Conflubot : chatbot para la busqueda de información en repositorios Confluence
| dc.contributor.advisor | Aponte Melo, Jairo Hernán | |
| dc.contributor.author | Duque Cardona, Juan José | |
| dc.date.accessioned | 2026-01-20T16:11:28Z | |
| dc.date.available | 2026-01-20T16:11:28Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color, diagramas | spa |
| dc.description.abstract | La distribución del conocimiento es uno de los aspectos más relevantes en las organizaciones, puesto que permite su aplicación en distintas áreas para la toma de decisiones. La gestión del conocimiento se encarga de crear, almacenar y distribuir el conocimiento en los diferentes sectores, para lo cual se emplean tecnologías de la información, ya que facilitan la generación de nuevo conocimiento y ayudan a las instituciones a posicionarse como organizaciones vanguardistas. Una de las herramientas implementadas para distribuir información en proyectos es Confluence, un editor wiki basado en la web cuyo objetivo principal es optimizar el contenido o las especificaciones de los documentos de un proyecto. Aunque Confluence incluye un buscador para facilitar la localización de información en distintos proyectos, cuando un empleado consulta sus repositorios, su productividad se ve afectada, ya que encontrar información específica requiere un esfuerzo considerable y demasiado tiempo. Considerando la problemática anteriormente mencionada, el presente trabajo de grado presenta la implementación y evaluación de un chatbot denominado Conflubot, el cual tiene como propósito facilitar la búsqueda de información en repositorios Confluence. Para implementar y evaluar el chatbot, se realizó un análisis bibliográfico en el que se examinaron proyectos con funcionalidades similares a Conflubot. El objetivo era identificar las herramientas utilizadas en su desarrollo, evaluarlas y así determinar cuáles serían las más adecuadas para la implementación de Conflubot. Posteriormente, se estudiaron los patrones arquitectónicos de los sistemas RAG y se determinó el uso del patrón Naive para diseñar la arquitectura de Conflubot. Una vez determinado el patrón arquitectónico, se llevó a cabo el desarrollo, entrenamiento del modelo de embebido y despliegue del chatbot en la nube. Tras implementar Conflubot, se diseñaron pruebas y formularios para que algunos usuarios interactuaran con él y evaluaran su funcionamiento y utilidad. Los resultados mostraron una percepción positiva sobre su desempeño, además de sugerir mejoras futuras centradas en la búsqueda de información y en la forma en que el chatbot responde a las consultas. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Knowledge distribution is one of the most relevant aspects in organizations, as it enables its application across different areas for decision-making. Knowledge management is responsible for creating, storing, and distributing knowledge across various sectors, leveraging information technologies since they facilitate the generation of new knowledge and help institutions position themselves as cutting-edge organizations. One of the tools implemented to distribute information across projects is Confluence, a webbased wiki editor whose primary purpose is to optimize project documentation content or specifications. Although Confluence includes a search function to help locate information across different projects, when an employee queries its repositories, their productivity is impacted, as finding specific information requires considerable effort and excessive time. Considering the aforementioned problem, this thesis presents the implementation and evaluation of a chatbot called Conflubot, which aims to facilitate information retrieval in Confluence repositories. To implement and evaluate the chatbot, a literature review was conducted, analyzing projects with functionalities similar to Conflubot with the objective of identifying the tools used during the development of these projects, and evaluating these tools to determine which should be used for the implementation of Conflubot. Subsequently, the architectural patterns of RAG systems were identified, and the use of the Naive pattern was determined to design Conflubot's architecture. Once the architectural pattern was determined, the development, embedding model training, and deployment of the chatbot in the cloud were carried out. After deploying Conflubot, tests and forms were designed so selected users could interact with it and evaluate its functionality and usefulness. The results showed positive feedback about its performance, while also suggesting future improvements focused on information retrieval and how the chatbot responds to queries. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Ingenieria de Sistemas y Computación | |
| dc.description.methods | Para el desarrollo del presente trabajo de grado se empleó una metodología compuesta por cinco fases: 1. identificación y evaluación de plataformas. 2. diseño de la arquitectura del chatbot. 3. implementación del chatbot. 4. preparación de las pruebas 5. retroalimentación. Cada una de estas fases se aborda en los capítulos correspondientes de este documento, respetando el orden mencionado anteriormente. | |
| dc.description.researcharea | Ingeniería de Software | |
| dc.format.extent | 69 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89261 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ingeniería | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
| dc.relation.references | Abedu, S., Abdellatif, A., & Shihab, E. (2024). LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities. Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering, 201–210. https://doi.org/10.1145/3661167.3661218 | |
| dc.relation.references | Anbu, A., Doreen Hephzibah Miriam, D., & Rene Robin, C. R. (2024). A Comprehensive WebScraping of IMDb’s Top 50 Movies using Beautiful Soup. 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), 1–9. https://doi.org/10.1109/IC3IoT60841.2024.10550225 | |
| dc.relation.references | Antonio Quintanilla Juárez, N. M., Don Bosco Ciudadela Don Bosco, U., al plan del pino, calle, & El Salvador, S. (2014). HERRAMIENTAS TICs Y LA GESTIÓN DEL CONOCIMIENTO. Universidad Don Bosco El Salvador. | |
| dc.relation.references | Brad, M.-C., Birloi, F.-C., Bratulescu, A., & Blaga, I.-B. (2016). A Comparative Study of Agile Project Management Software Tools. | |
| dc.relation.references | Caballero Castellanos, J. R., Cardona, M., & Ordoñez-Avila, J. L. (2023). Chatbot for Validation of Research Topics for Engineering Students. 2023 IEEE 41st Central America and Panama Convention (CONCAPAN XLI), 1–5. https://doi.org/10.1109/CONCAPANXLI59599.2023.10517536 | |
| dc.relation.references | Casas, J., Tricot, M.-O., Abou Khaled, O., Mugellini, E., & Cudré-Mauroux, P. (2020). Trends & Methods in Chatbot Evaluation. Companion Publication of the 2020 International Conference on Multimodal Interaction, 280–286. https://doi.org/10.1145/3395035.3425319 | |
| dc.relation.references | Caspari, L., Dastidar, K. G., Zerhoudi, S., Mitrovic, J., & Granitzer, M. (2024). Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems (No. arXiv:2407.08275). arXiv. https://doi.org/10.48550/arXiv.2407.08275 | |
| dc.relation.references | Chaplia, O., & Klym, H. (2023). Designing a Node.js Project Architecture for RESTful Microservices. 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 808–811. https://doi.org/10.1109/idaacs58523.2023.10348681 | |
| dc.relation.references | Chaudhary, D., Vadlamani, S. L., Thomas, D., Nejati, S., & Sabetzadeh, M. (2024). Developing a Llama-Based Chatbot for CI/CD Question Answering: A Case Study at Ericsson. 2024 IEEE International Conference on Software Maintenance and Evolution (ICSME), 707–718. https://doi.org/10.1109/ICSME58944.2024.00075 | |
| dc.relation.references | Chen, Y., Yan, L., Sun, W., Ma, X., Zhang, Y., Wang, S., Yin, D., Yang, Y., & Mao, J. (2025). Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning (No. arXiv:2501.15228). arXiv. https://doi.org/10.48550/arXiv.2501.15228 | |
| dc.relation.references | De Castro Araujo, T. M. P., Dos Santos, M., Simões Gomes, C. F., Manso Azevedo, C., Vanzetta, M., & Pereira, E. L. (2024). Proposal of a Python Streamlit APP for the MPSI-MARA Multicriteria Method. 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 189–194. https://doi.org/10.1109/ICMCSI61536.2024.00034 | |
| dc.relation.references | Deolekar Rugved & Akshay Dangare. (2018). 2018 3rd International Conference for Convergence in Technology (I2CT): The Gateway Hotel, XION Complex, Wakad Road, Pune, India. Apr 06-08, 2018. | |
| dc.relation.references | Docker Compose. (s/f). Docker Documentation. Recuperado el 14 de julio de 2025, de https://docs.docker.com/compose/ | |
| dc.relation.references | Documents / Nodes—LlamaIndex. (s/f). Documents/ Nodes. Recuperado el 6 de junio de 2025, de https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/ | |
| dc.relation.references | Fisher, J., Koning, D., & Ludwigsen, A. P. (2013). UTILIZING ATLASSIAN JIRA FOR LARGE-SCALE SOFTWARE DEVELOPMENT MANAGEMENT. | |
| dc.relation.references | Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., & Wang, H. (2024). Retrieval-Augmented Generation for Large Language Models: A Survey (No. arXiv:2312.10997). arXiv. https://doi.org/10.48550/arXiv.2312.10997 | |
| dc.relation.references | Giray, L. (2023). Prompt Engineering with ChatGPT: A Guide for Academic Writers. Annals of Biomedical Engineering, 51(12), 2629–2633. https://doi.org/10.1007/s10439-023-03272-4 | |
| dc.relation.references | Grothey, B., Odenkirchen, J., Brkic, A., Schömig-Markiefka, B., Quaas, A., Büttner, R., & Tolkach, Y. (2025). Comprehensive testing of large language models for extraction of structured data in pathology. Communications Medicine, 5(1). https://doi.org/10.1038/s43856-025-00808-8 | |
| dc.relation.references | Jain, S. M. (2022). Hugging Face. En S. M. Jain, Introduction to Transformers for NLP (pp. 51–67). Apress. https://doi.org/10.1007/978-1-4842-8844-3_4 | |
| dc.relation.references | Jain, V., Kavitha, H., & Mohana Kumar, S. (2022). Credit Card Fraud Detection Web Application using Streamlit and Machine Learning. 2022 IEEE International Conference on Data Science and Information System (ICDSIS), 1–5. https://doi.org/10.1109/ICDSIS55133.2022.9915901 | |
| dc.relation.references | Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002 | |
| dc.relation.references | L. Filion, N. D., J. -P. Le Bel, & M. Gagnon. (2017). Using Atlassian tools for efficient requirements management: An industrial case study. | |
| dc.relation.references | Lombardi, R. (2019). Knowledge transfer and organizational performance and business process: Past, present and future researches. Business Process Management Journal, 25(1), 2–9. https://doi.org/10.1108/BPMJ-02-2019-368 | |
| dc.relation.references | Losses—Sentence Transformers documentation. (2025). https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss | |
| dc.relation.references | Malekolkalami, M., & Nazeri, N. (2021). Chatbots in Knowledge Transfer in Digital Organizations. http://icpe.bcnf.ir | |
| dc.relation.references | Mavroudis, V. (2024). LangChain. Computer Science and Mathematics. https://doi.org/10.20944/preprints202411.0566.v1 | |
| dc.relation.references | Pinheiro, J., Victorio, W., Nascimento, E., Seabra, A., Izquierdo, Y., García, G., Coelho, G., Lemos, M., Leme, L., Furtado, A., & Casanova, M. (2023). On the Construction of Database Interfaces Based on Large Language Models: Proceedings of the 19th International Conference on Web Information Systems and Technologies, 373–380. https://doi.org/10.5220/0012204000003584 | |
| dc.relation.references | Pokhrel, S., K C, B., & Shah, P. B. (2025a). A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search. Journal of Trends in Computer Science and Smart Technology, 6(4), 424–442. https://doi.org/10.36548/jtcsst.2024.4.007 | |
| dc.relation.references | Praveen Borra. (2024). A Survey of Google Cloud Platform (GCP): Features, Services, and Applications. International Journal of Advanced Research in Science, Communication and Technology, 191–199. https://doi.org/10.48175/ijarsct-18922 | |
| dc.relation.references | Ramalingam, A., Karunamurthy, A., Dheeba, A., & Suruthi, R. (2023). Chatbot Technologies: A Comprehensive Review of Automated Chart Generation Systems. https://www.ijresm.com | |
| dc.relation.references | Relan, K. (2019). Building REST APIs with Flask: Create Python Web Services with MySQL. Apress. https://doi.org/10.1007/978-1-4842-5022-8 | |
| dc.relation.references | Rese, A., Ganster, L., & Baier, D. (2020). Chatbots in retailers’ customer communication: How to measure their acceptance? Journal of Retailing and Consumer Services, 56, 102176. https://doi.org/10.1016/j.jretconser.2020.102176 | |
| dc.relation.references | Sanchez, O. N., Leguizamón, M. Á., Orlando, P. E., Eugenia, C., & Molano, G. (2011). LA GESTION DEL CONOCIMIENTO Y LA INCIDENCIA DE LAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACIÓN (TIC) Sistemas y Tecnologías Educativas y de Entrenamiento (Gerencia del Conocimiento y TIC). http://www.gesti | |
| dc.relation.references | Sanjaya, W., Calvin, Muhammad, R., Meiliana, & Fajar, M. (2023). Systematic Literature Review on Implementation of Chatbots for Commerce Use. Procedia Computer Science, 227, 432–438. https://doi.org/10.1016/j.procs.2023.10.543 | |
| dc.relation.references | Silvia, D., Trujillo, E. A., Mireya, D., Gallegos, S., Carlos, J., Merlos, P., Trujillo, S. E. A., Salgado Gallegos, M., & Carlos Pérez, J. (2020). INTEGRACIÓN DE LA GESTIÓN DEL CONOCIMIENTO Y LA INDUSTRIA 4.0, UNA GUÍA PARA SU APLICACIÓN EN UNA ORGANIZACIÓN. https://www.eumed.net/rev/rilcoDS/07/industria-gestion-conocimiento.html | |
| dc.relation.references | Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025a). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv:2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136 | |
| dc.relation.references | Singrodia, V., Mitra, A., & Paul, S. (2019). A Review on Web Scrapping and its Applications. 2019 International Conference on Computer Communication and Informatics (ICCCI), 1–6. https://doi.org/10.1109/ICCCI.2019.8821809 | |
| dc.relation.references | Sirén, R. (2022). Creating Knowledge Sharing Culture in a Start-up Environment. Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2018). Don’t decay the learning rate, increase the batch size. | |
| dc.relation.references | Srivastava, B., Lakkaraju, K., Koppel, T., Narayanan, V., Kundu, A., & Joshi, S. (2023). Evaluating Chatbots to Promote Users’ Trust—Practices and Open Problems (No. arXiv:2309.05680). arXiv. https://doi.org/10.48550/arXiv.2309.05680 | |
| dc.relation.references | Training Overview—Sentence Transformers documentation. (2025) https://sbert.net/docs/sentence_transformer/training_overview.html#evaluator | |
| dc.relation.references | Wenhao, J., & Zheng, L. (2020). Vulnerability Analysis and Security Research of Docker Container. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), 354–357. https://doi.org/10.1109/iciscae51034.2020.9236837 | |
| dc.relation.references | Wu, Y., Li, Z., Wu, W., & Zhou, M. (2018). Response selection with topic clues for retrieval-based chatbots. Neurocomputing, 316, 251–261. https://doi.org/10.1016/j.neucom.2018.07.073 | |
| dc.relation.references | Xia, P., Zhang, L., & Li, F. (2015). Learning similarity with cosine similarity ensemble. Information Sciences, 307, 39–52. https://doi.org/10.1016/j.ins.2015.02.024 | |
| dc.relation.references | Docker Compose. (2025). Docker Documentation. https://docs.docker.com/compose/ | |
| dc.relation.references | Documents / Nodes—LlamaIndex. (2025). Documents/ Nodes. https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/ | |
| dc.relation.references | Losses—Sentence Transformers documentation. (2025). https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss | |
| dc.relation.references | Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv:2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136 | |
| dc.relation.references | Training Overview—Sentence Transformers documentation. (2025). https://sbert.net/docs/sentence_transformer/training_overview.html#evaluator | |
| dc.relation.references | Xu, X., Zhang, D., Liu, Q., Lu, Q., & Zhu, L. (2025). Agentic RAG with Human-in-the-Retrieval. 2025 IEEE 22nd International Conference on Software Architecture Companion (ICSA-C), 498–502. https://doi.org/10.1109/ICSA-C65153.2025.00074 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
| dc.subject.lemb | SIMULACION POR COMPUTADORES DIGITALES | spa |
| dc.subject.lemb | Digital computer simulation | eng |
| dc.subject.lemb | SISTEMAS VIRTUALES DE COMPUTADORES | spa |
| dc.subject.lemb | Virtual computer systems | eng |
| dc.subject.lemb | ALMACENAMIENTO VIRTUAL (COMPUTACION) | spa |
| dc.subject.lemb | Virtual Storage (Computer Science) | eng |
| dc.subject.lemb | ANALISIS DE INFORMACION | spa |
| dc.subject.lemb | Information analysis | eng |
| dc.subject.lemb | RECUPERACION DE INFORMACION | spa |
| dc.subject.lemb | Information retrieval | eng |
| dc.subject.lemb | PERTINENCIA (RECUPERACION DE INFORMACION) | spa |
| dc.subject.lemb | Pertinence | eng |
| dc.subject.proposal | Confluence | spa |
| dc.subject.proposal | Chatbot | spa |
| dc.subject.proposal | RAG | spa |
| dc.subject.proposal | Gestión del conocimiento | spa |
| dc.subject.proposal | Knowledge management | eng |
| dc.title | Conflubot : chatbot para la busqueda de información en repositorios Confluence | spa |
| dc.title.translated | Conflubot : chatbot for searching information in Confluence repositories | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado Juan José Duque Cardona (1).pdf
- Tamaño:
- 2.33 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

