Comportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicas

dc.contributor.advisorLizarazo Marriaga, Juan Manuel
dc.contributor.advisorLuna Tamayo, Patricia
dc.contributor.authorPalomino Barón, Diana Lucía
dc.date.accessioned2023-07-28T15:34:54Z
dc.date.available2023-07-28T15:34:54Z
dc.date.issued2023-07
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractLa siguiente investigación presenta los resultados del estudio experimental del comportamiento a flexión y la capacidad de absorción de energía de vigas de concreto reforzado con fibras de polipropileno para cuatro diferentes dosificaciones de fibra 1.8kg/m3, 4.5 kg/m3, 6.0 kg/m3 y 7.5kg/m3, dos mezclas control sin fibras y dos tamaños diferentes de agregado grueso (TMN, 12.7mm y 19mm) después de estar bajo dos patrones de carga de tipo cíclico con 40 y 80 repeticiones (C1 y C2) controlando en ambos casos la amplitud de la carga, la cual se consideró constante e igual al 65% del módulo de ruptura promedio. Para las dosificaciones establecidas y las propiedades mecánicas de las fibras usadas, las probetas presentaron un comportamiento de ablandamiento debido a la caída repentina de la carga después de la fisuración, por lo tanto, los esfuerzos residuales calculados después de la rotura y la tenacidad se vieron significativamente afectados por la aplicación de las cargas externas de naturaleza cíclica ya que las probetas perdieron aún más la capacidad de mantener la carga. Adicional a lo anterior se evaluó la pérdida de resistencia de las fibras después de 110 días de exposición en cuatro concentraciones de iones de alcalinos de sodio y potasio (NaOH y KOH) teniendo en cuenta la composición de la solución de poros que simulan el ambiente de un concreto tradicional con solo cemento denominado 0% y tres concretos con adición de humo de sílice entre 5% y 15%. Las fibras expuestas a una concentración de 0% fueron las que más reaccionaron con el medio alcalino, disminuyendo el esfuerzo último de tensión en 16.17% con respecto a las fibras en estado natural (igual a 510.26MPa). En las fibras con adición de humo de sílice para los grupos de 5% y 10% se disminuyó el esfuerzo último de tensión en 5.11% y 1.74% respectivamente, para el último grupo (15%) el esfuerzo no se vio afectado por la concentración alcalina, incluso se obtuvo un ligero mayor valor de resistencia última de 526.65MPa. (Texto tomado de la fuente)spa
dc.description.abstractThe following experimental study researched the behavior of reinforced concrete beams with four different PP fibre dosages 1.8kg/m3, 4.5 kg/m3, 6 kg/m3 y 7.5kg/m3 subject to cyclic flexural loading. Using two control samples with no fibre dosage, and varying coarse aggregates (TMN, 12.7mm y 19mm), limiting load applications to 65% of average ultimate moment was applied in 40 and 80 cycle tests (C1 y C2). For fiber added beams, there was a stiffness loss after cracking “flexural softening”, hence, residual stress and toughness were significantly affected by the cyclic nature of loading for test samples lost their capacity to withstand loading. PP fiber strength loss was evaluated after 110 days of NaOH and KOH exposure, using four different ion concentrations to simulate the composition of the cement pore solution expected environment of traditional “0%” cement, and three different concentrations of fly ash and silica fume concrete. Fibres from 0% cement had the highest reaction to the alkaline environment, reducing up to 16.77% of tensile strength from unexposed fibres. Fibres with different fly ash concentrations 5% and 10% reducing up to 5.11% to 1.74% respectively tensile strength. In the last one group (15%) the tensile strength was not affected by the alkaline environment their strength in up to 3.21% more than patron group.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.researchareaMateriales para Estructurasspa
dc.format.extentxix, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84356
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesACI Committee 211. (1991). Standard practice for selecting proportions for normal heavyweight, and mass concrete. Fermington Hills: American Concrete Institute, Reapproved.spa
dc.relation.referencesACI Committee 221. (1998). State-of-the-Art Report on Alkali-Aggregate Reactivity. Fermington Hills: American Concrete Institute, 98(Reapproved), 1–31.spa
dc.relation.referencesACI Committee 228.2R. (2013). Report on Nondestructive Test Methods for Evaluation of Concrete in Structures. In Fermington Hills: American Concrete Institute.spa
dc.relation.referencesACI Committee 318 (2019). Requisitos de Reglamentos para Concreto Estructural (ACI 318-19), Fermington Hills: American Concrete Institute 683 (2019). https://www.udocz.com/apuntes/53414/aci-318-19-espanol.spa
dc.relation.referencesACI Committee 544.1R. (2009). Report on Fiber Reinforced Concrete Reported by ACI Committee 544. In Fermington Hills: American Concrete Institute (Vol. 96, Issue Reapproved).spa
dc.relation.referencesACI Committee 544.2R. (2017). Report on the Measurement of Fresh State Properties and Fiber Dispersion of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute.spa
dc.relation.referencesACI Committee 544.3R. (2008). Guide for Specifying, Proportioning, and Production of Fiber-Reinforced Concrete. Fermington Hills: American Concrete Institute, 1–16.spa
dc.relation.referencesACI Committee 544.4R. (2018). Guide to Design with Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.spa
dc.relation.referencesACI Committee 544.5R. (2010). Report on the Physical Properties and Durability of Fiber-Reinforced Concrete. In Fermington Hills: American Concrete Institute.spa
dc.relation.referencesACI Committee 544.8R. (2016). Report on Indirect Method to Obtain Stress Strain Response of Fiber- Reinforced COncrete (FRC). Fermington Hills: American Concrete Institute.spa
dc.relation.referencesASTM A820/A820M. (2011). Standard Specification for Steel Fibers for Fiber-Reinforced Concrete. American Society for Testing and Material., October, 1–4.spa
dc.relation.referencesASTM C1116/C1116M. (2010). Standard Specification for Fiber-Reinforced Concrete. American Society for Testing and Material., Reapproved 2015, 1–7.spa
dc.relation.referencesASTM C1399/C1399M. (2010). Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. American Society for Testing and Material., 1–6.spa
dc.relation.referencesASTM C1557. (2014). Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. American Society for Testing and Material., 75(Reapproved 1989), 1–5.spa
dc.relation.referencesASTM C1609/C1609M. (2010). Standar Test Method for flexural Performance of Fiber - Reinforced Concreten (Using Beam With Third - Point Loading). American Society for Testing and Material.spa
dc.relation.referencesASTM C293/C293M. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Material., 1–4.spa
dc.relation.referencesASTM C469/C469M. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. American Society for Testing and Material.spa
dc.relation.referencesASTM C597. (2009). Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Material., 04(02), 3–6.spa
dc.relation.referencesAbousnina, R., Premasiri, S., Anise, V., Lokuge, W., Vimonsatit, V., Ferdous, W., & Alajarmeh, O. (2021). Mechanical properties of macro polypropylene fibre-reinforced concrete. Polymers, 13(23), 1–25.spa
dc.relation.referencesAli, B., Ali L., Kurda R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437.spa
dc.relation.referencesArivalagan, S. (2012). Cyclic behaviour of reinforced cement concrete composite beam made with polypropylene fiber. Journal of Civil Engineering, 40(2), 105–114.spa
dc.relation.referencesAslani, F. & Samali, B., (2014). High Strenth Polypropylene Fibre Reinforcement Concrete at High Temperature. Fire Technology, 50, 1229-1247.spa
dc.relation.referencesBehdouj, Z., Jamshidi, M., Latifi, M., & Halvaei, M. (2013). Effect of cross sectional shape of polypropylene fibers on flexural toughness of composites and fiber-to-cement matrix adhesion. Advanced Materials Research, 687, 485–489.spa
dc.relation.referencesBenaicha, M., Jalbaud, O., Hafidi Alaoui, A., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702–709.spa
dc.relation.referencesBentur, A., & Mindess, S. (2007). Fibre reinforced cementitious composites. In Modern Concrete Technology Series.spa
dc.relation.referencesBoulekbache, B., Hamrat, M., Amziane, S. (2016). Behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 126, 253-262.spa
dc.relation.referencesBroda, J., & Brachaczek, W. (2015). Influence of polypropylene fibre geometry on the mechanical properties of cement mortars. Fibres and Textiles in Eastern Europe, 23(2), 123–129.spa
dc.relation.referencesBS-EN-14889-2:2006. (2006). Fibres for concrete - Part 2: Polymer fibres. Definitions, specifications and conformity. In BSI (Vol. 3).spa
dc.relation.referencesBunsell, A. R. (2018). Handbook of Properties of Textile and Technical Fibres, Second Edition.spa
dc.relation.referencesBuratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25, 2713–2722.spa
dc.relation.referencesCáceres, A., Galobardes, I., & De Figueiredo, A. D. (2016). Mechanical characterization of synthetic macrofibres. Materials Research, 19(3), 711–720.spa
dc.relation.referencesCáceres, A., Galobardes, I., Rebmann, M. S., Monte, R., & Figueiredo, A. D. de. (2015). Geometric characterization of polymeric macrofibers. Revista IBRACON de Estruturas e Materiais, 8(5), 644–668.spa
dc.relation.referencesCarmona, S., Aguado De Cea, A., Molins, C., & Contreras, M. (2009). Control de la tenacidad de los hormigones reforzados con fibras usando el ensayo de doble punzonamiento (ensayo Barcelona). Revista Ingenieria de Construccion, 24(2), 119–140.spa
dc.relation.referencesCarnovale, D. (2013). Behaviour and Analysis of Steel and Macro-Synthetic Fibre Reinforced Concrete Subjected to Reversed Cyclic Loading: A Pilot Investigation. [Thesis of Master, University of Toronto].spa
dc.relation.referencesCarrillo, J., Aperador, W., & Gonzáles, G. (2012). Correlaciones entre las Propiedades Mecánicas del Concreto Reforzado con Fibras de Acero. Ingeniería Investigación y Tecnología, volumnes XIV (número 3), julio-septiembre 2013: 435-450.spa
dc.relation.referencesCarrillo, J., Ramirez, J., & Lizarazo, J. (2019). Modulus of Elasticity and Poisson's Ratio of Fiber-Reinforced Concrete in Colombia from Ultrasonic Pulse Velocities. Journal of Building Engineering. 23 (2019) 18-26.spa
dc.relation.referencesDel Savio, A., La Torre, D., Carrillo, J., & Chi, E. (2022). Determination of Polypropylene Fober-Reinforced Concrete Compressive Strenth and Elasticity Modulus via Ultrasonic Pulse Tests. Appl. Sci. 2022, 12, 10375.spa
dc.relation.referencesDopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P., & Phares, B. M. (2018). Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers. Transportation Research Record, 2672(27), 1–12.spa
dc.relation.referencesEuclid Chemical Company, (2015). Engineering Guide to Fiber-Reinforced Concrete.spa
dc.relation.referencesFib, (2010). Model code for concrete structures 2010. Federation Internationale du Beton.spa
dc.relation.referencesFigueiredo, A. D. (2008). A nova especificação brasileira das fibras de aço para concreto. Anais Do 50° Congresso Brasileiro Do Concreto, September 2008.spa
dc.relation.referencesGhosni, N., Samali, B., & Vessalas, K. (2014). Evaluation of structural behaviour of polypropylene fibre reinforced concrete beam under cyclic loading. 23rd Australasian Conference on the Mechanics of Structures and Materials, 319–326.spa
dc.relation.referencesHannant, D.J. (1978). Fiber Cements and Fiber Concretes. John Wiley and Sons.spa
dc.relation.referencesMétodo de ensayo para la determinación de la capacidad de absorción de energía (tenacidad) de concreto reforzado con fibra, (2009).spa
dc.relation.referencesInternational Atomic Energy Agency. (2002). Guidebook on non-destructive testing of concrete structures. In Industrial Applications and Chemistry Section, IAEA (Vol. 17). http://200.10.161.33/cirsoc/pdf/ensayos/tcs-17_web.pdfspa
dc.relation.referencesKaraiskos, G., Deraemaeker, A., Aggelis, D. G., & Van Hemelrijck, D. (2015). Monitoring of concrete structures using the ultrasonic pulse velocity method. Smart Materials and Structures, 24(11), 1–31.spa
dc.relation.referencesKobayashi, K., & Cho, R. (1981). Flexural behaviour of polyethylene fibre reinforced concrete. The International Journal of Cement Composites and Lightweight Concrete, 3(1), 19–25.spa
dc.relation.referencesMohod, M., & Kadam, K. (2016). Behaviour of polypropylene fibre reinforced concrete pavement under static wheel load. Sixth International Congress on Computational Mechanics and Simulation, August.spa
dc.relation.referencesNaik, T. R., Malhotra, V. M., & Popovics, J. S. (2004). The Ultrasonic Pulse Velocity Method. In Handbook on nondestructive testing of concrete.spa
dc.relation.referencesNeville, A. M. (2011). Properties of Concrete (Fifth Edit).spa
dc.relation.referencesNkem, A., Ige, A. (2014). Optimal polypropylene fiber content for imporved compressive and flexural strength of concrete. Journal of Mechanical and Civil Engineering, 11,3. PP 129-135.spa
dc.relation.referencesNSR-10, (2010). Reglamento Colombiano de Construcción Sismo Resistente. Asociación de ingeniería Sísmica.spa
dc.relation.referencesPaegle, L., Fischer, G., Jönsson, J. (2015). Characterization and modeling of fiber reinforced concrete for structural applications in beams and plates.[Tesis Doctoral, Technical University of Denamark]spa
dc.relation.referencesPakravan, H. R., Jamshidi, M., & Latifi, M. (2016). The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers. Journal of Composite Materials, 50(8), 1007–1020.spa
dc.relation.referencesPujadas, P., (2013). Caracterización y diseño del hormigón reforzado con fibras plásticas. [Tesis Doctoral, Universitat Politècnica de Catalunya]spa
dc.relation.referencesRai, A., & Joshi, Y. P. (2014). Applications and Properties of Fibre Reinforced Concrete. Journal of Engineering Research and Applications, 1, 123–131.spa
dc.relation.referencesRamakrishnan, V., Speakman, J., Kakodkar, S., & Sure, V. R. (1994). Performance characteristics of monofilament polypropylene fiber-reinforced concrete. Transportation Research Record, 1458, 48–56.spa
dc.relation.referencesRamírez, J. (2014). Evaluación del Proceso de Daño y Deterioro Mecánico del Concreto Reforzado con Fibras Mediante Técnicas Acústicas. Universidad Nacional de Colombia.spa
dc.relation.referencesRILEM TECHNICAL COMMITTEES. (2001). Rilem TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Uni-axial tension test for steel fibre reinforced concrete. Materials and Structures/Materiaux et Constructions, 34(235), 3–6.spa
dc.relation.referencesRoman, J. L. (2015). Análisis de las Propiedades del Concreto Reforzado con Fibras Cortas de Acero y Macrofibras de Polipropileno: Influencia del Tipo y Consumo de Fibra Adicionado. Universidad Nacional Autónoma de México.spa
dc.relation.referencesRostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., & Abtahi, S. M. (2019). The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97, 118–124.spa
dc.relation.referencesSegre, N., Tonella, E., & Joekes, I. (1998). Evaluation of the stability of polypropylene fibers in enviroments aggressive to cement based materials. Cement and COncrete Research, 28, 75–81.spa
dc.relation.referencesSelleck, S. F., Landis, E. N., Peterson, M. L., Shah, S. P., & Achenbach, J. D. (1998). Ultrasonic investigation of concrete with distributed damage. ACI Materials Journal, 95(1), 27–36.spa
dc.relation.referencesShin, E. H., Cho, K. S., Seo, M. H., & Kim, H. (2008). Determination of electrospun fiber diameter distributions using image analysis processing. Macromolecular Research, 16(No. 4), 314–319.spa
dc.relation.referencesSnyder, K. A., Feng, X., Keen, B. D., & Mason, T. O. (2003). Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations. Cement and Concrete Research, 33(6), 793–798.spa
dc.relation.referencesSuksawang, N. Wtaife, S. & Alsabbagh, A. (2018). Evaluation of Elastic Modulus of Fiber-Reinforced Concrete. ACI Materials Journal, Title No. 115-M22.spa
dc.relation.referencesSukontasukkul, P. (2004). Toughness Evaluation of Fibre Reinforced Concrete. Thammasat Int. J. Sc. Tech., 9(3).spa
dc.relation.referencesVollpracht, A., Lothenbach, B., Snellings, R., & Haufe, J. (2015). The pore solution of blended cements: a review. Materials and Structures, 49(8).spa
dc.relation.referencesWang, Y., Backer, S., & Li, V. C. (1987). An experimental study of synthetic fibre reinforced cementitious composites. Journal of Materials Science, 22(12), 4281–4291.spa
dc.relation.referencesWu, Y. A. O. (2002). Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams. Journal of Wuhan University of Technology, 17(2), 54–57.spa
dc.relation.referencesYadav, M., & Sharma, A. (2020). Comparative Analysis between Use of Polypropylene Fibers and Steel Fibers in Fiber Reinforced Concrete. International Research Journal of Engineering and Technology, 07(08), 2106–2112.spa
dc.relation.referencesYazici, Ş., Inan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250–1253.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembPOLIPROPILENOspa
dc.subject.lembPolypropyleneeng
dc.subject.lembHORMIGON ARMADOspa
dc.subject.lembReinforced concreteeng
dc.subject.proposalFRCeng
dc.subject.proposalFibras de polipropilenospa
dc.subject.proposalTensiónspa
dc.subject.proposalTenacidadspa
dc.subject.proposalFlexiónspa
dc.subject.proposalCargas cíclicasspa
dc.subject.proposalEsfuerzo residualspa
dc.subject.proposalPolypropylene fibreseng
dc.subject.proposalTensileeng
dc.subject.proposalToughnesseng
dc.subject.proposalBendingeng
dc.subject.proposalCyclic loadingeng
dc.subject.proposalResidual stresseng
dc.titleComportamiento a flexión de vigas de concreto reforzado con fibras de polipropileno sometidas a cargas cíclicasspa
dc.title.translatedFlexural behavior of polypropylene fiber reinforced concrete beams subjected to cyclic loadingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1130601756.2023.pdf
Tamaño:
5.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: