La transformación de la participación de la demanda en los mercados eléctricos

dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.advisorDyner Rezonzew, Isaac
dc.contributor.authorJiménez Zapata, Maritza
dc.contributor.researchgroupGrupo de Sistemas Energéticosspa
dc.date.accessioned2021-06-16T14:50:15Z
dc.date.available2021-06-16T14:50:15Z
dc.date.issued2021
dc.description.abstractLos compromisos internacionales para la consecución de objetivos renovables sumados a la consciencia ambiental, el compromiso social, y la disminución de costos de nuevas tecnologías, han permitido la consolidación de una transformación en el sector eléctrico, de la que se vislumbran importantes cambios para los participantes del mercado. Dentro de estos cambios sobresalen las nuevas alternativas tecnológicas que se ofrecen para los diferentes sectores de demanda de electricidad, permitiéndoles hacer una gestión activa de su consumo a través de mecanismos de participación como la microgeneración, la eficiencia energética, la conservación y la respuesta de la demanda. Ante este nuevo escenario, surge la incertidumbre de los impactos en el mercado procedentes de la participación activa de los sectores de demanda residencial y no residencial. Esta tesis desarrolla una plataforma para la evaluación de políticas orientadas a la gestión de la demanda de electricidad que permita identificar si es posible reforzar los comportamientos favorables al mercado y mitigar los comportamientos desfavorables, ante la inminente modificación de la participación de la demanda en el mercado eléctrico colombiano.spa
dc.description.abstractCommitments to reach international renewable targets added to environmental awareness, social acceptance and technological cost reductions, allows the current technological transformation for the electricity sector, which empowers significant changes for the demand side. Demand-side changes include new technological alternatives to the different sectors of electricity demand, allowing them to actively manage their consumption through participation mechanisms such as micro-generation, energy efficiency, conservation and demand response. Given this new scenario, uncertainty about market effects arises. This thesis provides a framework for the assessment of demand-side management policies to identify if possible to strengthen market-friendly behaviour and mitigate unfavourable ones, in the face of the imminent change in demand-side participation in the Colombian electricity market.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaInvestigación de Operacionesspa
dc.description.researchareaMercados de Energíaspa
dc.format.extent234 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79637
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedN/Aspa
dc.relation.referencesABB. (2017). Lista de precios productos de automatización y control. https://new.abb.com/docs/librariesprovider78/colombia-ecuador-docs/2-lp-productos-de-automatizacion-y-control.pdf?sfvrsn=b8938c12_2spa
dc.relation.referencesABB Group. (2013). Eficiencia en motores nuevos desarrollos y tecnologías ABB IE4 Super Premium y SynRM 1E4. https://new.abb.com/docs/librariesprovider78/chile-documentos/jornadas-tecnicas-2013---presentaciones/3-josé-simpson---eficiencia-en-motores-nuevos-desarrollos-y-tecnologías-abb.pdf?sfvrsn=2spa
dc.relation.referencesAbdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. https://doi.org/10.1016/j.rser.2010.09.003spa
dc.relation.referencesAbrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of Environmental Psychology, 25(3), 273–291. https://doi.org/10.1016/j.jenvp.2005.08.002spa
dc.relation.referencesAbreu, J., Wingartz, N., & Hardy, N. (2019). New trends in solar: a comparative study assessing the attitudes towards the adoption of rooftop PV. Energy Policy, 128(December 2018), 347–363. https://doi.org/10.1016/j.enpol.2018.12.038spa
dc.relation.referencesAelenei, D., Lopes, R. A., Aelenei, L., & Gonçalves, H. (2019). Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renewable Energy, 137, 189–197. https://doi.org/10.1016/j.renene.2018.07.140spa
dc.relation.referencesAghaei, J., & Alizadeh, M. I. (2013). Demand response in smart electricity grids equipped with renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 18, 64–72. https://doi.org/10.1016/j.rser.2012.09.019spa
dc.relation.referencesAgterbosch, S., Meertens, R. M., & Vermeulen, W. J. V. (2009). The relative importance of social and institutional conditions in the planning of wind power projects. Renewable and Sustainable Energy Reviews, 13(2), 393–405. https://doi.org/10.1016/j.rser.2007.10.010spa
dc.relation.referencesAhmad, S., Mat Tahar, R., Muhammad-Sukki, F., Munir, A. B., & Abdul Rahim, R. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29–37. https://doi.org/10.1016/j.rser.2015.11.034spa
dc.relation.referencesAlam, M., Zou, P. X. W., Stewart, R. A., Bertone, E., Sahin, O., Buntine, C., & Marshall, C. (2019). Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society, 44(September 2018), 56–69. https://doi.org/10.1016/j.scs.2018.09.022spa
dc.relation.referencesAndersson, E., Karlsson, M., Thollander, P., & Paramonova, S. (2018). Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program. Renewable and Sustainable Energy Reviews, 93(May), 165–177. https://doi.org/10.1016/j.rser.2018.05.037spa
dc.relation.referencesAndor, M. A., & Fels, K. M. (2018). Behavioral economics and energy conservation – A systematic review of non-price interventions and their causal effects. Ecological Economics, 148, 178–210. https://doi.org/10.1016/j.ecolecon.2018.01.018spa
dc.relation.referencesAnkamah-Yeboah, I., & Rehdanz, K. (2014). Explaining the variation in the value of building energy efficiency certificates: A quantitative meta-analysis. Kiel Working Paper 1949. https://www.econstor.eu/handle/10419/100700spa
dc.relation.referencesAnnala, S., Lukkarinen, J., Primmer, E., Honkapuro, S., Ollikka, K., Sunila, K., & Ahonen, T. (2018). Regulation as an enabler of demand response in electricity markets and power systems. Journal of Cleaner Production, 195, 1139–1148. https://doi.org/10.1016/j.jclepro.2018.05.276spa
dc.relation.referencesAnukoolthamchote, P. C., Assané, D., & Konan, D. E. (2020). Net electricity load profiles: Shape and variability considering customer-mix at transformers on the island of Oahu, Hawai’i. Energy Policy, 147, 111732. https://doi.org/10.1016/j.enpol.2020.111732spa
dc.relation.referencesApeaning, R. W., & Thollander, P. (2013). Barriers to and driving forces for industrial energy efficiency improvements in African industries - A case study of Ghana’s largest industrial area. Journal of Cleaner Production, 53, 204–213. https://doi.org/10.1016/j.jclepro.2013.04.003spa
dc.relation.referencesArango, S., Franco, C., Olaya, Y., Naranjo, M., Alcaráz, S., & Gutiérrez, F. (2012). Análisis de diseño de esquemas de subsidios en los servicios públicos colombianos por medio de economía experimental y simulación (1st ed.). Universidad Nacional de Colombia (Medellín).spa
dc.relation.referencesArgun, I. D., Kayakutlu, G., Ozgozen, N. Y., & Daim, T. U. (2021). Models for Energy Efficiency Obligation Systems through different perspectives. Technology in Society, 64, 101436. https://doi.org/10.1016/j.techsoc.2020.101436spa
dc.relation.referencesAvancini, D. B., Rodrigues, J. J. P. C., Martins, S. G. B., Rabêlo, R. A. L., Al-Muhtadi, J., & Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702–715. https://doi.org/10.1016/j.jclepro.2019.01.229spa
dc.relation.referencesBaatz, B., Relf, G., & Nowak, S. (2018). The role of energy efficiency in a distributed energy future. The Electricity Journal, 31(10), 13–16. https://doi.org/10.1016/j.tej.2018.11.004spa
dc.relation.referencesBalasubramanian, S., & Balachandra, P. (2021). Characterising Electricity Demand through Load Curve Clustering: A Case of Karnataka Electricity System in India. Computers & Chemical Engineering, 107316. https://doi.org/10.1016/j.compchemeng.2021.107316spa
dc.relation.referencesBalcombe, P., Rigby, D., & Azapagic, A. (2013). Motivations and barriers associated with adopting microgeneration energy technologies in the UK. Renewable and Sustainable Energy Reviews, 22, 655–666. https://doi.org/10.1016/j.rser.2013.02.012spa
dc.relation.referencesBalcombe, P., Rigby, D., & Azapagic, A. (2014). Investigating the importance of motivations and barriers related to microgeneration uptake in the UK. Applied Energy, 130, 403–418. https://doi.org/10.1016/j.apenergy.2014.05.047spa
dc.relation.referencesBalcombe, P., Rigby, D., & Azapagic, A. (2015). Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, 139, 245–259. https://doi.org/10.1016/j.apenergy.2014.11.034spa
dc.relation.referencesBanco de la República de Colombia. (2019). Tasas de captación semanales y mensuales. https://www.banrep.gov.co/esspa
dc.relation.referencesBanco de la República de Colombia. (2020). Banco de la República | Colombia. Producto Interno Bruto (PIB). https://www.banrep.gov.co/es/estadisticas/producto-interno-bruto-pibspa
dc.relation.referencesBarlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4spa
dc.relation.referencesBasher, S. A., Masini, A., & Aflaki, S. (2015). Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment. Renewable and Sustainable Energy Reviews, 52, 1680–1692. https://doi.org/10.1016/j.rser.2015.08.028spa
dc.relation.referencesBass, F. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.spa
dc.relation.referencesBaur, L., & M, M. U. (2018). Diffusion of photovoltaic technology in Germany: A sustainable success or an illusion driven by guaranteed feed-in tariffs? Energy, 150, 289–298. https://doi.org/10.1016/j.energy.2018.02.104spa
dc.relation.referencesBedoya, L. (2017). Efectos del desarrollo tecnológico de las baterías en el Sistema Interconectado Nacional de Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60848spa
dc.relation.referencesBehm, C., Nolting, L., & Praktiknjo, A. (2020). How to model European electricity load profiles using artificial neural networks. Applied Energy, 277, 115564. https://doi.org/10.1016/j.apenergy.2020.115564spa
dc.relation.referencesBergaentzlé, C., Clastres, C., & Khalfallah, H. (2014). Demand-side management and European environmental and energy goals: An optimal complementary approach. Energy Policy, 67, 858–869. https://doi.org/10.1016/j.enpol.2013.12.008spa
dc.relation.referencesBergman, N., & Eyre, N. (2011). What role for microgeneration in a shift to a low carbon domestic energy sector in the UK? Energy Efficiency, 4(3), 335–353. https://doi.org/10.1007/s12053-011-9107-9spa
dc.relation.referencesBlaser, F. (2009). Diagnóstico de Electrodomésticos y de Aparatos Electrónicos de Consumo. https://quimicos.minambiente.gov.co/images/RAEE/documentos_raee/8_EMPA-ANDI_Diagnostico_Electrodomesticos_y_Aparatos_Electronicos_de_Consumo.pdfspa
dc.relation.referencesBolwig, S., Bazbauers, G., Klitkou, A., Lund, P. D., Blumberga, A., Gravelsins, A., & Blumberga, D. (2019). Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 101(June 2018), 440–452. https://doi.org/10.1016/j.rser.2018.11.019spa
dc.relation.referencesBorchers, A. M., Xiarchos, I., & Beckman, J. (2014). Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach. Energy Policy, 69, 106–115. https://doi.org/10.1016/j.enpol.2014.02.014spa
dc.relation.referencesBoßmann, T., & Eser, E. J. (2016). Model-based assessment of demand-response measures - A comprehensive literature review. Renewable and Sustainable Energy Reviews, 57, 1637–1656. https://doi.org/10.1016/j.rser.2015.12.031spa
dc.relation.referencesBreyer, C., Azzuni, A., & Breyer, C. (2018). Energy security and energy storage technologies. Energy Procedia, 155, 237–258. https://doi.org/10.1016/j.egypro.2018.11.053spa
dc.relation.referencesBrown, M., & Watkins, T. (2016). The “green premium” for environmentally certified homes: a meta-analysis and exploration.spa
dc.relation.referencesBrunke, J. C., Johansson, M., & Thollander, P. (2014). Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Journal of Cleaner Production, 84(1), 509–525. https://doi.org/10.1016/j.jclepro.2014.04.078spa
dc.relation.referencesBryant, S. T., Straker, K., & Wrigley, C. (2018). The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, 195, 1032–1046. https://doi.org/10.1016/j.jclepro.2018.05.233spa
dc.relation.referencesBugden, D., & Stedman, R. (2019). A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research and Social Science, 47(August 2018), 137–145. https://doi.org/10.1016/j.erss.2018.08.025spa
dc.relation.referencesCagno, E., & Trianni, A. (2013). Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises. Applied Energy, 104, 276–285. https://doi.org/10.1016/j.apenergy.2012.10.053spa
dc.relation.referencesCagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. https://doi.org/10.1016/j.jclepro.2014.06.057spa
dc.relation.referencesCardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case. Journal of Cleaner Production, 112, 3759–3773. https://doi.org/10.1016/j.jclepro.2015.08.089spa
dc.relation.referencesCardenas, L., Zapata, M., Franco, C. J., & Dyner, I. (2017). Assessing the combined effect of the diffusion of solar rooftop generation, energy conservation and efficient appliances in households. Journal of Cleaner Production, 162, 491–503. https://doi.org/10.1016/j.jclepro.2017.06.068spa
dc.relation.referencesCastaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179spa
dc.relation.referencesCastaneda, M., Jimenez, M., Zapata, S., Franco, C. J., & Dyner, I. (2017). Myths and facts of the utility death spiral. Energy Policy, 110, 105–116. https://doi.org/10.1016/j.enpol.2017.07.063spa
dc.relation.referencesCastaneda, M., Zapata, S., Cherni, J., Aristizabal, A. J., & Dyner, I. (2020). The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector. Renewable Energy, 155, 1432–1443. https://doi.org/10.1016/j.renene.2020.04.051spa
dc.relation.referencesChristoph, H., Lena, S., Berger, C., Joachim, U., Hahnel, J., & Wüstenhagen, R. (2018). Shotgun or snowball approach? Accelerating the diffusion of rooftop solar photovoltaics through peer effects and social norms. Energy Policy, 118(April), 596–602. https://doi.org/10.1016/j.enpol.2018.04.005spa
dc.relation.referencesClaudy, M. C., Michelsen, C., & O’Driscoll, A. (2011). The diffusion of microgeneration technologies – assessing the influence of perceived product characteristics on home owners’ willingness to pay. Energy Policy, 39(3), 1459–1469. https://doi.org/10.1016/j.enpol.2010.12.018spa
dc.relation.referencesClaudy, M. C., Michelsen, C., O’Driscoll, A., & Mullen, M. R. (2010). Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland. Renewable and Sustainable Energy Reviews, 14(7), 2154–2160. https://doi.org/10.1016/j.rser.2010.03.028spa
dc.relation.referencesCongreso de la República de Colombia. (1994a). Ley 142 de 1994. Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones.spa
dc.relation.referencesCongreso de la República de Colombia. (1994b). Ley 143 de 1994. Por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia ener (Issue 41, p. 64). http://www.minminas.gov.co/documents/10180/667537/Ley_143_1994.pdf/c2cfbda4-fe12-470e-9d30-67286b9ad17espa
dc.relation.referencesCongreso de la República de Colombia. (2014). Ley 1715. Por la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional (pp. 1–26). http://wsp.presidencia.gov.co/Normativa/Leyes/Documents/LEY 1715 DEL 13 DE MAYO DE 2014.pdfspa
dc.relation.referencesCooremans, C., & Schönenberger, A. (2019). Energy management: a key driver of energy-efficiency investment? Journal of Cleaner Production, 221–231. https://doi.org/10.1016/j.jclepro.2019.04.333spa
dc.relation.referencesCostello, K. W., & Hemphill, R. C. (2014). Electric Utilities’ ‘Death Spiral’: Hyperbole or Reality? The Electricity Journal, 27(10), 7–26. https://doi.org/10.1016/j.tej.2014.09.011spa
dc.relation.referencesCrago, C. L., & Chernyakhovskiy, I. (2017). Are policy incentives for solar power effective? Evidence from residential installations in the Northeast. Journal of Environmental Economics and Management, 81, 132–151. https://doi.org/10.1016/j.jeem.2016.09.008spa
dc.relation.referencesCREG. (2006). Resolución 071 de 2006. Por la cual se adopta la metodología para la remuneración del cargo por confiabilidad en el mercado mayorista de energía. http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2006-Creg071-2006spa
dc.relation.referencesResolución 056 de 2007, (2007). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolución-2007-CREG056-2007#.spa
dc.relation.referencesResolución 097 de 2008, (2008). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/d1dba6c9018b37ce0525785a007a709b?OpenDocumentspa
dc.relation.referencesCREG. (2015). Resolución 024 de 2015. Por la cual se regula la actividad de autogeneración a gran escala en el sistema interconectado nacional (SIN) y se dictan otras disposiciones. (p. 9). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/67513914c35d6b8c05257e2d007cf0b0/$FILE/Creg024-2015.pdfspa
dc.relation.referencesCREG. (2017). Resolución 121 de 2017. Por la cual se ordena hacer público el proyecto de resolución “Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el sistema interconectado nacional”. (p. 21). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/b5341fbcfab96db80525819b006d42fa/$FILE/Creg121-2017.pdfspa
dc.relation.referencesCREG. (2018a). Documento CREG 077 de 2018. Infraestructura de medición avanzada - Anexo de la circular 054 de 2018. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/3413698103ff1fde052582e5007b5317/$FILE/Circular054-2018 Anexo.pdfspa
dc.relation.referencesCREG. (2018b). Resolución 030 de 2018. Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el Sistema Interconectado Nacional. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191?OpenDocumentspa
dc.relation.referencesCurtius, H. C. (2018). The adoption of building-integrated photovoltaics: barriers and facilitators. Renewable Energy, 126, 783–790. https://doi.org/10.1016/j.renene.2018.04.001spa
dc.relation.referencesD’Agostino, D., Cuniberti, B., & Bertoldi, P. (2017). Energy consumption and efficiency technology measures in European non-residential buildings. Energy and Buildings, 153, 72–86. https://doi.org/10.1016/j.enbuild.2017.07.062spa
dc.relation.referencesDANE. (2012). Clasificación industrial internacional uniforme de todas las actividades económicas. Revisión 4 adaptada para Colombia. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdfspa
dc.relation.referencesDANE. (2019). Encuesta nacional de calidad de vida (ECV) 2018. Anexos. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2018spa
dc.relation.referencesDANE. (2020). Censo nacional de población y vivienda 2018 Colombia. Principales Resultados Viviendas, Hogares y Personas - VIHOPE-. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018spa
dc.relation.referencesDarby, S. (2006). The effectiveness of feedback on energy consumption. In A Review for DEFRA of the Literature on Metering, Billing and direct Displays. https://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdfspa
dc.relation.referencesDefeuilley, C. (2019). Energy transition and the future(s) of the electricity sector. Utilities Policy, 57(March), 97–105. https://doi.org/10.1016/j.jup.2019.03.002spa
dc.relation.referencesDelmas, M. A., Fischlein, M., & Asensio, O. I. (2013). Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012. Energy Policy, 61, 729–739. https://doi.org/10.1016/j.enpol.2013.05.109spa
dc.relation.referencesDenholm, P., Drury, E., & Margolis, R. (2009). The Solar Deployment System (SolarDS) Model: Documentation and Sample Results. In National Renewable Energy Laboratory (NREL) (Issue September). http://www.nrel.gov/docs/fy10osti/45832.pdfspa
dc.relation.referencesder Veen, R. A. C., & De Vries, L. J. (2009). The impact of microgeneration upon the Dutch balancing market. Energy Policy, 37(7), 2788–2797. https://doi.org/10.1016/j.enpol.2009.03.015spa
dc.relation.referencesDharshing, S. (2017). Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Research & Social Science, 23, 113–124. https://doi.org/10.1016/j.erss.2016.10.012spa
dc.relation.referencesDivshali, P. H., & Choi, B. J. (2016). Electrical market management considering power system constraints in smart distribution grids. Energies, 9(6), 1–30. https://doi.org/10.3390/en9060405spa
dc.relation.referencesDong, C., Zhou, R., & Li, J. (2021). Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China. Applied Energy, 281, 116007. https://doi.org/10.1016/j.apenergy.2020.116007spa
dc.relation.referencesDuan, H.-B., Zhu, L., & Fan, Y. (2014). A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology. Technological Forecasting and Social Change, 83, 156–169. https://doi.org/10.1016/j.techfore.2013.07.005spa
dc.relation.referencesDufo-López, R., & Bernal-Agustín, J. L. (2015). A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684–694. https://doi.org/10.1016/j.energy.2015.03.031spa
dc.relation.referencesDyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2), 136–144.spa
dc.relation.referencesDyner, I., & Franco, C. J. (2004). Consumers’ bounded rationality: the case of competitive energy markets. Systems Research and Behavioral Science, 21(4), 373–389. https://doi.org/10.1002/sres.644spa
dc.relation.referencesEarle, R., Kahn, E. P., & Macan, E. (2009). Measuring the capacity impacts of demand response. The Electricity Journal, 22(6), 47–58. https://doi.org/10.1016/j.tej.2009.05.014spa
dc.relation.referenceseasy. (2020a). Bombillo Ahorrador 3U 20W E27 6500K Luz Fría Pack X4 Nex. https://www.easy.com.co/p/bombillo-ahorrador-3u-20w-e27-6500k-luz-fria-pack-x4-nex/spa
dc.relation.referenceseasy. (2020b). Bombillo Led A60 12W E27 1050Lm Luz Fría Evergreen. https://www.easy.com.co/p/bombillo-led-a60-12w-e27-1050lm-luz-fria-evergreen/spa
dc.relation.referencesEconomidou, M., Todeschi, V., Bertoldi, P., D’Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322spa
dc.relation.referencesEhrhardt-Martinez, K., Donelly, K. A., & Laitner, J. A. (2010). Advanced metering initiatives and residential feedback programas: a meta-review for household electricity-saving ppportunities. https://www.aceee.org/sites/default/files/publications/researchreports/e105.pdfspa
dc.relation.referencesEid, C., Reneses Guillén, J., Frías Marín, P., & Hakvoort, R. (2014). The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, 244–254. https://doi.org/10.1016/j.enpol.2014.09.011spa
dc.relation.referencesEnersic, & DNP. (2017). Energy demand situation in Colombia.spa
dc.relation.referencesEngelken, M., Römer, B., Drescher, M., Welpe, I. M., & Picot, A. (2016). Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renewable and Sustainable Energy Reviews, 60, 795–809. https://doi.org/10.1016/j.rser.2015.12.163spa
dc.relation.referencesFalabella. (2020). Neveras. https://www.falabella.com.co/falabella-co/category/cat1040982/Neverasspa
dc.relation.referencesFischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. https://doi.org/10.1007/s12053-008-9009-7spa
dc.relation.referencesFizaine, F., Voye, P., & Baumont, C. (2018). Does the literature support a high willingness to pay for green label buildings? An answer with treatment of publication bias. Revue d’économie Politique, 128(5), 1013. https://doi.org/10.3917/redp.285.1013spa
dc.relation.referencesFleiter, T., Schleich, J., & Ravivanpong, P. (2012). Adoption of energy-efficiency measures in SMEs-An empirical analysis based on energy audit data from Germany. Energy Policy, 51, 863–875. https://doi.org/10.1016/j.enpol.2012.09.041spa
dc.relation.referencesGao, Y., Zhou, X., Mu, Q., & Zhu, J. (2019). Evaluation on the short-term power supply capacity of an active distribution system based on multiple scenarios considering uncertainties. In Smart Power Distribution Systems (pp. 467–502). Elsevier. https://doi.org/10.1016/B978-0-12-812154-2.00020-1spa
dc.relation.referencesGaspar, R., Antunes, D., Faria, A., & Meiszner, A. (2017). Sufficiency before efficiency: Consumers’ profiling and barriers/facilitators of energy efficient behaviours. Journal of Cleaner Production, 165, 134–142. https://doi.org/10.1016/j.jclepro.2017.07.075spa
dc.relation.referencesGautier, A., Hoet, B., Jacqmin, J., & Driessche, S. Van. (2019). Self-consumption choice of residential PV owners under net-metering. Energy Policy, 128(October 2018), 648–653. https://doi.org/10.1016/j.enpol.2019.01.055spa
dc.relation.referencesGeels, F. W., Schwanen, T., Sorrell, S., Jenkins, K., & Sovacool, B. K. (2018). Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Research and Social Science, 40(June 2017), 23–35. https://doi.org/10.1016/j.erss.2017.11.003spa
dc.relation.referencesGelazanskas, L., & Gamage, K. A. A. (2014). Demand side management in smart grid: A review and proposals for future direction. Sustainable Cities and Society, 11, 22–30. https://doi.org/10.1016/j.scs.2013.11.001spa
dc.relation.referencesGellings, C. W. (1985). The concept of demand side management for electric utilities. Proceedings of the IEEE, 10, 1468–1470.spa
dc.relation.referencesGenus, A. (2012). Changing the rules? Institutional innovation and the diffusion of microgeneration. Technology Analysis & Strategic Mangement, September 2014, 37–41. https://doi.org/10.1080/09537325.2012.705122spa
dc.relation.referencesGielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006spa
dc.relation.referencesGilbert, N., & Troitzsch, K. G. (2005). Simulation for the Social Scientist (Second). Mc Graw-Hill Education.spa
dc.relation.referencesGiraldo, N. R. (2018). Evaluación de políticas para la autogestión de la electricidad en el sector comercial no regulado en Colombia : caso supermercados [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/76195/1038412033.2018.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesGood, N. (2019). Using behavioural economic theory in modelling of demand response. Applied Energy, 239, 107–116. https://doi.org/10.1016/j.apenergy.2019.01.158spa
dc.relation.referencesGood, N., Ellis, K. A., & Mancarella, P. (2017). Review and classification of barriers and enablers of demand response in the smart grid. Renewable and Sustainable Energy Reviews, 72(November 2016), 57–72. https://doi.org/10.1016/j.rser.2017.01.043spa
dc.relation.referencesGuidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technological Forecasting and Social Change, 77(2), 279–296. https://doi.org/10.1016/j.techfore.2009.07.003spa
dc.relation.referencesGulagi, A., Bogdanov, D., & Breyer, C. (2017). The demand for storage technologies in energy transition pathways towards 100% renewable energy for India. Energy Procedia, 135, 37–50. https://doi.org/10.1016/j.egypro.2017.09.485spa
dc.relation.referencesGuo, P., Li, V. O. K., & Lam, J. C. K. (2017). Smart demand response in China: Challenges and drivers. Energy Policy, 107, 1–10. https://doi.org/10.1016/j.enpol.2017.04.019spa
dc.relation.referencesGupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society, 31, 244–259. https://doi.org/10.1016/j.scs.2017.02.005spa
dc.relation.referencesGutiérrez-Pedrero, M. J., Tarancón, M. Á., del Río, P., & Alcántara, V. (2018). Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe. Applied Energy, 211(June 2017), 743–754. https://doi.org/10.1016/j.apenergy.2017.10.115spa
dc.relation.referencesHackbarth, A., & Löbbe, S. (2020). Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading. Energy Policy, 138, 111238. https://doi.org/10.1016/j.enpol.2020.111238spa
dc.relation.referencesHaider, H. T., See, O. H., & Elmenreich, W. (2016). A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews, 59, 166–178. https://doi.org/10.1016/j.rser.2016.01.016spa
dc.relation.referencesHamwi, M., & Lizarralde, I. (2017). A review of business models towards service-oriented electricity systems. Procedia CIRP, 64, 109–114. https://doi.org/10.1016/j.procir.2017.03.032spa
dc.relation.referencesHanna, R., Leach, M., & Torriti, J. (2018). Microgeneration: The installer perspective. Renewable Energy, 116(September 2012), 458–469. https://doi.org/10.1016/j.renene.2017.09.023spa
dc.relation.referencesHassan, M. T., Burek, S., & Asif, M. (2017). Barriers to industrial energy efficiency improvement - manufacturing SMEs of Pakistan. Energy Procedia, 113, 135–142. https://doi.org/10.1016/j.egypro.2017.04.040spa
dc.relation.referencesHayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: The importance of household segmentation. Energy Research & Social Science, 3, 30–45. https://doi.org/10.1016/j.erss.2014.07.002spa
dc.relation.referencesHayward, J. A., & Graham, P. W. (2013). A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies. Energy Economics, 40, 537–548. https://doi.org/10.1016/j.eneco.2013.08.010spa
dc.relation.referencesHelm, C., & Mier, M. (2019). On the efficient market diffusion of intermittent renewable energies. Energy Economics, 80, 812–830. https://doi.org/10.1016/j.eneco.2019.01.017spa
dc.relation.referencesHerrera, B., Amell, A., Chejne, F., Cacua, K., Manrique, R., Henao, W., & Vallejo, G. (2017). Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia. Energy, 140, 1047–1058. https://doi.org/10.1016/j.energy.2017.09.041spa
dc.relation.referencesHesselink, L. X. W., & Chappin, E. J. L. (2019). Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99(July 2018), 29–41. https://doi.org/10.1016/j.rser.2018.09.031spa
dc.relation.referencesHochman, G., & Timilsina, G. R. (2017). Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis. Energy Economics, 63, 22–30. https://doi.org/10.1016/j.eneco.2017.01.013spa
dc.relation.referencesHohmeyer, O. H., & Bohm, S. (2015). Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies. Wiley Interdisciplinary Reviews: Energy and Environment, 4(1), 74–97. https://doi.org/10.1002/wene.128spa
dc.relation.referencesHomecenter. (2020a). Aires Acondicionados. https://www.homecenter.com.co/homecenter-co/category/cat10388/Aires-acondicionadosspa
dc.relation.referencesHomecenter. (2020b). Lámpara Led Panel 60x60cm 48w Ilumax. https://www.homecenter.com.co/homecenter-co/product/233841/?cid=494566&=INTERNAspa
dc.relation.referencesHomecenter. (2020c). Neveras y Nevecones. https://www.homecenter.com.co/homecenter-co/category/cat10850/Neveras-y-Neveconesspa
dc.relation.referencesHomecenter. (2020d). Tubo Fluorescente T8 2784 Lúmenes 32w Luz Blanca. https://www.homecenter.com.co/homecenter-co/product/208806/tubo-fluorescente-t8-2784-lumenes-32w-luz-blancaspa
dc.relation.referencesHonsberg, C., & Bowden, S. (2014). Calculation of Solar Insolation. Photovoltaic Education Network. http://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolationspa
dc.relation.referencesHorbach, J., & Rammer, C. (2018). Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms. Energy Policy, 121(June), 404–414. https://doi.org/10.1016/j.enpol.2018.06.042spa
dc.relation.referencesHou, Q., Zhang, N., Du, E., Miao, M., Peng, F., & Kang, C. (2019). Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Applied Energy, 242, 205–215. https://doi.org/10.1016/j.apenergy.2019.03.067spa
dc.relation.referencesHuang, Y., Tian, H., & Wang, L. (2015). Demand response for home energy management system. International Journal of Electrical Power and Energy Systems, 73, 448–455. https://doi.org/10.1016/j.ijepes.2015.05.032spa
dc.relation.referencesHughes, J. E., & Podolefsky, M. (2015). Getting green with solar subsidies: evidence from the California solar initiative. Journal of the Association of Environmental and Resource Economists, 2(2), 235–275. https://doi.org/10.1086/681131spa
dc.relation.referencesHuh, S.-Y., & Lee, C.-Y. (2014). Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy, 69, 248–257. https://doi.org/10.1016/j.enpol.2014.02.028spa
dc.relation.referencesHurtado Munoz, L. A., Huijben, J. C. C. M., Verhees, B., & Verbong, G. P. J. (2014). The power of grid parity: A discursive approach. Technological Forecasting and Social Change, 87, 179–190. https://doi.org/10.1016/j.techfore.2013.12.012spa
dc.relation.referencesHuuki, H., Karhinen, S., Kopsakangas-Savolainen, M., & Svento, R. (2020). Flexible demand and supply as enablers of variable energy integration. Journal of Cleaner Production, 258, 120574. https://doi.org/10.1016/j.jclepro.2020.120574spa
dc.relation.referencesHyysalo, S., Johnson, M., & Juntunen, J. K. (2017). The diffusion of consumer innovation in sustainable energy technologies. Journal of Cleaner Production, 162, S70–S82. https://doi.org/10.1016/j.jclepro.2016.09.045spa
dc.relation.referencesIDEAM, & UPME. (2019). Atlas de radiación solar. http://atlas.ideam.gov.co/presentacion/spa
dc.relation.referencesIEA. (2018). Electricity information: overview. https://webstore.iea.org/download/direct/2261?fileName=Electricity_Information_ 2018_Overview.pdfspa
dc.relation.referencesIEA. (2020). World energy investment 2020. https://www.iea.org/reports/world-energy-investment-2020spa
dc.relation.referencesIRENA. (2017). REthinking Energy 2017. In ASHRAE Journal (Vol. 55, Issue July). http://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdfspa
dc.relation.referencesIRENA. (2018). Global energy transformation: A roadmap to 2050. In Global Energy Transformation. A Roadmap to 2050. http://irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050%0Awww.irena.orgspa
dc.relation.referencesIRENA. (2020). RE Technology patents reports. http://inspire.irena.org/Pages/patents/Patents-Search.aspxspa
dc.relation.referencesIslam, J., Hu, Y., Haltas, I., Balta-ozkan, N., Jr, G., & Varga, L. (2018). Reducing industrial energy demand in the UK : A review of energy efficiency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94(July), 1153–1178. https://doi.org/10.1016/j.rser.2018.06.040spa
dc.relation.referencesIslam, T. (2014). Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy, 65, 340–350. https://doi.org/10.1016/j.enpol.2013.10.004spa
dc.relation.referencesIwai, N., Kurahashi, N., Kishita, Y., Yamaguchi, Y., Shimoda, Y., Fukushige, S., & Umeda, Y. (2014). Scenario analysis of regional electricity demand in the residential and commercial sectors - Influence of diffusion of photovoltaic systems and electric vehicles into power grids -. Procedia CIRP, 15, 319–324. https://doi.org/10.1016/j.procir.2014.06.076spa
dc.relation.referencesJacksohn, A., Grösche, P., Rehdanz, K., & Schröder, C. (2019). Drivers of renewable technology adoption in the household sector. Energy Economics, 81, 216–226. https://doi.org/10.1016/j.eneco.2019.04.001spa
dc.relation.referencesJanda, K. (2018). Slovak electricity market and the price merit order effect of photovoltaics. Energy Policy, 122(August 2018), 551–562. https://doi.org/10.1016/j.enpol.2018.07.021spa
dc.relation.referencesJang, D., Eom, J., Jae Park, M., & Jeung Rho, J. (2016). Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers. Energy Policy, 88, 11–26. https://doi.org/10.1016/j.enpol.2015.09.029spa
dc.relation.referencesJayaweera, N., Jayasinghe, C. L., & Weerasinghe, S. N. (2018). Local factors affecting the spatial diffusion of residential photovoltaic adoption in Sri Lanka. 119(April), 59–67. https://doi.org/10.1016/j.enpol.2018.04.017spa
dc.relation.referencesJiang, B., Farid, A. M., & Youcef-Toumi, K. (2015). Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches. Applied Energy, 156, 642–654. https://doi.org/10.1016/j.apenergy.2015.07.014spa
dc.relation.referencesJiménez, M., Cadavid, L., & Franco, C. (2014). Scenarios of photovoltaic grid parity in Colombia. Dyna, 188(81), 237–245. https://doi.org/10.15446/dyna.v81n188.42165spa
dc.relation.referencesJimenez, M., Franco, C. J., & Dyner, I. (2016). Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, 111. https://doi.org/10.1016/j.energy.2016.06.051spa
dc.relation.referencesKangas, H. L., Lazarevic, D., & Kivimaa, P. (2018). Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies. Energy Policy, 114(November 2017), 63–76. https://doi.org/10.1016/j.enpol.2017.11.060spa
dc.relation.referencesKarakaya, E., Hidalgo, A., & Nuur, C. (2015). Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany. Renewable and Sustainable Energy Reviews, 43, 1090–1098. https://doi.org/10.1016/j.rser.2014.11.077spa
dc.relation.referencesKarlin, B., Zinger, J. F., & Ford, R. (2015). The effects of feedback on energy conservation: A meta-analysis. Psychological Bulletin, 141(6), 1205–1227. https://doi.org/10.1037/a0039650spa
dc.relation.referencesKaya, İ., Çolak, M., & Terzi, F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207–228. https://doi.org/10.1016/j.esr.2019.03.003spa
dc.relation.referencesKeiner, D., Ram, M., Barbosa, L. D. S. N. S., Bogdanov, D., & Breyer, C. (2019). Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Solar Energy, 185, 406–423. https://doi.org/10.1016/j.solener.2019.04.081spa
dc.relation.referencesKhan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. https://doi.org/10.1016/j.rser.2015.10.117spa
dc.relation.referencesKonidari, P., & Mavrakis, D. (2007). A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy, 35(12), 6235–6257. https://doi.org/10.1016/j.enpol.2007.07.007spa
dc.relation.referencesKostka, G., Moslener, U., & Andreas, J. (2013). Barriers to increasing energy efficiency: Evidence from small-and medium-sized enterprises in China. Journal of Cleaner Production, 57(2013), 59–68. https://doi.org/10.1016/j.jclepro.2013.06.025spa
dc.relation.referencesKrajačić, G., Duić, N., Tsikalakis, A., Zoulias, M., Caralis, G., Panteri, E., & Carvalho, M. da G. (2011). Feed-in tariffs for promotion of energy storage technologies. Energy Policy, 39(3), 1410–1425. https://doi.org/10.1016/j.enpol.2010.12.013spa
dc.relation.referencesKubli, M., Loock, M., & Wüstenhagen, R. (2018). The flexible prosumer: Measuring the willingness to co-create distributed flexibility. Energy Policy, 114(August 2017), 540–548. https://doi.org/10.1016/j.enpol.2017.12.044spa
dc.relation.referencesKurdgelashvili, L., Shih, C. H., Yang, F., & Garg, M. (2019). An empirical analysis of county-level residential PV adoption in California. Technological Forecasting and Social Change, 139(November 2018), 321–333. https://doi.org/10.1016/j.techfore.2018.11.021spa
dc.relation.referencesLa Viña, A. G., Tan, J. M., Guanzon, T. I. M., Caleda, M. J., & Ang, L. (2017). Navigating a trilemma: Energy security, equity, and sustainability in the Philippines’ low-carbon transition. Energy Research & Social Science, October, 0–1. https://doi.org/10.1016/j.erss.2017.10.039spa
dc.relation.referencesLabandeira, X., Labeaga, J. M., Linares, P., & López-Otero, X. (2020). The impacts of energy efficiency policies: Meta-analysis. Energy Policy, 147(September 2019), 111790. https://doi.org/10.1016/j.enpol.2020.111790spa
dc.relation.referencesLanglois-Bertrand, S., Benhaddadi, M., Jegen, M., & Pineau, P. O. (2015). Political-institutional barriers to energy efficiency. Energy Strategy Reviews, 8, 30–38. https://doi.org/10.1016/j.esr.2015.08.001spa
dc.relation.referencesLaws, N. D., Epps, B. P., Peterson, S. O., Laser, M. S., & Wanjiru, G. K. (2017). On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage. Applied Energy, 185, 627–641. https://doi.org/10.1016/j.apenergy.2016.10.123spa
dc.relation.referencesLazard. (2016). Lazard’s levelised cost of energy analysis (version 10.0) (Issue December). https://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdfspa
dc.relation.referencesLazzeroni, P., Olivero, S., Repetto, M., Stirano, F., & Vallet, M. (2019). Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study. Energy, 175, 704–721. https://doi.org/10.1016/j.energy.2019.03.113spa
dc.relation.referencesLeepa, C., & Unfried, M. (2013). Effects of a cut-off in feed-in tariffs on photovoltaic capacity: Evidence from Germany. Energy Policy, 56, 536–542. https://doi.org/10.1016/j.enpol.2013.01.018spa
dc.relation.referencesLeisen, R., Steffen, B., & Weber, C. (2019). Regulatory risk and the resilience of new sustainable business models in the energy sector. Journal of Cleaner Production, 219, 865–878. https://doi.org/10.1016/j.jclepro.2019.01.330spa
dc.relation.referencesLi, H., Wang, Z., Hong, T., Parker, A., & Neukomm, M. (2021). Characterizing patterns and variability of building electric load profiles in time and frequency domains. Applied Energy, 291, 116721. https://doi.org/10.1016/j.apenergy.2021.116721spa
dc.relation.referencesLiao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/j.energy.2018.06.049spa
dc.relation.referencesLiu, H., Du, K., & Li, J. (2019). An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China’s industrial energy demand. Energy Economics, 80, 720–730. https://doi.org/10.1016/j.eneco.2019.02.012spa
dc.relation.referencesLoorbach, D., & Wijsman, K. (2013). Business transition management: Exploring a new role for business in sustainability transitions. Journal of Cleaner Production, 45, 20–28. https://doi.org/10.1016/j.jclepro.2012.11.002spa
dc.relation.referencesLuo, X., Hong, T., Chen, Y., & Piette, M. A. (2017). Electric load shape benchmarking for small- and medium-sized commercial buildings. Applied Energy, 204, 715–725. https://doi.org/10.1016/j.apenergy.2017.07.108spa
dc.relation.referencesLuthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings : A review. Applied Energy, 142, 80–94. https://doi.org/10.1016/j.apenergy.2014.12.028spa
dc.relation.referencesMalinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy ef fi ciency in industry : EU and national policies in Italy and the UK. Energy, 172, 255–269. https://doi.org/10.1016/j.energy.2019.01.130spa
dc.relation.referencesManrique, R., Vásquez, D., Vallejo, G., Chejne, F., Amell, A. A., & Herrera, B. (2018). Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia. Energy, 143, 575–584. https://doi.org/10.1016/j.energy.2017.11.023spa
dc.relation.referencesMaribu, K. M., Firestone, R. M., Marnay, C., & Siddiqui, A. S. (2007). Distributed energy resources market diffusion model. Energy Policy, 35(9), 4471–4484. https://doi.org/10.1016/j.enpol.2007.03.005spa
dc.relation.referencesMartins, J. F., Pronto, A. G., Delgado-Gomes, V., & Sanduleac, M. (2019). Smart meters and advanced metering infrastructure. In Pathways to a Smarter Power System (pp. 89–114). https://doi.org/10.1016/B978-0-08-102592-5.00004-1spa
dc.relation.referencesMaticka, M. J. (2019). The SWIS DUCK – Value pricing analysis of commercial scale photovoltaic generation in the South West Interconnected System. The Electricity Journal, 32(6), 57–65. https://doi.org/10.1016/j.tej.2019.05.020spa
dc.relation.referencesMatisoff, D. C., & Johnson, E. P. (2017). The comparative effectiveness of residential solar incentives. Energy Policy, 108, 44–54. https://doi.org/10.1016/j.enpol.2017.05.032spa
dc.relation.referencesMazzeo, D. (2019). Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis. Energy, 168, 310–331. https://doi.org/10.1016/j.energy.2018.11.057spa
dc.relation.referencesMcKerracher, C., & Torriti, J. (2013). Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, 6(2), 387–405. https://doi.org/10.1007/s12053-012-9169-3spa
dc.relation.referencesMeyabadi, A. F., & Deihimi, M. H. (2017). A review of demand-side management: Reconsidering theoretical framework. Renewable and Sustainable Energy Reviews, 80(March), 367–379. https://doi.org/10.1016/j.rser.2017.05.207spa
dc.relation.referencesMills, B., & Schleich, J. (2012). Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries. Energy Policy, 49, 616–628. https://doi.org/10.1016/j.enpol.2012.07.008spa
dc.relation.referencesMimouni, K., & Temimi, A. (2018). What drives energy efficiency? New evidence from financial crises. Energy Policy, 122(May), 332–348. https://doi.org/10.1016/j.enpol.2018.07.057spa
dc.relation.referencesMME. (2014). Decreto 2469. Por el cual se establecen los lineamientos de política energética en materia de entrega de excedentes de autogeneración (p. 3). https://www.minenergia.gov.co/documents/10180/23517/36864-Decreto-2469-02Dic2014.pdfspa
dc.relation.referencesMME. (2015a). Anexo general. Reglamento técnico de etiquetado. RETIQ. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/09/ANEXO-RETIQ_Septiembre2015-pdf.pdfspa
dc.relation.referencesMME. (2015b). Resolución 41012 de 2015. Por la cual se expide el Reglamento Técnico de Etiquetado - RETIQ, con fines de Uso Racional de Energía aplicable a algunos equipos de uso final de energía eléctrica y gas combustible, para su comercialización y uso en Colombia (p. 5). https://www.minenergia.gov.co/documents/10180/23517/36731-Resolucion-41012-18Sep2015.pdfspa
dc.relation.referencesMME. (2017). Decreto 348 de 2017. Por el cual se adiciona el Decreto 1073 de 2015, en lo que respecta al establecimiento de los lineamientos de política pública en materia de gestión eficiente de la energía y entrega de excedentes de autogeneración a pequeña escala. http://es.presidencia.gov.co/normativa/normativa/DECRETO 348 DEL 01 DE MARZO DE 2017.pdfspa
dc.relation.referencesMME. (2018). Resolución 40072 de 2018. Por la cual se establecen los mecanismos para implementar la Infraestructura de Medición Avanzada en el servicio público de energía eléctrica. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_d9dbab376fb849659b43f8a1ca96b435spa
dc.relation.referencesMME, & UPME. (2016). Plan de acción indicativo de eficiencia energética 2017-2022. http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdfspa
dc.relation.referencesMorcillo, J. D., Franco, C. J., & Angulo, F. (2017). Delays in electricity market models. Energy Strategy Reviews, 16(February), 24–32. https://doi.org/10.1016/j.esr.2017.02.004spa
dc.relation.referencesMorcillo, J. D., Franco, C. J., & Angulo, F. (2018). Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems. Applied Energy, 216(October 2017), 504–520. https://doi.org/10.1016/j.apenergy.2018.02.104spa
dc.relation.referencesMorley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research and Social Science, 38(February), 128–137. https://doi.org/10.1016/j.erss.2018.01.018spa
dc.relation.referencesMorton, C., Wilson, C., & Anable, J. (2018). The diffusion of domestic energy efficiency policies: A spatial perspective. Energy Policy, 114(April 2017), 77–88. https://doi.org/10.1016/j.enpol.2017.11.057spa
dc.relation.referencesMoura, P. S., & de Almeida, A. T. (2010). The role of demand-side management in the grid integration of wind power. Applied Energy, 87(8), 2581–2588. https://doi.org/10.1016/j.apenergy.2010.03.019spa
dc.relation.referencesMudgal, S., Lyons, L., Cohen, F., Lyons, R., & Fedrigo-Fazio, D. (2013). Energy performance certificates in buildings and their impact on transaction prices and rents in selected EU countries (Issue April). http://eur-lex.europa.eu/legal-content/ET/TXT/HTML/?uri=CELEX:32010L0031&from=ENspa
dc.relation.referencesMutingi, M., Mbohwa, C., & Dube, P. (2017). System dynamics archetypes for capacity management of energy systems. Energy Procedia, 141, 199–205. https://doi.org/10.1016/j.egypro.2017.11.038spa
dc.relation.referencesMutingi, M., Mbohwa, C., & Kommula, V. P. (2017). System dynamics approaches to energy policy modelling and simulation. Energy Procedia, 141, 532–539. https://doi.org/10.1016/j.egypro.2017.11.071spa
dc.relation.referencesNadel, S. (1992). Utility Demand-Side Management Experience and Potential- A Critical Review. Annual Review of Energy and the Environment, 17(1), 507–535. https://doi.org/10.1146/annurev.eg.17.110192.002451spa
dc.relation.referencesNAHB. (2007). Study of life expectancy of home components (Issue February).spa
dc.relation.referencesOECD/IEA. (2018). World energy outlook 2018: Executive summary. www.iea.org/t&c/spa
dc.relation.referencesOECD. (2020). Perspectivas económicas mundiales: América Latina y el Caribe (Vol. 19). http://pubdocs.worldbank.org/en/657071588788309322/Global-Economic-Prospects-June-2020-Regional-Overview-LAC-SP.pdfspa
dc.relation.referencesOlkkonen, L., Korjonen-Kuusipuro, K., & Grönberg, I. (2017). Redefining a stakeholder relation: Finnish energy “prosumers” as co-producers. Environmental Innovation and Societal Transitions, 24, 57–66. https://doi.org/10.1016/j.eist.2016.10.004spa
dc.relation.referencesOlsthoorn, M., Schleich, J., & Faure, C. (2019). Exploring the diffusion of low-energy houses: An empirical study in the European Union. Energy Policy, 129(March), 1382–1393. https://doi.org/10.1016/j.enpol.2019.03.043spa
dc.relation.referencesOrnaghi, C., Costanza, E., Kittley-Davies, J., Bourikas, L., Aragon, V., & James, P. A. B. (2018). The effect of behavioural interventions on energy conservation in naturally ventilated offices. Energy Economics, 74, 582–591. https://doi.org/10.1016/j.eneco.2018.07.008spa
dc.relation.referencesPalm, J. (2017). Household installation of solar panels - motives and barriers in a 10-year perspective. Not yet Publiched, 113(October 2017), 1–8. https://doi.org/10.1016/j.enpol.2017.10.047spa
dc.relation.referencesPapachristos, G. (2018). System dynamics modelling and simulation for sociotechnical transitions research. Environmental Innovation and Societal Transitions, September, 1–14. https://doi.org/10.1016/j.eist.2018.10.001spa
dc.relation.referencesParrish, B., Heptonstall, P., Gross, R., & Sovacool, B. K. (2020). A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy, 138, 111221. https://doi.org/10.1016/j.enpol.2019.111221spa
dc.relation.referencesPartain, L. D., & Fraas, L. M. (2010). Solar Cell Electricity Market History, Public Policy, Projected Future, and Estimated Cost. In Solar Cells and Their Applications (2nd ed., pp. 17–43). Wiley.spa
dc.relation.referencesPaterakis, N. G., Erdinç, O., & Catalão, J. P. S. (2017). An overview of Demand Response: Key-elements and international experience. In Renewable and Sustainable Energy Reviews (Vol. 69, pp. 871–891). https://doi.org/10.1016/j.rser.2016.11.167spa
dc.relation.referencesPereira, P., Dantas, G., Ivan, G., Câmara, L., & Castro, N. J. De. (2019). Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation. Renewable and Sustainable Energy Reviews, 103(April 2018), 30–39. https://doi.org/10.1016/j.rser.2018.12.028spa
dc.relation.referencesPillot, B., de Siqueira, S., & Dias, J. B. (2018). Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case. Renewable Energy, 127, 974–988. https://doi.org/10.1016/j.renene.2018.05.032spa
dc.relation.referencesPina, A., Silva, C., & Ferrão, P. (2012). The impact of demand side management strategies in the penetration of renewable electricity. Energy, 41(1), 128–137. https://doi.org/10.1016/j.energy.2011.06.013spa
dc.relation.referencesPothitou, M., Hanna, R. F., & Chalvatzis, K. J. (2017). ICT entertainment appliances’ impact on domestic electricity consumption. Renewable and Sustainable Energy Reviews, 69, 843–853. https://doi.org/10.1016/j.rser.2016.11.100spa
dc.relation.referencesQudrat-ullah, H. (2015). Modelling and simulation in service of energy policy. Energy Procedia, 75, 2819–2825. https://doi.org/10.1016/j.egypro.2015.07.558spa
dc.relation.referencesQudrat-Ullah, H. (2013). Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach. Energy, 59, 285–294. https://doi.org/10.1016/j.energy.2013.07.029spa
dc.relation.referencesRaineri, R., Ríos, S., & Schiele, D. (2006). Technical and economic aspects of ancillary services markets in the electric power industry: an international comparison. Energy Policy, 34(13), 1540–1555. https://doi.org/10.1016/j.enpol.2004.11.015spa
dc.relation.referencesRaineri, Ricardo, Arce, R., Ríos, S., & Salamanca, C. (2008). From a bundled energy-capacity pricing model to an energy–capacity–ancillary services pricing model. Energy Policy, 36(8), 2878–2886. https://doi.org/10.1016/j.enpol.2008.04.006spa
dc.relation.referencesRamos, A., Gago, A., Labandeira, X., & Linares, P. (2015). The role of information for energy efficiency in the residential sector. Energy Economics, 52, S17–S29. https://doi.org/10.1016/j.eneco.2015.08.022spa
dc.relation.referencesRaugei, M., Hutchinson, A., & Morrey, D. (2018). Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. Journal of Cleaner Production, 201, 1043–1051. https://doi.org/10.1016/j.jclepro.2018.08.107spa
dc.relation.referencesRazavi, S. E., Rahimi, E., Javadi, M. S., Nezhad, A. E., Lotfi, M., Shafie-khah, M., & Catalão, J. P. S. (2019). Impact of distributed generation on protection and voltage regulation of distribution systems: A review. Renewable and Sustainable Energy Reviews, 105(February), 157–167. https://doi.org/10.1016/j.rser.2019.01.050spa
dc.relation.referencesREN21. (2018). Renewables 2018 - Global Status Report.spa
dc.relation.referencesREN21. (2020). Renewables 2020 Global status report. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdfspa
dc.relation.referencesRichstein, J. C., & Hosseinioun, S. S. (2020). Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves. Applied Energy, 278, 115431. https://doi.org/10.1016/j.apenergy.2020.115431spa
dc.relation.referencesRíos, J. R., & Olaya, Y. (2018). A dynamic analysis of strategies for increasing energy efficiency of refrigerators in Colombia. Energy Efficiency, 11(3), 733–754. https://doi.org/10.1007/s12053-017-9601-9spa
dc.relation.referencesRochlin, C. (2016). Distributed renewable resources and the utility business model. Electricity Journal, 29(1), 7–12. https://doi.org/10.1016/j.tej.2015.12.001spa
dc.relation.referencesRosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. https://doi.org/10.1016/j.coche.2015.08.003spa
dc.relation.referencesRouhani, O. M., Niemeier, D., Gao, H. O., & Bel, G. (2016). Cost-benefit analysis of various California renewable portfolio standard targets: Is a 33% RPS optimal? Renewable and Sustainable Energy Reviews, 62, 1122–1132. https://doi.org/10.1016/j.rser.2016.05.049spa
dc.relation.referencesRoulot, J., & Raineri, R. (2018). The impacts of photovoltaic electricity self-consumption on value transfers between private and public stakeholders in France. Energy Policy, 122(August), 459–473. https://doi.org/10.1016/j.enpol.2018.07.035spa
dc.relation.referencesSauter, R., & Watson, J. (2007). Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy, 35(5), 2770–2779. https://doi.org/10.1016/j.enpol.2006.12.006spa
dc.relation.referencesScarpa, R., & Willis, K. (2010). Willingness-to-pay for renewable energy: Primary and discretionary choice of British households’ for micro-generation technologies. Energy Economics, 32(1), 129–136. https://doi.org/10.1016/j.eneco.2009.06.004spa
dc.relation.referencesSchleich, J. (2009). Barriers to energy efficiency: A comparison across the German commercial and services sector. Ecological Economics, 68(7), 2150–2159. https://doi.org/10.1016/j.ecolecon.2009.02.008spa
dc.relation.referencesSeok, J.-E., Kim, J., & Park, H. S. (2021). Regulatory and social dynamics of voluntary agreement adoption: The case of voluntary energy efficiency and GHG reduction agreement in South Korea. Energy Policy, 148, 111903. https://doi.org/10.1016/j.enpol.2020.111903spa
dc.relation.referencesSergici, S., Yang, Y., Castaner, M., & Faruqui, A. (2019). Quantifying net energy metering subsidies. The Electricity Journal, 32(8), 106632. https://doi.org/10.1016/j.tej.2019.106632spa
dc.relation.referencesShakeri, M., Shayestegan, M., Abunima, H., Reza, S. M. S., Akhtaruzzaman, M., Alamoud, A. R. M., Sopian, K., & Amin, N. (2017). An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy and Buildings, 138, 154–164. https://doi.org/10.1016/j.enbuild.2016.12.026spa
dc.relation.referencesShao, S., Pipattanasomporn, M., & Rahman, S. (2012). Grid Integration of Electric Vehicles and Demand Response With Customer Choice. IEEE Transactions on Smart Grid, 3(1), 543–550. https://doi.org/10.1109/TSG.2011.2164949spa
dc.relation.referencesSharifi, R., Fathi, S. H., & Vahidinasab, V. (2017). A review on Demand-side tools in electricity market. Renewable and Sustainable Energy Reviews, 72(December 2016), 565–572. https://doi.org/10.1016/j.rser.2017.01.020spa
dc.relation.referencesShi, D., Wang, L., & Wang, Z. (2019). What affects individual energy conservation behavior: Personal habits, external conditions or values? An empirical study based on a survey of college students. Energy Policy, 128(March 2018), 150–161. https://doi.org/10.1016/j.enpol.2018.12.061spa
dc.relation.referencesSioshansi, F. (2019). Introduction. In Consumer, Prosumer, Prosumager: How service innovations will disrupt the utility business model (1st ed., pp. xxxix–lxii). Elsevier. https://doi.org/10.1016/B978-0-12-816835-6.09982-4spa
dc.relation.referencesSioshansi, F. P. (1995). Demand-side management. The third wave. Energy Policy, 23(2), 111–114. https://doi.org/10.1016/0301-4215(95)91414-8spa
dc.relation.referencesSioshansi, F. P. (2016). California’s ‘Duck Curve’ Arrives Well Ahead of Schedule. The Electricity Journal, 29(6), 71–72. https://doi.org/10.1016/j.tej.2016.07.010spa
dc.relation.referencesSodimac Colombia. (2019). ¿Qué considerar para elegir un bombillo? Tipos de Bombillas y Cómo Elegirlas. https://www.homecenter.com.co/homecenter-co/guias-de-compra/como-elegir-bombillosspa
dc.relation.referencesSolarPower Europe. (2017). Global market outlook for solar power 2017-2021. http://www.solarpowereurope.org/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1499969894&hash=f4c23507226495e60734bf7a4c6e4f3ac426de3c&file=fileadmin/user_upload/documents/GMO/GMO_2017-2021_v2.pdfspa
dc.relation.referencesSolarPower Europe. (2018). Global market outlook (Issue February). http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdfspa
dc.relation.referencesSolnørdal, M. T., & Thyholdt, S. B. (2017). Drivers for energy efficiency: An empirical analysis of Norwegian manufacturing firms. Energy Procedia, 142, 2802–2808. https://doi.org/10.1016/j.egypro.2017.12.425spa
dc.relation.referencesSousa, J. C., Neves, L. P., & Jorge, H. M. (2012). Assessing the relevance of load profiling information in electrical load forecasting based on neural network models. International Journal of Electrical Power & Energy Systems, 40(1), 85–93. https://doi.org/10.1016/j.ijepes.2012.02.008spa
dc.relation.referencesSSPD. (2020). Tarifas. Superintendencia de Servicios Públicos Domiciliarios - Boletín Tarifario 2019. https://www.superservicios.gov.co/servicios-vigilados/energia-gas-combustible/energia/tarifasspa
dc.relation.referencesStaddon, S. C., Cycil, C., Goulden, M., Leygue, C., & Spence, A. (2016). Intervening to change behaviour and save energy in the workplace: A systematic review of available evidence. Energy Research & Social Science, 17, 30–51. https://doi.org/10.1016/j.erss.2016.03.027spa
dc.relation.referencesStede, J., Arnold, K., Dufter, C., Holtz, G., von Roon, S., & Richstein, J. C. (2020). The role of aggregators in facilitating industrial demand response: Evidence from Germany. Energy Policy, 147, 111893. https://doi.org/10.1016/j.enpol.2020.111893spa
dc.relation.referencesSterman, J. D. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World. McGraw-Hill Higher Education.spa
dc.relation.referencesStrbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030spa
dc.relation.referencesSUI. (2019). Consolidado de energía. Sistema Único de Información de Servicios Públicos Domiciliarios. http://www.sui.gov.co/web/energia/reportes/comerciales/consolidado-energiaspa
dc.relation.referencesSUI. (2020). Indicadores sobre el servicio, reportes comerciales, financieros, administrativos y técnico operativos e información sobre la cadena de valor del servicio de Energía. Detalle de Indicadores En La Bodega de Datos. http://bi.superservicios.gov.co/o3web/browser/showView.jsp?viewDesktop=true&source=SUI_COMERCIAL_ENERGIA/VISTA_FACTURACION_ENERGIA%23_publicspa
dc.relation.referencesSuneo. (2020). Medidor Bidireccional. Mercado Libre Colombia. https://articulo.mercadolibre.com.co/MCO-467428027-medidor-bidireccional-iskra3f2f1f-208120v-60hz-protocolos-_JM?matt_tool=45425669&matt_word&gclid=EAIaIQobChMI1oPP7vjS6QIViY3ICh0UjADOEAYYASABEgJjyfD_BwE&quantity=1spa
dc.relation.referencesThakur, J., & Chakraborty, B. (2019). Impact of compensation mechanisms for PV generation on residential consumers and shared net metering model for developing nations: A case study of India. Journal of Cleaner Production, 218, 696–707. https://doi.org/10.1016/j.jclepro.2019.01.286spa
dc.relation.referencesThollander, P., Backlund, S., Trianni, A., & Cagno, E. (2013). Beyond barriers - A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden. Applied Energy, 111, 636–643. https://doi.org/10.1016/j.apenergy.2013.05.036spa
dc.relation.referencesTimilsina, G. R., Hochman, G., & Fedets, I. (2016). Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms. Energy, 106, 203–211. https://doi.org/10.1016/j.energy.2016.03.009spa
dc.relation.referencesTorriti, J., Hassan, M. G., & Leach, M. (2010). Demand response experience in Europe: Policies, programmes and implementation. Energy, 35(4), 1575–1583. https://doi.org/10.1016/j.energy.2009.05.021spa
dc.relation.referencesTrianni, A., Cagno, E., & Farné, S. (2016). Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537–1551. https://doi.org/10.1016/j.apenergy.2015.02.078spa
dc.relation.referencesTrianni, A., Cagno, E., & Farnè, S. (2014). An empirical investigation of barriers, drivers and practices for energy efficiency in primary metals manufacturing SMEs. Energy Procedia, 61, 1252–1255. https://doi.org/10.1016/j.egypro.2014.11.1071spa
dc.relation.referencesTrianni, A., Cagno, E., Thollander, P., & Backlund, S. (2013). Barriers to industrial energy efficiency in foundries: A European comparison. Journal of Cleaner Production, 40, 161–176. https://doi.org/10.1016/j.jclepro.2012.08.040spa
dc.relation.referencesTroitzsch, K. G. (2013). Historical Introduction. In B. Edmonds & R. Meyer (Eds.), Simulating Social Complexity (pp. 13–21). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93813-2spa
dc.relation.referencesTurnheim, B., Berkhout, F., Geels, F., Hof, A., McMeekin, A., Nykvist, B., & van Vuuren, D. (2015). Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Global Environmental Change, 35, 239–253. https://doi.org/10.1016/j.gloenvcha.2015.08.010spa
dc.relation.referencesUNFCCC. (2015). Paris Agreement. In Conference of the Parties on its twenty-first session (Vol. 21932, Issue December). https://doi.org/FCCC/CP/2015/L.9/Rev.1spa
dc.relation.referencesUnited Nations. (1998). Kyoto protocol to the United Nations framework (Vol. 7). https://doi.org/10.1111/1467-9388.00150spa
dc.relation.referencesUPME. (2013). Determinación del potencial de reducción del consumo energético en el sector servicios en Colombia.spa
dc.relation.referencesUPME. (2015a). Estudio sobre la estructura del mercado nacional de equipos sujetos al proyecto de RETIQ, y el comportamiento del mercado frente a la inclusión del etiquetado obligatorio de parámetros de eficiencia energética. http://www.etiquetaenergetica.gov.co/wp-content/uploads/2015/07/estudio1.pdfspa
dc.relation.referencesUPME. (2015b). Plan de Expansión de Referencia Generación-Transmisión 2014-2028 (p. 765). http://www.upme.gov.co/Docs/Plan_Expansion/2015/Plan_GT_2014-2028.pdfspa
dc.relation.referencesUPME. (2015c). Resolución 281 del 2015. Por la cual se define el límite máximo de potencia de la autogeneración a pequeña escala (p. 2). http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_370895a6f86c4221b2c38ab92ed86360spa
dc.relation.referencesUPME. (2017). Plan de expansión de referencia generación – transmisión (2017-2031). http://www.upme.gov.co/Docs/Plan_Expansion/2017/Plan_GT_2017_2031.pdf%0Aspa
dc.relation.referencesUPME. (2019). Plan energetico nacional 2020-2050. https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspxspa
dc.relation.referencesUPME, & CORPOEMA. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia a partir de la caracterización del consumo energético para sus diferentes procesos, usos y equipos de uso final. http://www1.upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/Informe_Final_Volumen_2.pdfspa
dc.relation.referencesvan den Broek, K. L., & Walker, I. (2019). Exploring the perceptions of drivers of energy behaviour. Energy Policy, 129(September 2018), 1297–1305. https://doi.org/10.1016/j.enpol.2019.03.033spa
dc.relation.referencesvan der Kam, M. J., Meelen, A. A. H., van Sark, W. G. J. H. M., & Alkemade, F. (2018). Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition. Energy Research and Social Science, 46(March), 68–85. https://doi.org/10.1016/j.erss.2018.06.003spa
dc.relation.referencesvan Doren, D., Giezen, M., Driessen, P. P. J., & Runhaar, H. A. C. (2016). Scaling-up energy conservation initiatives: Barriers and local strategies. Sustainable Cities and Society, 26, 227–239. https://doi.org/10.1016/j.scs.2016.06.009spa
dc.relation.referencesVillca-pozo, M., & Gonzales-bustos, J. P. (2019). Tax incentives to modernize the energy efficiency of the housing in Spain. Energy Policy, 128(April 2018), 530–538. https://doi.org/10.1016/j.enpol.2019.01.031spa
dc.relation.referencesViva solar Colombia. (2020). Paquetes completos.spa
dc.relation.referencesWang, J., Yang, F., Zhang, X., & Zhou, Q. (2018). Barriers and drivers for enterprise energy efficiency: An exploratory study for industrial transfer in the Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 200, 866–879. https://doi.org/10.1016/j.jclepro.2018.07.327spa
dc.relation.referencesWang, T., Li, X., Liao, P. C., & Fang, D. (2016). Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers. Energy, 103, 588–597. https://doi.org/10.1016/j.energy.2016.03.039spa
dc.relation.referencesWang, W., Yu, N., & Johnson, R. (2017). A model for commercial adoption of photovoltaic systems in California. Journal of Renewable and Sustainable Energy, 9(2), 025904. https://doi.org/10.1063/1.4979899spa
dc.relation.referencesWarren, P. (2014). A review of demand-side management policy in the UK. Renewable and Sustainable Energy Reviews, 29, 941–951. https://doi.org/10.1016/j.rser.2013.09.009spa
dc.relation.referencesWarren, P. (2017). Transferability of demand-side policies between countries. Energy Policy, 109(April), 757–766. https://doi.org/10.1016/j.enpol.2017.07.032spa
dc.relation.referencesWatts, D., Valdés, M. F., Jara, D., & Watson, A. (2015). Potential residential PV development in Chile : The effect of Net Metering and Net Billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037–1051. https://doi.org/10.1016/j.rser.2014.07.201spa
dc.relation.referencesWidén, J. (2014). Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Applied Energy, 126, 199–212. https://doi.org/10.1016/j.apenergy.2014.04.008spa
dc.relation.referencesWiese, C., Larsen, A., & Pade, L.-L. (2018). Interaction effects of energy efficiency policies: a review. Energy Efficiency, 11(8), 2137–2156. https://doi.org/10.1007/s12053-018-9659-zspa
dc.relation.referencesWirth, S. (2014). Communities matter: Institutional preconditions for community renewable energy. Energy Policy, 70, 236–246. https://doi.org/10.1016/j.enpol.2014.03.021spa
dc.relation.referencesWohlfarth, K., Klobasa, M., & Gutknecht, R. (2020). Demand response in the service sector – Theoretical, technical and practical potentials. Applied Energy, 258, 114089. https://doi.org/10.1016/j.apenergy.2019.114089spa
dc.relation.referencesWong-Parodi, G., Krishnamurti, T., Gluck, J., & Agarwal, Y. (2019). Encouraging energy conservation at work: A field study testing social norm feedback and awareness of monitoring. Energy Policy, 130(July 2018), 197–205. https://doi.org/10.1016/j.enpol.2019.03.028spa
dc.relation.referencesWorld Bank. (2019). International financial statistics and data files. Inflation, Consumer Prices (Annual %) - Colombia. https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?fbclid=IwAR1T3oY42xcltyyVwUb3leENPEGlfaUuFyrIgauigFt7Kgra-fCGnGZbzG4&locations=COspa
dc.relation.referencesWu, T., Yang, S., & Tan, J. (2020). Impacts of government R&D subsidies on venture capital and renewable energy investment -- an empirical study in China. Resources Policy, 68, 101715. https://doi.org/10.1016/j.resourpol.2020.101715spa
dc.relation.referencesXie, C., Bai, M., & Wang, X. (2018). Accessing provincial energy efficiencies in China’s transport sector. Energy Policy, 123(September), 525–532. https://doi.org/10.1016/j.enpol.2018.09.032spa
dc.relation.referencesXin-gang, Z., & Yu-qiao, Z. (2021). Analysis of the effectiveness of Renewable Portfolio Standards: A perspective of shared mental model. Journal of Cleaner Production, 278, 124276. https://doi.org/10.1016/j.jclepro.2020.124276spa
dc.relation.referencesXm. (2017a). Información consumo horario año 2016 por códico CIIU.spa
dc.relation.referencesXm. (2017b). Portal BI - Información Inteligente. Históricos - Demanda Comercial. http://portalbissrs.xm.com.co/dmnd/Paginas/Historicos/Historicos.aspxspa
dc.relation.referencesXm. (2019a). Capacidad efectiva neta. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/21-capacidad-efectiva-neta.htmlspa
dc.relation.referencesXm. (2019b). Variables de la operación del SIN. Reporte Integral de Sostenibilidad, Operación y Mercado 2019. https://informeanual.xm.com.co/demo_3/pages/xm/14-variables-de-la-operacion-del-sin.htmlspa
dc.relation.referencesXm. (2020, February 6). En Colombia factor de emisión de CO2 por generación eléctrica del sistema interconectado: 164.38 gramos de CO2 por kilovatio hora. Comunicados. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383#:~:text=En Colombia Factor de emisión,de CO2 por kilovatio horaspa
dc.relation.referencesYilmaz, S., Weber, S., & Patel, M. K. (2019). Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes. Energy Policy, 133(July), 110909. https://doi.org/10.1016/j.enpol.2019.110909spa
dc.relation.referencesYoung, S., Bruce, A., & MacGill, I. (2019). Potential impacts of residential PV and battery storage on Australia’s electricity networks under different tariffs. Energy Policy, 128(December 2018), 616–627. https://doi.org/10.1016/j.enpol.2019.01.005spa
dc.relation.referencesYu, H., Hong, B., Luan, W., Huang, B., & Semero, Y. K. (2018). Study on business models of distributed generation in China. Global Energy Interconnection, 1(2), 162–171. https://doi.org/10.14171/j.2096-5117.gei.2018.02.008spa
dc.relation.referencesZafar, R., Mahmood, A., Razzaq, S., Ali, W., Naeem, U., & Shehzad, K. (2018). Prosumer based energy management and sharing in smart grid. Renewable and Sustainable Energy Reviews, 82(April 2017), 1675–1684. https://doi.org/10.1016/j.rser.2017.07.018spa
dc.relation.referencesZapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(July), 183–191. https://doi.org/10.1016/j.seta.2018.10.008spa
dc.relation.referencesZhang, Q., & Grossmann, I. E. (2016). Enterprise-wide optimization for industrial demand side management: Fundamentals, advances, and perspectives. Chemical Engineering Research and Design, 116, 114–131. https://doi.org/10.1016/j.cherd.2016.10.006spa
dc.relation.referencesZhang, Yan, Bai, X., Mills, F. P., & Pezzey, J. C. V. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings, 172, 279–294. https://doi.org/10.1016/j.enbuild.2018.05.017spa
dc.relation.referencesZhang, Yu, Song, J., & Hamori, S. (2011). Impact of subsidy policies on diffusion of photovoltaic power generation. Energy Policy, 39(4), 1958–1964. https://doi.org/10.1016/j.enpol.2011.01.021spa
dc.relation.referencesZhang, Yurong, & Wang, Y. (2013). Barriers’ and policies’ analysis of China’s building energy efficiency. Energy Policy, 62(2013), 768–773. https://doi.org/10.1016/j.enpol.2013.06.128spa
dc.relation.referencesZheng, S., Lam, C. M., Hsu, S. C., & Ren, J. (2018). Evaluating efficiency of energy conservation measures in energy service companies in China. Energy Policy, 122(August), 580–591. https://doi.org/10.1016/j.enpol.2018.08.011spa
dc.relation.referencesZou, H., Du, H., Brown, M. A., & Mao, G. (2017). Large-scale PV power generation in China: A grid parity and techno-economic analysis. Energy, 134, 256–268. https://doi.org/10.1016/j.energy.2017.05.192spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembDemanda de energía eléctrica
dc.subject.lembConsumo de energía
dc.subject.proposalCurva de Cargaspa
dc.subject.proposalEficiencia Energéticaspa
dc.subject.proposalGestión de la Demandaspa
dc.subject.proposalMercado Eléctricospa
dc.subject.proposalMicrogeneraciónspa
dc.subject.proposalParticipación de la Demandaspa
dc.subject.proposalRespuesta de la Demandaspa
dc.subject.proposalConservaciónspa
dc.subject.proposalConservationeng
dc.subject.proposalDemand-Side Managementeng
dc.subject.proposalDemand Responseeng
dc.subject.proposalEnergy Efficiencyeng
dc.subject.proposalElectricity Marketeng
dc.subject.proposalLoad Curveeng
dc.subject.proposalMicrogenerationeng
dc.titleLa transformación de la participación de la demanda en los mercados eléctricosspa
dc.title.translatedTransformation of demand-side participation in the electricity marketseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152684901.2021.pdf
Tamaño:
3.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: