Efecto de los cambios de la cobertura de la tierra en la recarga potencial directa en el Acuífero Libre del Valle de Aburrá

dc.contributor.advisorOrtiz Pimienta, Carolina
dc.contributor.authorArenas González, Brayan Andrés
dc.contributor.researcherBetancur Vargas, Teresita
dc.coverage.regionValle de Aburrá (Antioquia, Colombia)
dc.date.accessioned2024-06-19T14:10:20Z
dc.date.available2024-06-19T14:10:20Z
dc.date.issued2024-06-18
dc.descriptionIlustraciones, gráficos, fotografíasspa
dc.description.abstractEs de gran importancia entender los efectos que tienen los cambios en la cobertura de la tierra en la recarga potencial directa (RPD), especialmente en zonas en las que se presenta crecimiento urbano acelerado y presiones por los cambios de las coberturas de la tierra. En este estudio se analizaron los efectos de los cambios de la cobertura de la tierra en la RPD del Acuífero Libre del Valle de Aburrá, un acuífero ubicado en un entorno urbano, con importantes intervenciones antrópicas y rápido crecimiento urbano, localizado la región andina de Colombia. Para representar los cambios de la cobertura de la tierra se generaron mapas de coberturas a partir de la clasificación de imágenes satelitales mediante el algoritmo Random Forest, se definieron cuatro (4) escenarios correspondientes a los años 1990, 2000, 2010 y 2020, el modelo de clasificación fue meticulosamente calibrado y validado, logrando coeficientes de kappa superiores a 0.87 en todos los escenarios. Se evaluaron los efectos de los cambios de la cobertura de la tierra en la RPD mediante el balance de humedad del suelo, implementando el modelo SWB 2.0 en los cuatro (4) escenarios de la cobertura de la tierra predefinidos, con un periodo de modelación hidrológico de 1990 a 2020 y un paso de tiempo diario. El modelo fue adecuadamente parametrizado y validado, sometiéndose a un análisis de sensibilidad para asegurar la fiabilidad de las estimaciones. Los resultados muestran una RPD promedio de 78.2 Hm3/año para el escenario de 1990, en cambio, para el escenario de 2020 se estima una RPD de 68.7 Hm3/año, reflejando así una disminución de 9.5 Hm3/año, equivalente al 12% de la RPD del escenario de 1990. La disminución de la RPD se atribuye principalmente al aumento de los territorios artificializados y la disminución de las coberturas vegetales en la zona de estudio, estos cambios de cobertura favorecen la escorrentía superficial y disminuyen la RPD de la zona de estudio. (Tomado de la fuente)spa
dc.description.abstractUnderstand the effects that changes in land cover have on Direct Potential Recharge (DPR) is of great importance, especially in areas where accelerated urban growth and pressures from land cover changes occur. In this study, the effects of land cover changes on the DPR of the Aburrá Valley unconfined Aquifer were analyzed, it is located in an urban environment, with important anthropogenic interventions and rapid urban growth, located in the Andean region of Colombia. To represent the changes in land cover, coverage maps were generated from the classification of satellite images using the Random Forest algorithm, four (4) scenarios were defined corresponding to the years 1990, 2000, 2010 and 2020. The classification model was meticulously calibrated and validated, achieving kappa coefficients greater than 0.87 in all scenarios. The effects of land cover changes on the RPD were evaluated through soil moisture balance, implementing the SWB 2.0 model in the four (4) predefined land cover scenarios, with a hydrological modeling period from 1990 to 2020 and a daily time step. The model was adequately parameterized and validated, a sensitivity analysis was also carried out to ensure the reliability of the estimates. The results show an average DPR of 78.2 Hm3/year for the 1990 scenario, however, for the 2020 scenario a DPR of 68.7 Hm3/year is estimated, thus reflecting a decrease of 9.5 Hm3/year, equivalent to 12% of the DPR of the 1990 scenario. The decrease in the DPR is mainly attributed to the increase in artificialized territories and the decrease in vegetation cover in the study area. These changes favor surface runoff and reduce the DPR of the study area. studyeng
dc.description.curricularareaMedio Ambiente.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extent139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86269
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdullah, A. Y. M., Masrur, A., Gani Adnan, M. S., Al Baky, M. A., Hassan, Q. K., & Dewan, A. (2019). Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070790spa
dc.relation.referencesAdhikari, R. K., Mohanasundaram, S., & Shrestha, S. (2020). Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environmental Research, 185(February), 109440. https://doi.org/10.1016/j.envres.2020.109440spa
dc.relation.referencesAhmed, S. A., & N, H. (2023). Land use and land cover classification using machine learning algorithms in google earth engine. Earth Science Informatics, 1–17.spa
dc.relation.referencesAl Atawneh, D., Cartwright, N., & Bertone, E. (2021). Climate change and its impact on the projected values of groundwater recharge: A review. Journal of Hydrology, 601, 126602.spa
dc.relation.referencesAMVA. (2018). Actualización del Plan de Ordenación y Manejo de la Cuenca Hidrográfica el Río Aburrá.spa
dc.relation.referencesAMVA, & UdeA. (2013). Determinación y protección de las potenciales zonas de recarga en el norte del Valle de Aburrá. 295.spa
dc.relation.referencesAMVA, & Universidad Nacional de Colombia. (2017). Proyecto Planeción Estratégica para el Área Metropolitana del Valle de Aburrá. 56–200.spa
dc.relation.referencesAMVA, & UPB. (2007). Estudio de la forma y el crecimiento urbano de la Región Metropolitana.spa
dc.relation.referencesAschonitis, V. G., Antonopoulos, V. Z., Lekakis, E. H., Litskas, V. D., Kotsopoulos, S. A., & Karamouzis, D. N. (2013). Estimation of field capacity for aggregated soils using changes of the water retention curve under the effects of compaction. European Journal of Soil Science, 64(5), 688–698. https://doi.org/10.1111/ejss.12058spa
dc.relation.referencesAttard, G., Rossier, Y., Winiarski, T., & Eisenlohr, L. (2017). Urban underground development confronted by the challenges of groundwater resources: Guidelines dedicated to the construction of underground structures in urban aquifers. Land Use Policy, 64, 461–469. https://doi.org/10.1016/j.landusepol.2017.03.015spa
dc.relation.referencesBarrera-De-Calderón, M. L., Garfias, J., Martel, R., & Salas-García, J. (2022). Estimation of spatiotemporal groundwater recharge distribution in humid regions with tropical climate. In Tecnologia y Ciencias del Agua (Vol. 13, Issue 2). https://doi.org/10.24850/J-TYCA-2022-02-07spa
dc.relation.referencesBarua, S., Cartwright, I., Evan Dresel, P., & Daly, E. (2021). Using multiple methods to investigate the effects of land-use changes on groundwater recharge in a semi-arid area. Hydrology and Earth System Sciences, 25(1), 89–104. https://doi.org/10.5194/hess-25-89-2021spa
dc.relation.referencesBastidas, B. (2019). Modelo Conceptual de la Recarga de Aguas Subterráneas en el Nivel Somero del Sistema Hidrogeológico Golfo de Urabá, Evaluando su Magnitud y Variabilidad Espacio – Temporal. 198.spa
dc.relation.referencesBastidas, B., Betancur, T., Vélez, M. V., Londoño, R., & Dulce, K. (2021). Aproximación al balance hídrico de un acuífero en un ambiente urbano: acuífero libre del valle de Aburrá. XXIV Seminario Nacional de Hidráulica e Hidrología, September, 22–39.spa
dc.relation.referencesBatey, T. (2009). Soil compaction and soil management - A review. Soil Use and Management, 25(4), 335–345. https://doi.org/10.1111/j.1475-2743.2009.00236.xspa
dc.relation.referencesBeegam, S., & Arulraj, P. (2018). A REVIEW ARTICLE ON IMPACT OF URBANIZATION ON HYDROLOGICAL PARAMETERS. International Journal of Civil Engineering and Technology, 9(12), 199–208.spa
dc.relation.referencesBetancur, T., Bocanegra, E., Custodio, E., Manzano, M., & Cardoso da Silva, G. (2016). Estado y factores de cambio de los servicios ecosistémicos de aprovisionamiento en humedales relacionados con aguas sunterráneas en Iberoamérica y España. Biota Colombiana, 16(3), 106–119. https://doi.org/10.21068/c2016s01a06spa
dc.relation.referencesBetancur-Vargas, T., Martínez-Uribe, C., García-Aristizábal, E. F., & Escobar-Martínez, J. F. (2017). Identification and characterization of regional water flows contributing to the recharge of an unconfined aquifer. Revista Facultad de Ingenieria, 85, 70–85. https://doi.org/10.17533/udea.redin.n85a07spa
dc.relation.referencesBradbury, K., & Dripps, W. (2000). Groundwater recharge rates.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45, 5–32.spa
dc.relation.referencesBremer, L. L., Elshall, A. S., Wada, C. A., Brewington, L., Delevaux, J. M. S., El-Kadi, A. I., Voss, C. I., & Burnett, K. M. (2021). Effects of land-cover and watershed protection futures on sustainable groundwater management in a heavily utilized aquifer in Hawai‘i (USA). Hydrogeology Journal, 29(5), 1749–1765. https://doi.org/10.1007/s10040-021-02310-6spa
dc.relation.referencesBresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., Cook, P. G., & Batelaan, O. (2018). Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers. Hydrology and Earth System Sciences, 22(2), 1629–1648. https://doi.org/10.5194/hess-22-1629-2018spa
dc.relation.referencesCampillo, A., Taupin, J. D., Patris, N., & Betancur, T. (2015). Uso de la geoquímica y de los isótopos estables del agua en el estudio de un sistema acuífero superficial en el complejo urbanizado andino (Valle de Aburrá, Colombia). Revista Peruana Geo Atmosférica, 4(4), 62–79.spa
dc.relation.referencesCarrera-Hernández, J. J., & Gaskin, S. J. (2008). Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico. Journal of Hydrology, 353(3–4), 228–246. https://doi.org/10.1016/j.jhydrol.2008.02.012spa
dc.relation.referencesCensi, A. M., Ienco, D., Gbodjo, Y. J. E., Pensa, R. G., Interdonato, R., & Gaetano, R. (2021a). Attentive Spatial Temporal Graph CNN for Land Cover Mapping from Multi Temporal Remote Sensing Data. IEEE Access, 9, 23070–23082. https://doi.org/10.1109/ACCESS.2021.3055554spa
dc.relation.referencesCensi, A. M., Ienco, D., Gbodjo, Y. J. E., Pensa, R. G., Interdonato, R., & Gaetano, R. (2021b). Attentive Spatial Temporal Graph CNN for Land Cover Mapping from Multi Temporal Remote Sensing Data. IEEE Access, 9, 23070–23082. https://doi.org/10.1109/ACCESS.2021.3055554spa
dc.relation.referencesChai, B., & Li, P. (2023). An ensemble method for monitoring land cover changes in urban areas using dense Landsat time series data. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 29–42.spa
dc.relation.referencesChaves Córdoba, B.; Jaramillo Robledo, A. (1998). Regionalización de la temperatura del aire en Colombia. In Cenicafé (Colombia) (Vol. 49, pp. 224–230).spa
dc.relation.referencesCheng, Y., Ogden, F. L. and Z., & Jianting. (2017). Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments. Water Resources Research, 53(7), 5400--5419. https://doi.org/10.1111/j.1752-1688.1969.tb04897.xspa
dc.relation.referencesChuvieco, E. (1995). Fundamentos De Teledeteccion Espacial (EDICIONES & SA. RIALP, Eds.; Segunda).spa
dc.relation.referencesClerici, N., Cote-Navarro, F., Escobedo, F. J., Rubiano, K., & Villegas, J. C. (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment, 685, 1181–1192. https://doi.org/10.1016/j.scitotenv.2019.06.275spa
dc.relation.referencesCohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.spa
dc.relation.referencesDripps, W. R., & Bradbury, K. R. (2007). A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas (p. 15). Springer-Verlag, P.O. Box 2485 Secaucus NJ 07096-2485 USA, [mailto:orders@springer-ny.com], [URL:http://www.springer-ny.com/].spa
dc.relation.referencesEbrahimian, A., Gulliver, J. S., & Wilson, B. N. (2018). Estimating effective impervious area in urban watersheds using land cover, soil character and asymptotic curve number. Hydrological Sciences Journal, 63(4), 513–526. https://doi.org/10.1080/02626667.2018.1440562spa
dc.relation.referencesEscobar, J., Betancur, T., García, E., Martínez, C., & Palacio, P. (2017). Análisis jerárquico ponderado aplicado a la identificación de recarga y flujos regionales en acuíferos. Revista Politécnica, 13(24), 37–48.spa
dc.relation.referencesGarcía-Leoz, V., Villegas, J. C., Suescún, D., Flórez, C. P., Merino-Martín, L., Betancur, T., & León, J. D. (2018). Land cover effects on water balance partitioning in the Colombian Andes: improved water availability in early stages of natural vegetation recovery. Regional Environmental Change, 18(4), 1117–1129. https://doi.org/10.1007/s10113-017-1249-7spa
dc.relation.referencesGhimire, U., Shrestha, S., Neupane, S., Mohanasundaram, S., & Lorphensri, O. (2021). Climate and land-use change impacts on spatiotemporal variations in groundwater recharge: A case study of the Bangkok Area, Thailand. Science of the Total Environment, 792, 148370. https://doi.org/10.1016/j.scitotenv.2021.148370spa
dc.relation.referencesGómez-Moncada, R. A., Mora, A., Jaramillo, M., Mayorga, H., Martínez, A., Parra, M., Suárez, D., Sandoval, J., Sandoval, J., Caballero, V. M., Jiménez, M., Bueno, R., & Saylor, J. E. (2022). Decoding of Groundwater Recharge in Deep Aquifers of Foreland Basins Using Stable Isotopes (Δ18o and Δd) And Anion-Cation Analysis: A Case Study in the Southern Llanos Basin, Colombia. SSRN Electronic Journal, 1–54. https://doi.org/10.2139/ssrn.4093802spa
dc.relation.referencesGonzález-Ortigoza, S., Hernández-Espriú, A., & Arciniega-Esparza, S. (2023). Regional modeling of groundwater recharge in the Basin of Mexico: new insights from satellite observations and global data sources. Hydrogeology Journal, 31(7), 1971–1990. https://doi.org/10.1007/s10040-023-02667-wspa
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2). Springer.spa
dc.relation.referencesHealy, R. W. (2010). Estimating Groundwater Recharge (C. university Press, Ed.). Cambridge university press.spa
dc.relation.referencesHealy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109. https://doi.org/10.1007/s10040-001-0178-0spa
dc.relation.referencesHoffmann, J. (2005). The future of satellite remote sensing in hydrogeology. Hydrogeology Journal, 13, 247–250.spa
dc.relation.referencesHolzbecher, E. (2012). Environmental modeling: using MATLAB. Springer Science & Business Media.spa
dc.relation.referencesHorbath, J. E. (2016). Tendencias y proyecciones de la población del área metropolitana del Valle de Aburrá en Colombia, 2010-2030. Notas de Población, 43(102), 37–65. https://doi.org/10.18356/9d3ffa22-esspa
dc.relation.referencesHuang, T., Pang, Z., Yang, S., & Yin, L. (2020). Impact of Afforestation on Atmospheric Recharge to Groundwater in a Semiarid Area. Journal of Geophysical Research: Atmospheres, 125(9), 1–19. https://doi.org/10.1029/2019JD032185spa
dc.relation.referencesIGAC, & GOBERNACIÓN DE ANTIOQUIA. (2007). Estudio General de Suelos y Zonificación de Tierras del Departamento de Antioquia.spa
dc.relation.referencesIngenieria, C., AMVA, CORNARE, & CORANTIOQUIA. (2015). Plan de Ordenación y Manejo de la Cuenca del Río Aburrá.spa
dc.relation.referencesJaramillo-Llorente, M. F., Rengifo, R., & Retrepo, I. (2021). PRZ index for identifying potential areas of recharge in alluvial aquifers and for land use planning. Ingeniería Y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.11001spa
dc.relation.referencesKovačič, G., Petrič, M., & Ravbar, N. (2020). Evaluation and quantification of the effects of climate and vegetation cover change on karst water sources: Case studies of two springs in south-western slovenia. Water (Switzerland), 12(11), 1–20. https://doi.org/10.3390/w12113087spa
dc.relation.referencesLall, U., Josset, L., & Russo, T. (2020). A snapshot of the world’s groundwater challenges. Annual Review of Environment and Resources, 45, 171–194.spa
dc.relation.referencesLamichhane, S., & Shakya, N. M. (2019). Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley, Nepal. Journal of Hydrology: Regional Studies, 26(October 2019), 100635. https://doi.org/10.1016/j.ejrh.2019.100635spa
dc.relation.referencesLerner, D. (2002). Identifying and quantifying urban recharge: a review. In Hydrogeology Journal (Vol. 10, pp. 143–152).spa
dc.relation.referencesLerner, D. N. (1990). Groundwater recharge in urban areas.spa
dc.relation.referencesLi, H., Wan, W., Fang, Y., Zhu, S., Chen, X., Liu, B., & Hong, Y. (2019). A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images. Environmental Modelling and Software, 112(March 2018), 16–22. https://doi.org/10.1016/j.envsoft.2018.11.004spa
dc.relation.referencesMariño-Martínez, J. E., & Martínez-Sánchez, A. (2018). Analysis of precipitation and recharge of aquifers in Tota and Ibagué (Colombia) from stable isotopes (18O and 2H). Revista Facultad de Ingeniería, 27(47), 61–71. https://doi.org/10.19053/01211129.v27.n47.2018.7752spa
dc.relation.referencesMattos, T. S., de Oliveira, P. T. S., Lucas, M. C., & Wendland, E. (2019). Groundwater recharge decrease replacing pasture by Eucalyptus plantation. Water (Switzerland), 11(6), 1–13. https://doi.org/10.3390/w11061213spa
dc.relation.referencesMensah, J. K., Ofosu, E. A., Yidana, S. M., Akpoti, K., & Kabo-bah, A. T. (2022). Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environmental Advances, 8(March), 100224. https://doi.org/10.1016/j.envadv.2022.100224spa
dc.relation.referencesMinnig, M., Moeck, C., Radny, D., & Schirmer, M. (2018). Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. Journal of Hydrology, 563, 1135–1146. https://doi.org/10.1016/j.jhydrol.2017.09.058spa
dc.relation.referencesMoeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J. J., Berg, M., & Schirmer, M. (2020). A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 717, 137042. https://doi.org/10.1016/j.scitotenv.2020.137042spa
dc.relation.referencesNychka, D., Furrer, R., Paige, J., & Sain, S. (2016). Tools for Spatial Data.spa
dc.relation.referencesO’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28(3), 323–344.spa
dc.relation.referencesOssa, J., Campillo, A. K., Omar, C., & Betancur, T. (2021). Recharge área maps from precipitation isoscapes. Case study: Aburrá valley, colombia. Boletin Geologico y Minero, 132(1–2), 65–75. https://doi.org/10.21701/bolgeomin.132.1-2.007spa
dc.relation.referencesOuyang, Y., Jin, W., Grace, J. M., Obalum, S. E., Zipperer, W. C., & Huang, X. (2019). Estimating impact of forest land on groundwater recharge in a humid subtropical watershed of the Lower Mississippi River Alluvial Valley. Journal of Hydrology: Regional Studies, 26(October), 100631. https://doi.org/10.1016/j.ejrh.2019.100631spa
dc.relation.referencesOviedo Aleman, L. M. (2020). Variaciones de la recarga de agua subterránea bajo escenarios de cambio climático en el nivel somero del sistema acuífero bajo cauca antioqueño. Universidad Nacional de Colombiaspa
dc.relation.referencesPatiño, D. (2018). Respuesta hidrológica ante los cambios de uso y cobertura del suelo en la cuenca del río Chinchiná. Universidad Nacional de Colombia.spa
dc.relation.referencesPatiño, D. A. (2018). Respuesta hidrológica ante los cambios de uso y cobertura del suelo en la cuenca del río Chinchiná. Universidad Nacional de Colombia.spa
dc.relation.referencesPatiño Rojas, S. M., & Jaramillo, M. (2022). Estimación espaciotemporal de la recarga potencial en un sistema pseudokárstico tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(178), 261–278. https://doi.org/10.18257/raccefyn.1512spa
dc.relation.referencesPatiño, S. M., Jaramillo, M., Espinosa-Espinosa, C., & Arias-Lopez, M. F. (2021). Preferential groundwater flow directions in a pseudokarst system in Colombia, South America. Journal of South American Earth Sciences, 112(September). https://doi.org/10.1016/j.jsames.2021.103572spa
dc.relation.referencesPérez Fonseca, A. L. (2018). Las periferias en disputa. Procesos de poblamiento urbano popular en Medellín. Estudios Políticos (Medellín), 53, 148–170. https://doi.org/10.17533/udea.espo.n53a07spa
dc.relation.referencesPianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79, 214–232. https://doi.org/10.1016/j.envsoft.2016.02.008spa
dc.relation.referencesPosada-Marín, J. A., & Salazar, J. F. (2022). River flow response to deforestation: Contrasting results from different models. Water Security, 15(March). https://doi.org/10.1016/j.wasec.2022.100115spa
dc.relation.referencesRibeiro, L., Kretschmer, N., Nascimento, J., Buxo, A., Rötting, T., Soto, G., Señoret, M., Oyarzún, J., Maturana, H., & Oyarzún, R. (2015). Evaluating piezometric trends using the Mann-Kendall test on the alluvial aquifers of the Elqui River basin, Chile. Hydrological Sciences Journal, 60(10), 1840–1852.spa
dc.relation.referencesRios Rivera, M. A. (2019). Upscaling of point-scale groundwater recharge measurements using machine learning: A case study in New Zealand and Colombia (Doctoral dissertation, Lincoln University).spa
dc.relation.referencesRodríguez-Campero, C., Garfias, J., Martel, R., & Navarro-de León, I. (2023). Estimación espacio-temporal de la distribución de la recarga potencial en el Valle de Toluca. Boletín de La Sociedad Geológica Mexicana, 75(2), A080523. https://doi.org/10.18268/bsgm2023v75n2a080523spa
dc.relation.referencesSargemt, R. (2015). Modeling and Simulation in the Systems Engineering. In Modeling and Simulation in the Systems Engineering (Vol. 1, pp. 52–58). https://doi.org/10.1007/978-1-4615-0863-2_17spa
dc.relation.referencesScanlon, B. R., Jolly, I., Sophocleous, M., & Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 43(3). https://doi.org/10.1029/2006WR005486spa
dc.relation.referencesScanlon, B. R., Kelley, E. K., Alan, L. F., & Lorraine, E. F. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: An International Journal, 20, 3335–3370. https://doi.org/10.1002/hypspa
dc.relation.referencesScanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.xspa
dc.relation.referencesShahfahad, Kumari, B., Tayyab, M., Hang, H. T., Khan, M. F., & Rahman, A. (2019). Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India. SN Applied Sciences, 1, 1–13.spa
dc.relation.referencesShi, D., Wang, W., Jiang, G., Peng, X., Yu, Y., Li, Y., & Ding, W. (2016). Effects of disturbed landforms on the soil water retention function during urbanization process in the Three Gorges Reservoir Region, China. Catena, 144, 84–93. https://doi.org/10.1016/j.catena.2016.04.010spa
dc.relation.referencesSicard, P., Coulibaly, F., Lameiro, M., Araminiene, V., De Marco, A., Sorrentino, B., Anav, A., Manzini, J., Hoshika, Y., & Moura, B. B. (2023). Object-based classification of urban plant species from very high-resolution satellite imagery. Urban Forestry & Urban Greening, 81, 127866.spa
dc.relation.referencesSiddik, M. S., Tulip, S. S., Rahman, A., Islam, M. N., Haghighi, A. T., & Mustafa, S. M. T. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315, 115–130.spa
dc.relation.referencesSiqueira, V. A., Fleischmann, A., Jardim, P. F., Fan, F. M., & Collischonn, W. (2016). IPH-Hydro Tools: a GIS coupled tool for watershed topology acquisition in an open-source environment. Rbrh, 21, 274–287.spa
dc.relation.referencesStocker, O., & Le Bris, A. (2020). Can Spot-6/7 Cnn Semantic Segmentation Improve Sentinel-2 Based Land Cover Products? Sensor Assessment and Fusion. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(2), 557–564. https://doi.org/10.5194/isprs-annals-V-2-2020-557-2020spa
dc.relation.referencesTalukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y.-A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.spa
dc.relation.referencesTalukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations-A review. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071135 Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.spa
dc.relation.referencesThornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Centerton.spa
dc.relation.referencesUdeA. (2018). AUNAR ESFUERZOS PARA LA APROPIACIÓN TECNOLÓGICA Y DEL CONOCIMIENTO PARA LA GESTIÓN INTEGRAL DEL RECURSO HÍDRICO SUPERFICIAL Y SUBTERRÁNEO, EN EL CONTEXTO DE LA OPERACIÓN DE LA RED DE MONITOREO AMBIENTAL EN LA CUENCA HIDROGRÁFICA DEL RÍO ABURRÁ-MEDELLIN Y .spa
dc.relation.referencesUdeA, & AMVA. (2018). FORMULACIÓN DEL PLAN DE MANEJO AMBIENTAL DE ACUÍFERO DELVALLE DE ABURRÁ.spa
dc.relation.referencesUniversidad Pontificia Bolivariana, & AMVA. (2007). Estudio de la forma y el crecimiento urbano de la región metropolitana.spa
dc.relation.referencesUPB, & AMVA. (2015). Política Pública de Construcción Sostenible. Linea Base.spa
dc.relation.referencesVelez, J. (2001). DESARROLLO DE UN MODELO DISTRIBUIDO DE PREDICCIÓN EN TIEMPO REAL PARA EVENTOS DE CRECIDAS (Issue January) [UNIVERSIDAD POLITÉCNICA DE VALENCIA]. https://doi.org/10.13140/2.1.4996.1288spa
dc.relation.referencesVélez, M. V., Botero, V., Salazar, J. F., & Gómez, J. (2005). Esctimación de la recarga en una región colombiana mediante un modelo iterativo. Ingenieria Hidraulica En Mexico, 20(2), 61–77.spa
dc.relation.referencesWakode, H. B., Baier, K., Jha, R., & Azzam, R. (2018). Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. International Soil and Water Conservation Research, 6(1), 51–62. https://doi.org/10.1016/j.iswcr.2017.10.003spa
dc.relation.referencesWestenbroek, J. A., Stephen, M., Engott, V. A., Kelson, & Hunt, R. J. (2018). Water Availability and Use Science Program National Water Quality Program SWB Version 2.0-A Soil-Water-Balance Code for Estimating Net Infiltration and Other Water-Budget Components Book 6, Modeling Techniques. https://pubs.usgs.gov/tm/06/a59/tm6a59.pdfspa
dc.relation.referencesWestenbroek, M. S., Kelson, V. a., Dripps, W. R., Hunt, R. J., & Bradbury, K. R. (2010). SWB — A Modified Thornthwaite-Mather Soil-Water- Balance Code for Estimating Groundwater Recharge. U.S. Geological Survey Techniques and Methods 6-A31, 60.spa
dc.relation.referencesWestenbroek, S. M., Kelson, V. A., Dripps, W. R., Hunt, R. J., & Bradbury, K. R. (2010). SWB--a modified Thornthwaite-Mather Soil-Water-Balance Code for estimating groundwater recharge. US Department of the Interior, US Geological Survey, Ground Resources ….spa
dc.relation.referencesWhite, J. C., Wulder, M. A., Hobart, G. W., Luther, J. E., Hermosilla, T., Griffiths, P., Coops, N. C., Hall, R. J., Hostert, P., Dyk, A., & Guindon, L. (2014). Pixel-based image compositing for large-area dense time series applications and science. Canadian Journal of Remote Sensing, 40(3), 192–212. https://doi.org/10.1080/07038992.2014.945827spa
dc.relation.referencesWu, N., Crusiol, L. G. T., Liu, G., Wuyun, D., & Han, G. (2023). Comparing machine learning algorithms for pixel/object-based classifications of semi-arid grassland in northern China using multisource medium resolution imageries. Remote Sensing, 15(3), 750.spa
dc.relation.referencesYacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 79–91.spa
dc.relation.referencesYan, C., Fan, X., Fan, J., Yu, L., Wang, N., Chen, L., & Li, X. (2023). HyFormer: Hybrid Transformer and CNN for Pixel-Level Multispectral Image Land Cover Classification. International Journal of Environmental Research and Public Health, 20(4), 3059. https://doi.org/10.3390/ijerph20043059spa
dc.relation.referencesYang, Y., Lerner, D. N., Barrett, M. H., & Tellam, J. H. (1999). Quantification of groundwater recharge in the city of Nottingham, UK. Environmental Geology, 38(3), 183–198. https://doi.org/10.1007/s002540050414spa
dc.relation.referencesZerrouki, N., & Bouchaffra, D. (2014). Pixel-based or object-based: Which approach is more appropriate for remote sensing image classification? 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 864–869.spa
dc.relation.referencesZhang, X., Han, L., Han, L., & Zhu, L. (2020). How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery? Remote Sensing, 12(3), 1–29. https://doi.org/10.3390/rs12030417spa
dc.relation.referencesZhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370–384.spa
dc.relation.referencesZhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocCobertura de suelos - Valle de Aburrá (Antioquia, Colombia)
dc.subject.agrovocAcuíferos - Valle de Aburrá (Antioquia, Colombia)
dc.subject.agrovocRecarga de aguas subterráneas - Valle de Aburrá (Antioquia, Colombia)
dc.subject.agrovocAguas subterráneas - Valle de Aburrá (Antioquia, Colombia)
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalRecarga directaspa
dc.subject.proposalmodelaciónspa
dc.subject.proposalclasificación de imágenes satelitalesspa
dc.subject.proposalcoberturas de la tierraspa
dc.subject.proposalSWB 2.0spa
dc.subject.proposalAcuíferospa
dc.subject.proposalGroundwater rechargeeng
dc.subject.proposalhydrologic modelingeng
dc.subject.proposalsatellite image classificationeng
dc.subject.proposalLULCeng
dc.titleEfecto de los cambios de la cobertura de la tierra en la recarga potencial directa en el Acuífero Libre del Valle de Aburráspa
dc.title.translatedEffect of land cover changes on potential direct recharge in the Aburrá Valley unconfined Aquifereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1059709866.2024.pdf
Tamaño:
6.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: