Conflubot : chatbot para la busqueda de información en repositorios Confluence

dc.contributor.advisorAponte Melo, Jairo Hernán
dc.contributor.authorDuque Cardona, Juan José
dc.date.accessioned2026-01-20T16:11:28Z
dc.date.available2026-01-20T16:11:28Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa distribución del conocimiento es uno de los aspectos más relevantes en las organizaciones, puesto que permite su aplicación en distintas áreas para la toma de decisiones. La gestión del conocimiento se encarga de crear, almacenar y distribuir el conocimiento en los diferentes sectores, para lo cual se emplean tecnologías de la información, ya que facilitan la generación de nuevo conocimiento y ayudan a las instituciones a posicionarse como organizaciones vanguardistas. Una de las herramientas implementadas para distribuir información en proyectos es Confluence, un editor wiki basado en la web cuyo objetivo principal es optimizar el contenido o las especificaciones de los documentos de un proyecto. Aunque Confluence incluye un buscador para facilitar la localización de información en distintos proyectos, cuando un empleado consulta sus repositorios, su productividad se ve afectada, ya que encontrar información específica requiere un esfuerzo considerable y demasiado tiempo. Considerando la problemática anteriormente mencionada, el presente trabajo de grado presenta la implementación y evaluación de un chatbot denominado Conflubot, el cual tiene como propósito facilitar la búsqueda de información en repositorios Confluence. Para implementar y evaluar el chatbot, se realizó un análisis bibliográfico en el que se examinaron proyectos con funcionalidades similares a Conflubot. El objetivo era identificar las herramientas utilizadas en su desarrollo, evaluarlas y así determinar cuáles serían las más adecuadas para la implementación de Conflubot. Posteriormente, se estudiaron los patrones arquitectónicos de los sistemas RAG y se determinó el uso del patrón Naive para diseñar la arquitectura de Conflubot. Una vez determinado el patrón arquitectónico, se llevó a cabo el desarrollo, entrenamiento del modelo de embebido y despliegue del chatbot en la nube. Tras implementar Conflubot, se diseñaron pruebas y formularios para que algunos usuarios interactuaran con él y evaluaran su funcionamiento y utilidad. Los resultados mostraron una percepción positiva sobre su desempeño, además de sugerir mejoras futuras centradas en la búsqueda de información y en la forma en que el chatbot responde a las consultas. (Texto tomado de la fuente)spa
dc.description.abstractKnowledge distribution is one of the most relevant aspects in organizations, as it enables its application across different areas for decision-making. Knowledge management is responsible for creating, storing, and distributing knowledge across various sectors, leveraging information technologies since they facilitate the generation of new knowledge and help institutions position themselves as cutting-edge organizations. One of the tools implemented to distribute information across projects is Confluence, a webbased wiki editor whose primary purpose is to optimize project documentation content or specifications. Although Confluence includes a search function to help locate information across different projects, when an employee queries its repositories, their productivity is impacted, as finding specific information requires considerable effort and excessive time. Considering the aforementioned problem, this thesis presents the implementation and evaluation of a chatbot called Conflubot, which aims to facilitate information retrieval in Confluence repositories. To implement and evaluate the chatbot, a literature review was conducted, analyzing projects with functionalities similar to Conflubot with the objective of identifying the tools used during the development of these projects, and evaluating these tools to determine which should be used for the implementation of Conflubot. Subsequently, the architectural patterns of RAG systems were identified, and the use of the Naive pattern was determined to design Conflubot's architecture. Once the architectural pattern was determined, the development, embedding model training, and deployment of the chatbot in the cloud were carried out. After deploying Conflubot, tests and forms were designed so selected users could interact with it and evaluate its functionality and usefulness. The results showed positive feedback about its performance, while also suggesting future improvements focused on information retrieval and how the chatbot responds to queries.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingenieria de Sistemas y Computación
dc.description.methodsPara el desarrollo del presente trabajo de grado se empleó una metodología compuesta por cinco fases: 1. identificación y evaluación de plataformas. 2. diseño de la arquitectura del chatbot. 3. implementación del chatbot. 4. preparación de las pruebas 5. retroalimentación. Cada una de estas fases se aborda en los capítulos correspondientes de este documento, respetando el orden mencionado anteriormente.
dc.description.researchareaIngeniería de Software
dc.format.extent69 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89261
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.relation.referencesAbedu, S., Abdellatif, A., & Shihab, E. (2024). LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities. Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering, 201–210. https://doi.org/10.1145/3661167.3661218
dc.relation.referencesAnbu, A., Doreen Hephzibah Miriam, D., & Rene Robin, C. R. (2024). A Comprehensive WebScraping of IMDb’s Top 50 Movies using Beautiful Soup. 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), 1–9. https://doi.org/10.1109/IC3IoT60841.2024.10550225
dc.relation.referencesAntonio Quintanilla Juárez, N. M., Don Bosco Ciudadela Don Bosco, U., al plan del pino, calle, & El Salvador, S. (2014). HERRAMIENTAS TICs Y LA GESTIÓN DEL CONOCIMIENTO. Universidad Don Bosco El Salvador.
dc.relation.referencesBrad, M.-C., Birloi, F.-C., Bratulescu, A., & Blaga, I.-B. (2016). A Comparative Study of Agile Project Management Software Tools.
dc.relation.referencesCaballero Castellanos, J. R., Cardona, M., & Ordoñez-Avila, J. L. (2023). Chatbot for Validation of Research Topics for Engineering Students. 2023 IEEE 41st Central America and Panama Convention (CONCAPAN XLI), 1–5. https://doi.org/10.1109/CONCAPANXLI59599.2023.10517536
dc.relation.referencesCasas, J., Tricot, M.-O., Abou Khaled, O., Mugellini, E., & Cudré-Mauroux, P. (2020). Trends & Methods in Chatbot Evaluation. Companion Publication of the 2020 International Conference on Multimodal Interaction, 280–286. https://doi.org/10.1145/3395035.3425319
dc.relation.referencesCaspari, L., Dastidar, K. G., Zerhoudi, S., Mitrovic, J., & Granitzer, M. (2024). Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems (No. arXiv:2407.08275). arXiv. https://doi.org/10.48550/arXiv.2407.08275
dc.relation.referencesChaplia, O., & Klym, H. (2023). Designing a Node.js Project Architecture for RESTful Microservices. 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 808–811. https://doi.org/10.1109/idaacs58523.2023.10348681
dc.relation.referencesChaudhary, D., Vadlamani, S. L., Thomas, D., Nejati, S., & Sabetzadeh, M. (2024). Developing a Llama-Based Chatbot for CI/CD Question Answering: A Case Study at Ericsson. 2024 IEEE International Conference on Software Maintenance and Evolution (ICSME), 707–718. https://doi.org/10.1109/ICSME58944.2024.00075
dc.relation.referencesChen, Y., Yan, L., Sun, W., Ma, X., Zhang, Y., Wang, S., Yin, D., Yang, Y., & Mao, J. (2025). Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning (No. arXiv:2501.15228). arXiv. https://doi.org/10.48550/arXiv.2501.15228
dc.relation.referencesDe Castro Araujo, T. M. P., Dos Santos, M., Simões Gomes, C. F., Manso Azevedo, C., Vanzetta, M., & Pereira, E. L. (2024). Proposal of a Python Streamlit APP for the MPSI-MARA Multicriteria Method. 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 189–194. https://doi.org/10.1109/ICMCSI61536.2024.00034
dc.relation.referencesDeolekar Rugved & Akshay Dangare. (2018). 2018 3rd International Conference for Convergence in Technology (I2CT): The Gateway Hotel, XION Complex, Wakad Road, Pune, India. Apr 06-08, 2018.
dc.relation.referencesDocker Compose. (s/f). Docker Documentation. Recuperado el 14 de julio de 2025, de https://docs.docker.com/compose/
dc.relation.referencesDocuments / Nodes—LlamaIndex. (s/f). Documents/ Nodes. Recuperado el 6 de junio de 2025, de https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/
dc.relation.referencesFisher, J., Koning, D., & Ludwigsen, A. P. (2013). UTILIZING ATLASSIAN JIRA FOR LARGE-SCALE SOFTWARE DEVELOPMENT MANAGEMENT.
dc.relation.referencesGao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., & Wang, H. (2024). Retrieval-Augmented Generation for Large Language Models: A Survey (No. arXiv:2312.10997). arXiv. https://doi.org/10.48550/arXiv.2312.10997
dc.relation.referencesGiray, L. (2023). Prompt Engineering with ChatGPT: A Guide for Academic Writers. Annals of Biomedical Engineering, 51(12), 2629–2633. https://doi.org/10.1007/s10439-023-03272-4
dc.relation.referencesGrothey, B., Odenkirchen, J., Brkic, A., Schömig-Markiefka, B., Quaas, A., Büttner, R., & Tolkach, Y. (2025). Comprehensive testing of large language models for extraction of structured data in pathology. Communications Medicine, 5(1). https://doi.org/10.1038/s43856-025-00808-8
dc.relation.referencesJain, S. M. (2022). Hugging Face. En S. M. Jain, Introduction to Transformers for NLP (pp. 51–67). Apress. https://doi.org/10.1007/978-1-4842-8844-3_4
dc.relation.referencesJain, V., Kavitha, H., & Mohana Kumar, S. (2022). Credit Card Fraud Detection Web Application using Streamlit and Machine Learning. 2022 IEEE International Conference on Data Science and Information System (ICDSIS), 1–5. https://doi.org/10.1109/ICDSIS55133.2022.9915901
dc.relation.referencesJarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002
dc.relation.referencesL. Filion, N. D., J. -P. Le Bel, & M. Gagnon. (2017). Using Atlassian tools for efficient requirements management: An industrial case study.
dc.relation.referencesLombardi, R. (2019). Knowledge transfer and organizational performance and business process: Past, present and future researches. Business Process Management Journal, 25(1), 2–9. https://doi.org/10.1108/BPMJ-02-2019-368
dc.relation.referencesLosses—Sentence Transformers documentation. (2025). https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss
dc.relation.referencesMalekolkalami, M., & Nazeri, N. (2021). Chatbots in Knowledge Transfer in Digital Organizations. http://icpe.bcnf.ir
dc.relation.referencesMavroudis, V. (2024). LangChain. Computer Science and Mathematics. https://doi.org/10.20944/preprints202411.0566.v1
dc.relation.referencesPinheiro, J., Victorio, W., Nascimento, E., Seabra, A., Izquierdo, Y., García, G., Coelho, G., Lemos, M., Leme, L., Furtado, A., & Casanova, M. (2023). On the Construction of Database Interfaces Based on Large Language Models: Proceedings of the 19th International Conference on Web Information Systems and Technologies, 373–380. https://doi.org/10.5220/0012204000003584
dc.relation.referencesPokhrel, S., K C, B., & Shah, P. B. (2025a). A Practical Application of Retrieval-Augmented Generation for Website-Based Chatbots: Combining Web Scraping, Vectorization, and Semantic Search. Journal of Trends in Computer Science and Smart Technology, 6(4), 424–442. https://doi.org/10.36548/jtcsst.2024.4.007
dc.relation.referencesPraveen Borra. (2024). A Survey of Google Cloud Platform (GCP): Features, Services, and Applications. International Journal of Advanced Research in Science, Communication and Technology, 191–199. https://doi.org/10.48175/ijarsct-18922
dc.relation.referencesRamalingam, A., Karunamurthy, A., Dheeba, A., & Suruthi, R. (2023). Chatbot Technologies: A Comprehensive Review of Automated Chart Generation Systems. https://www.ijresm.com
dc.relation.referencesRelan, K. (2019). Building REST APIs with Flask: Create Python Web Services with MySQL. Apress. https://doi.org/10.1007/978-1-4842-5022-8
dc.relation.referencesRese, A., Ganster, L., & Baier, D. (2020). Chatbots in retailers’ customer communication: How to measure their acceptance? Journal of Retailing and Consumer Services, 56, 102176. https://doi.org/10.1016/j.jretconser.2020.102176
dc.relation.referencesSanchez, O. N., Leguizamón, M. Á., Orlando, P. E., Eugenia, C., & Molano, G. (2011). LA GESTION DEL CONOCIMIENTO Y LA INCIDENCIA DE LAS TECNOLOGIAS DE LA INFORMACION Y LA COMUNICACIÓN (TIC) Sistemas y Tecnologías Educativas y de Entrenamiento (Gerencia del Conocimiento y TIC). http://www.gesti
dc.relation.referencesSanjaya, W., Calvin, Muhammad, R., Meiliana, & Fajar, M. (2023). Systematic Literature Review on Implementation of Chatbots for Commerce Use. Procedia Computer Science, 227, 432–438. https://doi.org/10.1016/j.procs.2023.10.543
dc.relation.referencesSilvia, D., Trujillo, E. A., Mireya, D., Gallegos, S., Carlos, J., Merlos, P., Trujillo, S. E. A., Salgado Gallegos, M., & Carlos Pérez, J. (2020). INTEGRACIÓN DE LA GESTIÓN DEL CONOCIMIENTO Y LA INDUSTRIA 4.0, UNA GUÍA PARA SU APLICACIÓN EN UNA ORGANIZACIÓN. https://www.eumed.net/rev/rilcoDS/07/industria-gestion-conocimiento.html
dc.relation.referencesSingh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025a). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv:2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136
dc.relation.referencesSingrodia, V., Mitra, A., & Paul, S. (2019). A Review on Web Scrapping and its Applications. 2019 International Conference on Computer Communication and Informatics (ICCCI), 1–6. https://doi.org/10.1109/ICCCI.2019.8821809
dc.relation.referencesSirén, R. (2022). Creating Knowledge Sharing Culture in a Start-up Environment. Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2018). Don’t decay the learning rate, increase the batch size.
dc.relation.referencesSrivastava, B., Lakkaraju, K., Koppel, T., Narayanan, V., Kundu, A., & Joshi, S. (2023). Evaluating Chatbots to Promote Users’ Trust—Practices and Open Problems (No. arXiv:2309.05680). arXiv. https://doi.org/10.48550/arXiv.2309.05680
dc.relation.referencesTraining Overview—Sentence Transformers documentation. (2025) https://sbert.net/docs/sentence_transformer/training_overview.html#evaluator
dc.relation.referencesWenhao, J., & Zheng, L. (2020). Vulnerability Analysis and Security Research of Docker Container. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), 354–357. https://doi.org/10.1109/iciscae51034.2020.9236837
dc.relation.referencesWu, Y., Li, Z., Wu, W., & Zhou, M. (2018). Response selection with topic clues for retrieval-based chatbots. Neurocomputing, 316, 251–261. https://doi.org/10.1016/j.neucom.2018.07.073
dc.relation.referencesXia, P., Zhang, L., & Li, F. (2015). Learning similarity with cosine similarity ensemble. Information Sciences, 307, 39–52. https://doi.org/10.1016/j.ins.2015.02.024
dc.relation.referencesDocker Compose. (2025). Docker Documentation. https://docs.docker.com/compose/
dc.relation.referencesDocuments / Nodes—LlamaIndex. (2025). Documents/ Nodes. https://docs.llamaindex.ai/en/stable/module_guides/loading/documents_and_nodes/
dc.relation.referencesLosses—Sentence Transformers documentation. (2025). https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss
dc.relation.referencesSingh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG (No. arXiv:2501.09136). arXiv. https://doi.org/10.48550/arXiv.2501.09136
dc.relation.referencesTraining Overview—Sentence Transformers documentation. (2025). https://sbert.net/docs/sentence_transformer/training_overview.html#evaluator
dc.relation.referencesXu, X., Zhang, D., Liu, Q., Lu, Q., & Zhu, L. (2025). Agentic RAG with Human-in-the-Retrieval. 2025 IEEE 22nd International Conference on Software Architecture Companion (ICSA-C), 498–502. https://doi.org/10.1109/ICSA-C65153.2025.00074
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.lembSIMULACION POR COMPUTADORES DIGITALESspa
dc.subject.lembDigital computer simulationeng
dc.subject.lembSISTEMAS VIRTUALES DE COMPUTADORESspa
dc.subject.lembVirtual computer systemseng
dc.subject.lembALMACENAMIENTO VIRTUAL (COMPUTACION)spa
dc.subject.lembVirtual Storage (Computer Science)eng
dc.subject.lembANALISIS DE INFORMACIONspa
dc.subject.lembInformation analysiseng
dc.subject.lembRECUPERACION DE INFORMACIONspa
dc.subject.lembInformation retrievaleng
dc.subject.lembPERTINENCIA (RECUPERACION DE INFORMACION)spa
dc.subject.lembPertinenceeng
dc.subject.proposalConfluencespa
dc.subject.proposalChatbotspa
dc.subject.proposalRAGspa
dc.subject.proposalGestión del conocimientospa
dc.subject.proposalKnowledge managementeng
dc.titleConflubot : chatbot para la busqueda de información en repositorios Confluencespa
dc.title.translatedConflubot : chatbot for searching information in Confluence repositorieseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado Juan José Duque Cardona (1).pdf
Tamaño:
2.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: