Metodología para obtención de parámetros de corte en alesadora horizontal CNC considerando aspectos de máquina herramienta y su aplicación en el montaje experimental
dc.contributor.advisor | Córdoba Nieto, Ernesto | spa |
dc.contributor.author | Reyes Flórez, Yamid Gonzalo | spa |
dc.contributor.researchgroup | Grupo de Trabajo en NuevasTecnologías de Diseño y Manufactura-Automatización DIMA UN | spa |
dc.date.accessioned | 2020-09-28T15:24:11Z | spa |
dc.date.available | 2020-09-28T15:24:11Z | spa |
dc.date.issued | 2020-07-15 | spa |
dc.description.abstract | Los engranajes son elementos de transmisión de potencia usados en la mayoría de las máquinas. Debido a sus características frente a otros sistemas de transmisión de potencia, anualmente se producen billones de engranajes, aunque su fabricación sea costosa y compleja. Este trabajo presenta las calidades geométricas, dimensionales y de rugosidad obtenidas tras implementar una metodología de obtención parámetros de corte. El piñón y la rueda fueron fabricados en máquinas CNC de propósito general, el piñón de acero en centro de mecanizado y la rueda de fundición nodular en alesadora horizontal. Los parámetros de corte para la fresa escariadora punta esférica diámetro 6 mm se utilizaron: avance por diente 0,02mm, velocidad de corte 110m/min, profundidad de corte 0,8mm y avance radial: 0,12mm. La orientación de la herramienta se definió con 6,5° y 46,5° según la dirección de avance de la herramienta. Dos simulaciones y verificaciones integradas se ejecutaron para validar trayectorias de la herramienta y generar códigos de control numérico. La metrología dimensional se realizó por métodos de escaneo por palpado y óptico. La rugosidad Ra mínima obtenida tras aplicar el método de superficie de respuesta fue de 2,080 µm y las desviaciones geométricas y dimensionales máximas fueron del orden de 0,5mm. La metodología implementada permitió obtener un engranaje calidad ISO17485 entre 7 y 10. Fue posible fabricar engranajes con máquinas de propósito general y se propuso modelo experimental para predicción de rugosidad con coeficiente de determinación del 80%. | spa |
dc.description.abstract | Gears are power transmission elements used in most machines. Due to its characteristics compared to other power transmission systems, billions of gears are produced annually, although their manufacture is expensive and complex. This work presents the geometric, dimensional and roughness qualities obtained after implementing a methodology for obtaining cutting parameters. The pinion and wheel were made on general purpose CNC machines, the steel pinion on machining center and the nodular cast iron wheel on horizontal milling machine. Cutting parameters for 6 mm diameter ball end mill were used: feed per tooth 0,02mm, cutting speed 110m / min, depth of cut 0,8mm and radial depth of cut: 0,12mm. Tool orientation was defined in 6,5° and 46,5° according to feed direction. Two simulations and integrated verifications were run to validate toolpaths and generate numerical control codes. Dimensional metrology was performed by scanning and optical scanning methods. The minimum Ra roughness obtained after applying the response surface method was 2,080 µm and the maximum geometric and dimensional deviations were by 0,5mm. The implemented methodology allowed obtaining a quality ISO17485 gear between 7 and 10. It was possible to manufacture gears with general-purpose machines and an experimental model for roughness prediction with a coefficient of determination of 80% was proposed. | spa |
dc.description.additional | Línea de Investigación: Procesos de Manufactura y Metalurgia | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 159 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78506 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | A. Stokes, “Manual gearbox design,” p. 162, 1992. | spa |
dc.relation.references | Y. Zhou, Z. C. Chen, J. Tang, and S. Liu, “An innovative approach to NC programming for accurate five-axis flank milling of spiral bevel or hypoid gears,” Comput. Des., 2016. | spa |
dc.relation.references | S. P. Radzevich, Gear Cutting Tools, no. 2. 2012. | spa |
dc.relation.references | J. E. A. Cerquera, “Tecnología de fabricación de los engranajes estado actual de la fabricación por el método de generación.” Bogotá D.C.: Universidad Nacional, 1986., 1986. | spa |
dc.relation.references | D. Townsend, Dudley’s Gear Handbook, 2nd ed. 1992. | spa |
dc.relation.references | E. Buckingham, ANALYTICAL MECHANICS OF GEARS. New York, 1949. | spa |
dc.relation.references | F. L. Litvin and A. Fuentes, GEAR GEOMETRY AND APPLIED THEORY, Second. cambridge university press, 2004. | spa |
dc.relation.references | D. B. Dooner, KINEMATIC GEOMETRY OF GEARING. John Wiley & Sons, 2012. | spa |
dc.relation.references | A. S. Ivanov, M. V. Fomin, M. M. Ermolaev, and A. V. Chirkin, “Profiles of gear teeth,” Russ. Eng. Res., vol. 35, no. 3, pp. 167–170, 2015. | spa |
dc.relation.references | R. E. Smith, “Gear Tolerances,” in Dudley´s gear handbook, McGraw-Hill, 1992. | spa |
dc.relation.references | International Organization for Standardization, “ISO 23509: Bevel and hypoid gear geometry.” p. 146, 2006. | spa |
dc.relation.references | N. . Kolchin, “Analytical Computation of Planar and Spatial Gearing: with Application to Profiling of the Gear Cutting Tools and to Computation of the Deviations in Gearing.” Moscow: Mashgiz, p. 210pp, 1949. | spa |
dc.relation.references | J. R. Davis, Gear Materials , Properties , and Manufacture. 2005. | spa |
dc.relation.references | International Organization for Standardization, “ISO 17485: Bevel gears - ISO system of accuracy.” p. 40, 2006. | spa |
dc.relation.references | H. A. Youssef and H. El-Hofy, Machining Technology Machine Tools And Operations. CRC Press, 2008. | spa |
dc.relation.references | “Gears,” gear generation. [Online]. Available: https://gearsmechon.wordpress.com/gear-generation/. [Accessed: 15-Jan-2019]. | spa |
dc.relation.references | H. J. Stadtfeld, “UNIMILL for Prototype and Small-Batch Bevel Gear Manufacturing,” Gear Technol., no. August, pp. 70–81, 2018. | spa |
dc.relation.references | Retefer, “Retefer,” 2018. [Online]. Available: retefer. [Accessed: 23-Jan-2019]. | spa |
dc.relation.references | Y. G. Reyes-Florez, “Desarrollo De Procedimiento Para La Generación, Simulación Y Verificación De Maquinado En Centro De Mecanizado CNC Multiejes Técnica 4+1 Y Su Aplicación En Montaje Experimental,” UNIVERSIDAD SANTO TOMÁS, 2014. | spa |
dc.relation.references | International Organization for Standardization, “ISO 22849: Design recommendations for bevel gears,” 2011. | spa |
dc.relation.references | International Organization for Standardization, “ISO 10300: Calculation of load capacity of bevel gears.” 2014. | spa |
dc.relation.references | ASTM, “A247-17 Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings,” in Annual Book of ASTM Standards, 2017, p. 13. | spa |
dc.relation.references | SENA, “Centro de Materiales y Ensayos,” 2018. [Online]. Available: http://materialesyensayosena.blogspot.com/p/servicios-tecnologicos.html. [Accessed: 24-Oct-2018]. | spa |
dc.relation.references | H. T. Angus, Cast Iron : Physical and Engineering Properties. Butterworths, 1960. | spa |
dc.relation.references | D. M. Stefanescu, Ductile Iron Handbook. Des plaines, 1993. | spa |
dc.relation.references | Ductile Iron Society, “Ductile Iron Society,” DUCTILE IRON DATA FOR DESIGN ENGINEERS, 2013. [Online]. Available: https://www.ductile.org/didata/Section3/3part1.htm#Effect of Graphite Shape. | spa |
dc.relation.references | ASTM, “E18-17e1 Rockwell Hardness of Metallic Materials,” in Annual Book of ASTM Standards, 2017, p. 38. | spa |
dc.relation.references | YG Cutting Tools, “CUTTING TOOLS DRILLING TOOLS.” p. 1500, 2014. | spa |
dc.relation.references | J. Hashemi and W. F. Smith, Fundamentos de la ciencia e ingeniería de materiales. 2014. | spa |
dc.relation.references | TOS, “MANUAL OF OPERATING INSTRUCTIONS FOR WHN13C - MECHANICAL PART.” . | spa |
dc.relation.references | E. L. J. Bohez, “Five-axis milling machine tool kinematic chain design and analysis,” Int. J. Mach. Tools Manuf., vol. 42, no. 4, pp. 505–520, 2002. | spa |
dc.relation.references | I. P. Girsang and jaspreet singh Dhupia, Machine Tools for Machining. 2016. | spa |
dc.relation.references | M. D. Sutar, “Linear Motion Guideways – A Recent Technology for Higher Accuracy and Precision Motion of Machine Tool,” vol. 3, no. 1, pp. 104–108, 2013. | spa |
dc.relation.references | A. Overby, “CNC Machining Handbook,” Igarss 2014, no. 1. pp. 1–5, 2014. | spa |
dc.relation.references | K. Ogata, Ingeniería de Control Moderna, vol. 53, no. 9. 2013. | spa |
dc.relation.references | E. N. Di and L. Heidenhain, “TNC 430,” 2002. | spa |
dc.relation.references | HEIDENHAIN, “Digital Readouts for Manually Operated Machine Tools.” pp. 1–39, 2003. | spa |
dc.relation.references | J. D. Rairán-Antolines and J. M. Fonseca-Gómez, “Doble lazo de control para regular la posición y la velocidad en un motor de corriente directa,” Ing. y Univ., vol. 15, no. 2, pp. 337–357, 2011. | spa |
dc.relation.references | M. L., Machine elements in mechanical design, vol. 20, no. 2. 1987. | spa |
dc.relation.references | M. F. Ashby, Materials Selection in Mechanical Design Third Edition, Third. Pergamon Press, 2005. | spa |
dc.relation.references | M. Bell, G. Sroka, and R. Benson, “The effect of the surface roughness profile on micropitting,” Am. Gear Manuf. Assoc. Fall Tech. Meet. 2012, AGMA, pp. 278–292, 2013. | spa |
dc.relation.references | International Organization for Standardization, “ISO/TR 15144-1:2010 Calculation of micropitting load capacity of cylindrical spur and helical gears -- Part 1: Introduction and basic principles,” 2010. | spa |
dc.relation.references | J. M. Marin, “Modelo de diseños factoriales y diseños 2k,” Univ. Carlos III Madrid, p. 45, 2014. | spa |
dc.relation.references | J. A. García-Barbosa, J. M. Arroyo-Osorio, and E. Córdoba-Nieto, “Influence of tool inclination on chip formation process and roughness response in ball-end milling of freeform surfaces on Ti-6Al-4V alloy,” Mach. Sci. Technol., vol. 21, no. 1, pp. 121–135, 2017. | spa |
dc.relation.references | T. J. Ko, H. S. Kim, and S. S. Lee, “Selection of the Machining Inclination Angle in High-Speed Ball End Milling,” Adv. Manuf. Technol., pp. 163–170, 2001. | spa |
dc.relation.references | W.-H. Zhang, G. Tan, M. Wan, T. Gao, and D. H. Bassir, “A New Algorithm for the Numerical Simulation of Machined Surface Topography in Multiaxis Ball-End Milling,” J. Manuf. Sci. Eng., vol. 130, no. 1, p. 011003, 2008. | spa |
dc.relation.references | A. Antoniadis, N. Bilalis, C. Savakis, E. Maravelakis, and G. Petropoulos, “INFLUENCE OF MACHINING INCLINATION ANGLE ON SURFACE QUALITY IN BALL END MILLING,” no. July, pp. 8–11, 2003. | spa |
dc.relation.references | K. Bouzakis, P. Aichouh, and K. Efstathiou, “Determination of the chip geometry , cutting force and roughness in free form surfaces finishing milling , with ball end tools,” Int. J. Mach. Tools Manuf., vol. 43, pp. 499–514, 2003. | spa |
dc.relation.references | E. Ozturk and E. Tunc, L Taner;Budak, “Investigation of lead and tilt angle effects in 5-axis ball-end milling processes,” Int. J. Mach. Tools Manuf., vol. 49, pp. 1053–1062, 2009. | spa |
dc.relation.references | Martellotti, “An Analysis of the Milling Process,” ASME J. manufactuing Sci. Eng., vol. 63, pp. 677–700, 1941. | spa |
dc.relation.references | Douglas C. Montgomery, Diseño y análisis de experimentos, Segunda. Limusa Wiley, 2004. | spa |
dc.relation.references | A. F. Reyes-Florez, Yamid Gonzalo; Cifuentes, “Establecer una metodología para implementación del escaneo óptico 3D como sistema de verificación en el SENA-CMM aplicado en engranajes,” METALNNOVA, vol. 1, no. 1, pp. 5–9, 2018. | spa |
dc.relation.references | “¿Qué es ANOVA? - Minitab.” [Online]. Available: https://support.minitab.com/es-mx/minitab/19/help-and-how-to/modeling-statistics/anova/supporting-topics/basics/what-is-anova/. [Accessed: 23-Jan-2020]. | spa |
dc.relation.references | X. Sun and K. Cheng, “Micro-/Nano-machining through Mechanical Cutting,” in Micromanufacturing Engineering and Technology: Second Edition, Second Edi., Yi Qin, 2015, pp. 35–59. | spa |
dc.relation.references | K. Gupta, N. K. Jain, and R. Laubscher, “Measurement of gear accuracy,” in Advanced Gear Manufacturing and Finishing, pp. 197–218. | spa |
dc.relation.references | K. Kawasaki, I. Tsuji, and H. Gunbara, Manufacturing method of double helical gears using multi-axis control and multi-tasking machine tool. Woodhead Publishing Limited, 2015. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 670 - Manufactura | spa |
dc.subject.ddc | 670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas | spa |
dc.subject.proposal | Straight bevel gear | eng |
dc.subject.proposal | Engranaje cónico recto | spa |
dc.subject.proposal | Maquinado multieje | spa |
dc.subject.proposal | Multi-axis machining | eng |
dc.subject.proposal | Cutting parameters | eng |
dc.subject.proposal | Parámetros de corte | spa |
dc.subject.proposal | Ángulo Lead | spa |
dc.subject.proposal | Lead Angle | eng |
dc.subject.proposal | Ángulo Tilt | spa |
dc.subject.proposal | Tilt Angle | eng |
dc.subject.proposal | Rugosidad | spa |
dc.subject.proposal | Roughness | eng |
dc.subject.proposal | CNC | spa |
dc.subject.proposal | CNC | eng |
dc.title | Metodología para obtención de parámetros de corte en alesadora horizontal CNC considerando aspectos de máquina herramienta y su aplicación en el montaje experimental | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |