersed and stable nickel nanoparticles supported within mesoporous alumina for dry reforming of methane, Molecules. 24 (2019) 4107. doi:10.3390/molecules24224107. | spa |
dc.relation.references | [3-76] V. Kuncser, L. Miu, Size effects in nanostructures basics and applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. | spa |
dc.relation.references | [3-77] B. Luo, X. Wang, E. Tian, H. Song, Q. Zhao, Z. Cai, et al., Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations, Journal of the European Ceramic Society. 38 (2018) 1562–1568. doi:10.1016/j.jeurceramsoc.2017.10.014. | spa |
dc.relation.references | [3-78] A. Kumar, D. Bérardan, F. Brisset, D. Dragoe, N. Dragoe, Novel entropy-stabilized fluorite oxides with multifunctional properties, Journal of Materials Chemistry A. 11 (2023) 14320–14332. doi:10.1039/d3ta02124f. | spa |
dc.relation.references | [3-79] C.F. Varela, Y.D. Molina, S.S. Gutiérrez, L.C. Moreno-Aldana, C.A. Vargas, Optical and structural properties of the Fe3+-doped Lu3Al5O12:Ce3+ garnet phosphor, RSC Advances. 11 (2021) 11804–11812. doi:10.1039/d1ra01345a. | spa |
dc.relation.references | [3-80] M.H. Huang, Semiconductor nanocrystals possessing broadly size‐ and facet‐dependent optical properties, Journal of the Chinese Chemical Society. 68 (2020) 45–50. doi:10.1002/jccs.202000267. | spa |
dc.relation.references | [3-81] E. M. Saad, R.F. Elshaarawy, S. A. Mahmoud, K. M. El-Moselhy, New Ulva Lactuca algae based chitosan bio-composites for bioremediation of CD(II) ions, Journal of Bioresources and Bioproducts. 6 (2021) 223–242. doi:10.1016/j.jobab.2021.04.002. | spa |
dc.relation.references | [3-82] M. Doğan, Y. Özdemir, M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, Dyes and Pigments. 75 (2007) 701–713. doi:10.1016/j.dyepig.2006.07.023. | spa |
dc.relation.references | [3-83] S. Chen, C. Qin, T. Wang, F. Chen, X. Li, H. Hou, et al., Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, Journal of Molecular Liquids. 285 (2019) 62–74. doi:10.1016/j.molliq.2019.04.035. | spa |
dc.relation.references | [3-84] L. Chen, B. Bai, Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres, Industrial & Engineering Chemistry Research. 52 (2013) 15568–15577. doi:10.1021/ie4020364. | spa |
dc.relation.references | [3-85] T. R. Sahoo, B. Prelot, Adsorption processes for the removal of contaminants from wastewater, Nanomaterials for the Detection and Removal of Wastewater Pollutants. (2020) 161–222. doi:10.1016/b978-0-12-818489-9.00007-4. | spa |
dc.relation.references | [3-86] Y. Shang, Y. Cui, R. Shi, P. Yang, J. Wang, Y. Wang, Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: Kinetics, isotherm, thermodynamics, mechanism, Journal of Hazardous Materials. 379 (2019) 120834. doi:10.1016/j.jhazmat.2019.120834. | spa |
dc.relation.references | [3-87] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, et al., Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 583 (2019) 123966. doi:10.1016/j.colsurfa.2019.123966. | spa |
dc.relation.references | [3-88] H. Xu, G. Boeuf, Z. Jia, K. Zhu, M. Nikravech, A. Kanaev, et al., Solvent-free synthesized monolithic ultraporous aluminas for highly efficient removal of Remazol Brilliant Blue R: Equilibrium, kinetic, and thermodynamic studies, Materials. 14 (2021) 3054. doi:10.3390/ma14113054. | spa |
dc.relation.references | [3-89] M. Patel, R. Kumar, C.U. Pittman, D. Mohan, Ciprofloxacin and acetaminophen sorption onto Banana Peel biochars: Environmental and process parameter influences, Environmental Research. 201 (2021) 111218. doi:10.1016/j.envres.2021.111218. | spa |
dc.relation.references | [3-90] Ö. Kerkez-Kuyumcu, Ş.S. Bayazit, M.A. Salam, Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets, Journal of Industrial and Engineering Chemistry. 36 (2016) 198–205. doi:10.1016/j.jiec.2016.01.040. | spa |
dc.relation.references | [3-91] Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, A. Li, Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A Review, Science of The Total Environment. 646 (2019) 265–279. doi:10.1016/j.scitotenv.2018.07.279. | spa |
dc.relation.references | [3-92] A. Maged, S. Kharbish, I.S. Ismael, A. Bhatnagar, Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from Aqueous Solution, Environmental Science and Pollution Research. 27 (2020) 32980–32997. doi:10.1007/s11356-020-09267-1. | spa |
dc.relation.references | [3-93] X. Peng, F. Hu, F.L.Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon, Journal of Colloid and Interface Science. 460 (2015) 349–360. doi:10.1016/j.jcis.2015.08.050. | spa |
dc.relation.references | [3-94] S. Narayanan, Kinetic and equilibrium adsorption studies of methylene blue from aqueous solution using low-cost adsorbent, International Journal of Psychosocial Rehabilitation. 23 (2019) 1722–1738. doi:10.37200/ijpr/v23i4/pr190503. | spa |
dc.relation.references | [3-95] Adsorption Science & Technology, Multi Science Publishing, SAGE Publications, Brentwood, London, 2016. | spa |
dc.relation.references | [3-96] C.F. Varela, M.C. Pazos, M.D. Alba, Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from Aqueous Solutions, Journal of Water Process Engineering. 40 (2021) 101949. doi:10.1016/j.jwpe.2021.101949. | spa |
dc.relation.references | [3-97] T. Meguro, N. Torikai, N. Watanabe, I. Tomizuka, Application of the Dubinin-radushkevich equation to iodine adsorption by activated carbons from aqueous solution, Carbon. 23 (1985) 137–140. doi:10.1016/0008-6223(85)90003-x. | spa |
dc.relation.references | [3-98] H. Chakhtouna, H. Benzeid, N. Zari, A. el Qaiss, R. Bouhfid, Functional CoFe2O4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water, Separation and Purification Technology. 266 (2021) 118592. doi:10.1016/j.seppur.2021.118592. | spa |
dc.relation.references | [3-99] D. L. Sparks, B. Singh, M. G. Siebecker, Sorption phenomena on soils, Environmental Soil Chemistry. (2024) 203–281. doi:10.1016/b978-0-443-14034-1.00005-8. | spa |
dc.relation.references | [3-100] C. F. Varela, M. C. Pazos, M. D. Alba, Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from Aqueous Solutions, Journal of Water Process Engineering. 40 (2021) 101949. doi:10.1016/j.jwpe.2021.101949. | spa |
dc.relation.references | [3-101] A. R. Cestari, E. F. S. Vieira, G. S. Vieira, L. E. Almeida, Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica, Journal of Colloid and Interface Science. 309 (2007) 402–411. doi:10.1016/j.jcis.2006.11.049. | spa |
dc.relation.references | [3-102] G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, et al., Recent advances of photocatalytic application in water treatment: A Review, Nanomaterials. 11 (2021) 1804. doi:10.3390/nano11071804. | spa |
dc.relation.references | [3-103] S.K. Afridi, K. Umar, R. Adnan, T. Parveen, Biochar-based photocatalysts and their application, Sustainable Materials and Technology. (2024) 51–73. doi:10.1007/978-981-97-6544-7_4. | spa |
dc.relation.references | [3-104] X. Gallardo-Monroy, H.F. Olivares-Rubio, Á. de Morales-Ramírez, J. Hernández-Fernández, C.O. Rodríguez-Nava, Degradación de Fármacos Mediante Fotocatálisis Con nanopartículas de Zno, Revista Internacional de Contaminación Ambiental. 39 (2023) 319–371. doi:10.20937/rica.54497. | spa |
dc.relation.references | [3-105] Q. Liu, D. Zhai, Z. Xiao, C. Tang, Q. Sun, C.R. Bowen, et al., Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation, Nano Energy. 92 (2022) 106702. doi:10.1016/j.nanoen.2021.106702. | spa |
dc.relation.references | [3-106] P. Escamilla, L. Bartella, S. Sanz‐Navarro, R.M. Percoco, L. Di Donna, M. Prejanò, et al., Degradation of penicillinic antibiotics and β‐lactamase enzymatic catalysis in a biomimetic Zn‐based metal–organic framework, Chemistry – A European Journal. 29 (2023). doi:10.1002/chem.202302315. | spa |
dc.relation.references | [3-107] T.A. Kurniawan, L. Yanyan, T. Ouyang, A.B. Albadarin, G. Walker, Batio 3 /Tio 2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV–vis irradiation, Materials Science in Semiconductor Processing. 73 (2018) 42–50. doi:10.1016/j.mssp.2017.06.048. | spa |
dc.relation.references | [3-108] J.H. Chau, C.W. Lai, B.F. Leo, J.C. Juan, M.R. Johan, Advanced photocatalytic degradation of acetaminophen using CU2O/WO3/TiO2 ternary composite under solar irradiation, Catalysis Communications. 163 (2022) 106396. doi:10.1016/j.catcom.2022.106396. | spa |
dc.relation.references | [3-109] B. Ramasamy, J. Jeyadharmarajan, P. Chinnaiyan, Novel organic assisted Ag-ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: Performance and reaction mechanism, Environmental Science and Pollution Research. 28 (2021) 39637–39647. doi:10.1007/s11356-021-13532-2. | spa |
dc.relation.references | [3-110] H.A. Abbas, R.A. Nasr, R.-N. Vannier, T.S. Jamil, Improving of photocatalytic activity of barium ferrate via bismuth and copper co-doping for degradation of paracetamol under visible light irradiation, Journal of Environmental Sciences. 112 (2022) 331–342. doi:10.1016/j.jes.2021.05.008. | spa |
dc.relation.references | [3-111] R. Trujillano, V. Rives, I. García, Photocatalytic degradation of paracetamol in aqueous medium using tio2 prepared by the sol–gel method, Molecules. 27 (2022) 2904. doi:10.3390/molecules27092904. | spa |
dc.relation.references | [3-112] L. Zhou, X. Guo, C. Lai, W. Wang, Electro-photocatalytic degradation of amoxicillin using calcium titanate, Open Chemistry. 16 (2018) 949–955. doi:10.1515/chem-2018-0108. | spa |
dc.relation.references | [3-113] A. Jezzini, Y. Chen, A. Davidson, G. Wallez, T. Hamieh, J. Toufaily, Photocatalytic decomposition of amoxicillin using zinc ferrite nanoparticles, Crystals. 14 (2024) 291. doi:10.3390/cryst14030291. | spa |
dc.relation.references | [3-114] C. Ye, C. Li, Construction of BaTiO3/CeO2 heterojunction and comparative study on photocatalytic activity of degradation of different drugs, Frontiers in Materials. 10 (2023). doi:10.3389/fmats.2023.1183819. | spa |
dc.relation.references | [3-115] C. Mo, L. Zhou, J. Zheng, B. Liang, H. Huang, G. Huang, et al., Efficient photodegradation of antibiotics by G-C3N4 and 3D flower-like Bi2WO6 perovskite structure: Insights into the preparation, evaluation, and potential mechanism, Chemosphere. 359 (2024) 142286. doi:10.1016/j.chemosphere.2024.142286. | spa |
dc.relation.references | [3-116] A.V. Karim, A. Shriwastav, Degradation of amoxicillin with sono, photo, and sonophotocatalytic oxidation under low-frequency ultrasound and Visible light, Environmental Research. 200 (2021) 111515. doi:10.1016/j.envres.2021.111515. | spa |
dc.relation.references | [3-117] D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, et al., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A Review, Journal of Cleaner Production. 268 (2020) 121725. doi:10.1016/j.jclepro.2020.121725. | spa |
dc.relation.references | [3-118] B.M. Saalidong, S.A. Aram, S. Otu, P.O. Lartey, Examining the dynamics of the relationship between water ph and other water quality parameters in ground and surface water systems, PLOS ONE. 17 (2022). doi:10.1371/journal.pone.0262117. | spa |
dc.relation.references | [3-119] C. Saucier, P. Karthickeyan, V. Ranjithkumar, E.C. Lima, G.S. dos Reis, I.A. de Brum, Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon, Environmental Science and Pollution Research. 24 (2017) 5918–5932. doi:10.1007/s11356-016-8304-7. | spa |
dc.relation.references | [3-120] L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: Equilibrium and positional entropy studies, Journal of Molecular Liquids. 234 (2017) 375–381. doi:10.1016/j.molliq.2017.03.111. | spa |
dc.relation.references | [3-121] M. Iqbal, M. Shahid, Z. Ali, A. Nazir, F.O. Alqahtani, M. Zaheer, et al., Paracetamol and amoxicillin adsorptive removal from aqueous solution using phosphoric acid activated-carbon, Zeitschrift Für Physikalische Chemie. 237 (2023) 257–271. doi:10.1515/zpch-2021-3149. | spa |
dc.relation.references | [3-122] F. Wang, M. Zhang, W. Sha, Y. Wang, H. Hao, Y. Dou, et al., Sorption behavior and mechanisms of organic contaminants to nano and microplastics, Molecules. 25 (2020) 1827. doi:10.3390/molecules25081827. | spa |
dc.relation.references | [3-123] A. Prajapati, A. Narayan Vaidya, A.R. Kumar, Microplastic properties and their interaction with hydrophobic organic contaminants: A Review, Environmental Science and Pollution Research. 29 (2022) 49490–49512. doi:10.1007/s11356-022-20723-y. | spa |
dc.relation.references | [3-124] C. Lim, N. Kim, J. Lee, Y. Yoon, Potential of adsorption of diverse environmental contaminants onto microplastics, Water. 14 (2022) 4086. doi:10.3390/w14244086. | spa |
dc.relation.references | [3-125] M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig, R. Preissner, ProTox: A web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Research. 42 (2014). doi:10.1093/nar/gku401. | spa |
dc.relation.references | [3-126] M. Szultka, R. Krzeminski, M. Jackowski, B. Buszewski, Identification of in vitro metabolites of amoxicillin in human liver microsomes by LC–ESI/MS, Chromatographia. 77 (2014) 1027–1035. doi:10.1007/s10337-014-2648-2. | spa |
dc.relation.references | [3-127] E. Sanniyasi, R.K. Gopal, D.K. Gunasekar, P.P. Raj, Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema Africanum Borge, Scientific Reports. 11 (2021). doi:10.1038/s41598-021-96315-6. | spa |
dc.relation.references | [3-128] M.R. Jung, F.D. Horgen, S.V. Orski, V. Rodriguez C., K.L. Beers, G.H. Balazs, et al., Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms, Marine Pollution Bulletin. 127 (2018) 704–716. doi:10.1016/j.marpolbul.2017.12.061. | spa |
dc.relation.references | [3-129] J. Fang, Y. Xuan, Q. Li, Preparation of polystyrene spheres in different particle sizes and assembly of the PS Colloidal Crystals, Science China Technological Sciences. 53 (2010) 3088–3093. doi:10.1007/s11431-010-4110-5. | spa |
dc.relation.references | [3-130] S. Dadbin, M. Frounchi, M. Sabet, Studies on the properties and structure of electron‐beam crosslinked low‐density polyethylene/poly[ethylene‐co‐(vinyl acetate)] blends, Polymer International. 54 (2004) 686–691. doi:10.1002/pi.1750. | spa |
dc.relation.references | [3-131] S. Kefer, O. Miesbauer, H.-C. Langowski, Environmental microplastic particles vs. engineered Plastic Microparticles—A comparative review, Polymers. 13 (2021) 2881. doi:10.3390/polym13172881 | spa |
dc.relation.references | [3-132] B.G. Olsø, A.-M. Haukø, B. Risholt, Experimental study of fire exposed expanded polystyrene (EPS) insulation protected by selected coverings, Heliyon. 10 (2024). doi:10.1016/j.heliyon.2024.e26309. | spa |
dc.relation.references | [3-133] P. Kannan, J.J. Biernacki, D.P. Visco, W. Lambert, Kinetics of thermal decomposition of expandable polystyrene in different gaseous environments, Journal of Analytical and Applied Pyrolysis. 84 (2009) 139–144. doi:10.1016/j.jaap.2009.01.003. | spa |
dc.relation.references | [3-134] M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, J.M. Hernández-López, J. Rivera De la Rosa, V. Barbieri, C. Siligardi, et al., Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process, Journal of Hazardous Materials. 395 (2020) 122632. doi:10.1016/j.jhazmat.2020.122632. | spa |
dc.relation.references | [3-135] A. Uheida, H.G. Mejía, M. Abdel-Rehim, W. Hamd, J. Dutta, Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system, Journal of Hazardous Materials. 406 (2021) 124299. doi:10.1016/j.jhazmat.2020.124299. | spa |
dc.relation.references | [3-136] T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta, Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environmental Chemistry Letters. 17 (2019) 1341–1346. doi:10.1007/s10311-019-00859-z. | spa |
dc.relation.references | [3-137] R. Jiang, G. Lu, Z. Yan, J. Liu, D. Wu, Y. Wang, Microplastic degradation by hydroxy-rich bismuth oxychloride, Journal of Hazardous Materials. 405 (2021) 124247. doi:10.1016/j.jhazmat.2020.124247. | spa |
dc.relation.references | [3-138] B.E. Llorente-García, J.M. Hernández-López, A.A. Zaldívar-Cadena, C. Siligardi, E.I. Cedillo-González, First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N–TiO2 coating: Effect of size and shape of microplastics, Coatings. 10 (2020) 658. doi:10.3390/coatings10070658. | spa |
dc.relation.references | [3-139] M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, V. Barbieri, C. Siligardi, E.I. Cedillo-González, New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-tio2 semiconductor, Ceramics International. 45 (2019) 9618–9624. doi:10.1016/j.ceramint.2018.10.208. | spa |
dc.relation.references | [3-140] M.A. Hassaan, M.A. El-Nemr, M.R. Elkatory, S. Ragab, V.-C. Niculescu, A. El Nemr, Principles of photocatalysts and their different applications: A Review, Topics in Current Chemistry. 381 (2023). doi:10.1007/s41061-023-00444-7. | spa |
dc.relation.references | [3-141] Hazard communication - overview, Occupational Safety and Health Administration. https://www.osha.gov/hazcom (accessed July 31, 2024). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Biocarbón | spa |
dc.subject.proposal | BaTiO3 | spa |
dc.subject.proposal | Adsorción | spa |
dc.subject.proposal | Fotocatálisis | spa |
dc.subject.proposal | Acetaminofén | spa |
dc.subject.proposal | Amoxicilina | spa |
dc.subject.proposal | Microplástico | spa |
dc.subject.proposal | Biochar | eng |
dc.subject.proposal | BaTiO3 | eng |
dc.subject.proposal | Adsorption | eng |
dc.subject.proposal | Photocatalysis | eng |
dc.subject.proposal | Acetaminophen | eng |
dc.subject.proposal | Amoxicillin | eng |
dc.subject.proposal | Microplastic | eng |
dc.subject.unesco | Investigación química | spa |
dc.subject.unesco | Chemical research | eng |
dc.subject.wikidata | fotocatálisis | spa |
dc.subject.wikidata | photocatalysis | eng |
dc.subject.wikidata | contaminante | spa |
dc.subject.wikidata | contaminant | eng |
dc.title | Desarrollo de sistemas fotocatalíticos tipo Ba1-xMxTiO3 (M = Fe, Al) soportados en biocarbonos activados para la remoción de contaminantes emergentes presentes en matrices acuosas | spa |
dc.title.translated | Development of photocatalytic systems of type Ba1-XMXTiO3 (M = Fe, Al) supported on activated biochars for the removal of emerging pollutants in aqueous matrices | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1056030585.2025.pdf
- Tamaño:
- 13.96 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: