Metodología para obtención de parámetros de corte en alesadora horizontal CNC considerando aspectos de máquina herramienta y su aplicación en el montaje experimental

dc.contributor.advisorCórdoba Nieto, Ernestospa
dc.contributor.authorReyes Flórez, Yamid Gonzalospa
dc.contributor.researchgroupGrupo de Trabajo en NuevasTecnologías de Diseño y Manufactura-Automatización DIMA UNspa
dc.date.accessioned2020-09-28T15:24:11Zspa
dc.date.available2020-09-28T15:24:11Zspa
dc.date.issued2020-07-15spa
dc.description.abstractLos engranajes son elementos de transmisión de potencia usados en la mayoría de las máquinas. Debido a sus características frente a otros sistemas de transmisión de potencia, anualmente se producen billones de engranajes, aunque su fabricación sea costosa y compleja. Este trabajo presenta las calidades geométricas, dimensionales y de rugosidad obtenidas tras implementar una metodología de obtención parámetros de corte. El piñón y la rueda fueron fabricados en máquinas CNC de propósito general, el piñón de acero en centro de mecanizado y la rueda de fundición nodular en alesadora horizontal. Los parámetros de corte para la fresa escariadora punta esférica diámetro 6 mm se utilizaron: avance por diente 0,02mm, velocidad de corte 110m/min, profundidad de corte 0,8mm y avance radial: 0,12mm. La orientación de la herramienta se definió con 6,5° y 46,5° según la dirección de avance de la herramienta. Dos simulaciones y verificaciones integradas se ejecutaron para validar trayectorias de la herramienta y generar códigos de control numérico. La metrología dimensional se realizó por métodos de escaneo por palpado y óptico. La rugosidad Ra mínima obtenida tras aplicar el método de superficie de respuesta fue de 2,080 µm y las desviaciones geométricas y dimensionales máximas fueron del orden de 0,5mm. La metodología implementada permitió obtener un engranaje calidad ISO17485 entre 7 y 10. Fue posible fabricar engranajes con máquinas de propósito general y se propuso modelo experimental para predicción de rugosidad con coeficiente de determinación del 80%.spa
dc.description.abstractGears are power transmission elements used in most machines. Due to its characteristics compared to other power transmission systems, billions of gears are produced annually, although their manufacture is expensive and complex. This work presents the geometric, dimensional and roughness qualities obtained after implementing a methodology for obtaining cutting parameters. The pinion and wheel were made on general purpose CNC machines, the steel pinion on machining center and the nodular cast iron wheel on horizontal milling machine. Cutting parameters for 6 mm diameter ball end mill were used: feed per tooth 0,02mm, cutting speed 110m / min, depth of cut 0,8mm and radial depth of cut: 0,12mm. Tool orientation was defined in 6,5° and 46,5° according to feed direction. Two simulations and integrated verifications were run to validate toolpaths and generate numerical control codes. Dimensional metrology was performed by scanning and optical scanning methods. The minimum Ra roughness obtained after applying the response surface method was 2,080 µm and the maximum geometric and dimensional deviations were by 0,5mm. The implemented methodology allowed obtaining a quality ISO17485 gear between 7 and 10. It was possible to manufacture gears with general-purpose machines and an experimental model for roughness prediction with a coefficient of determination of 80% was proposed.spa
dc.description.additionalLínea de Investigación: Procesos de Manufactura y Metalurgiaspa
dc.description.degreelevelMaestríaspa
dc.format.extent159spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78506
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesA. Stokes, “Manual gearbox design,” p. 162, 1992.spa
dc.relation.referencesY. Zhou, Z. C. Chen, J. Tang, and S. Liu, “An innovative approach to NC programming for accurate five-axis flank milling of spiral bevel or hypoid gears,” Comput. Des., 2016.spa
dc.relation.referencesS. P. Radzevich, Gear Cutting Tools, no. 2. 2012.spa
dc.relation.referencesJ. E. A. Cerquera, “Tecnología de fabricación de los engranajes estado actual de la fabricación por el método de generación.” Bogotá D.C.: Universidad Nacional, 1986., 1986.spa
dc.relation.referencesD. Townsend, Dudley’s Gear Handbook, 2nd ed. 1992.spa
dc.relation.referencesE. Buckingham, ANALYTICAL MECHANICS OF GEARS. New York, 1949.spa
dc.relation.referencesF. L. Litvin and A. Fuentes, GEAR GEOMETRY AND APPLIED THEORY, Second. cambridge university press, 2004.spa
dc.relation.referencesD. B. Dooner, KINEMATIC GEOMETRY OF GEARING. John Wiley & Sons, 2012.spa
dc.relation.referencesA. S. Ivanov, M. V. Fomin, M. M. Ermolaev, and A. V. Chirkin, “Profiles of gear teeth,” Russ. Eng. Res., vol. 35, no. 3, pp. 167–170, 2015.spa
dc.relation.referencesR. E. Smith, “Gear Tolerances,” in Dudley´s gear handbook, McGraw-Hill, 1992.spa
dc.relation.referencesInternational Organization for Standardization, “ISO 23509: Bevel and hypoid gear geometry.” p. 146, 2006.spa
dc.relation.referencesN. . Kolchin, “Analytical Computation of Planar and Spatial Gearing: with Application to Profiling of the Gear Cutting Tools and to Computation of the Deviations in Gearing.” Moscow: Mashgiz, p. 210pp, 1949.spa
dc.relation.referencesJ. R. Davis, Gear Materials , Properties , and Manufacture. 2005.spa
dc.relation.referencesInternational Organization for Standardization, “ISO 17485: Bevel gears - ISO system of accuracy.” p. 40, 2006.spa
dc.relation.referencesH. A. Youssef and H. El-Hofy, Machining Technology Machine Tools And Operations. CRC Press, 2008.spa
dc.relation.references“Gears,” gear generation. [Online]. Available: https://gearsmechon.wordpress.com/gear-generation/. [Accessed: 15-Jan-2019].spa
dc.relation.referencesH. J. Stadtfeld, “UNIMILL for Prototype and Small-Batch Bevel Gear Manufacturing,” Gear Technol., no. August, pp. 70–81, 2018.spa
dc.relation.referencesRetefer, “Retefer,” 2018. [Online]. Available: retefer. [Accessed: 23-Jan-2019].spa
dc.relation.referencesY. G. Reyes-Florez, “Desarrollo De Procedimiento Para La Generación, Simulación Y Verificación De Maquinado En Centro De Mecanizado CNC Multiejes Técnica 4+1 Y Su Aplicación En Montaje Experimental,” UNIVERSIDAD SANTO TOMÁS, 2014.spa
dc.relation.referencesInternational Organization for Standardization, “ISO 22849: Design recommendations for bevel gears,” 2011.spa
dc.relation.referencesInternational Organization for Standardization, “ISO 10300: Calculation of load capacity of bevel gears.” 2014.spa
dc.relation.referencesASTM, “A247-17 Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings,” in Annual Book of ASTM Standards, 2017, p. 13.spa
dc.relation.referencesSENA, “Centro de Materiales y Ensayos,” 2018. [Online]. Available: http://materialesyensayosena.blogspot.com/p/servicios-tecnologicos.html. [Accessed: 24-Oct-2018].spa
dc.relation.referencesH. T. Angus, Cast Iron : Physical and Engineering Properties. Butterworths, 1960.spa
dc.relation.referencesD. M. Stefanescu, Ductile Iron Handbook. Des plaines, 1993.spa
dc.relation.referencesDuctile Iron Society, “Ductile Iron Society,” DUCTILE IRON DATA FOR DESIGN ENGINEERS, 2013. [Online]. Available: https://www.ductile.org/didata/Section3/3part1.htm#Effect of Graphite Shape.spa
dc.relation.referencesASTM, “E18-17e1 Rockwell Hardness of Metallic Materials,” in Annual Book of ASTM Standards, 2017, p. 38.spa
dc.relation.referencesYG Cutting Tools, “CUTTING TOOLS DRILLING TOOLS.” p. 1500, 2014.spa
dc.relation.referencesJ. Hashemi and W. F. Smith, Fundamentos de la ciencia e ingeniería de materiales. 2014.spa
dc.relation.referencesTOS, “MANUAL OF OPERATING INSTRUCTIONS FOR WHN13C - MECHANICAL PART.” .spa
dc.relation.referencesE. L. J. Bohez, “Five-axis milling machine tool kinematic chain design and analysis,” Int. J. Mach. Tools Manuf., vol. 42, no. 4, pp. 505–520, 2002.spa
dc.relation.referencesI. P. Girsang and jaspreet singh Dhupia, Machine Tools for Machining. 2016.spa
dc.relation.referencesM. D. Sutar, “Linear Motion Guideways – A Recent Technology for Higher Accuracy and Precision Motion of Machine Tool,” vol. 3, no. 1, pp. 104–108, 2013.spa
dc.relation.referencesA. Overby, “CNC Machining Handbook,” Igarss 2014, no. 1. pp. 1–5, 2014.spa
dc.relation.referencesK. Ogata, Ingeniería de Control Moderna, vol. 53, no. 9. 2013.spa
dc.relation.referencesE. N. Di and L. Heidenhain, “TNC 430,” 2002.spa
dc.relation.referencesHEIDENHAIN, “Digital Readouts for Manually Operated Machine Tools.” pp. 1–39, 2003.spa
dc.relation.referencesJ. D. Rairán-Antolines and J. M. Fonseca-Gómez, “Doble lazo de control para regular la posición y la velocidad en un motor de corriente directa,” Ing. y Univ., vol. 15, no. 2, pp. 337–357, 2011.spa
dc.relation.referencesM. L., Machine elements in mechanical design, vol. 20, no. 2. 1987.spa
dc.relation.referencesM. F. Ashby, Materials Selection in Mechanical Design Third Edition, Third. Pergamon Press, 2005.spa
dc.relation.referencesM. Bell, G. Sroka, and R. Benson, “The effect of the surface roughness profile on micropitting,” Am. Gear Manuf. Assoc. Fall Tech. Meet. 2012, AGMA, pp. 278–292, 2013.spa
dc.relation.referencesInternational Organization for Standardization, “ISO/TR 15144-1:2010 Calculation of micropitting load capacity of cylindrical spur and helical gears -- Part 1: Introduction and basic principles,” 2010.spa
dc.relation.referencesJ. M. Marin, “Modelo de diseños factoriales y diseños 2k,” Univ. Carlos III Madrid, p. 45, 2014.spa
dc.relation.referencesJ. A. García-Barbosa, J. M. Arroyo-Osorio, and E. Córdoba-Nieto, “Influence of tool inclination on chip formation process and roughness response in ball-end milling of freeform surfaces on Ti-6Al-4V alloy,” Mach. Sci. Technol., vol. 21, no. 1, pp. 121–135, 2017.spa
dc.relation.referencesT. J. Ko, H. S. Kim, and S. S. Lee, “Selection of the Machining Inclination Angle in High-Speed Ball End Milling,” Adv. Manuf. Technol., pp. 163–170, 2001.spa
dc.relation.referencesW.-H. Zhang, G. Tan, M. Wan, T. Gao, and D. H. Bassir, “A New Algorithm for the Numerical Simulation of Machined Surface Topography in Multiaxis Ball-End Milling,” J. Manuf. Sci. Eng., vol. 130, no. 1, p. 011003, 2008.spa
dc.relation.referencesA. Antoniadis, N. Bilalis, C. Savakis, E. Maravelakis, and G. Petropoulos, “INFLUENCE OF MACHINING INCLINATION ANGLE ON SURFACE QUALITY IN BALL END MILLING,” no. July, pp. 8–11, 2003.spa
dc.relation.referencesK. Bouzakis, P. Aichouh, and K. Efstathiou, “Determination of the chip geometry , cutting force and roughness in free form surfaces finishing milling , with ball end tools,” Int. J. Mach. Tools Manuf., vol. 43, pp. 499–514, 2003.spa
dc.relation.referencesE. Ozturk and E. Tunc, L Taner;Budak, “Investigation of lead and tilt angle effects in 5-axis ball-end milling processes,” Int. J. Mach. Tools Manuf., vol. 49, pp. 1053–1062, 2009.spa
dc.relation.referencesMartellotti, “An Analysis of the Milling Process,” ASME J. manufactuing Sci. Eng., vol. 63, pp. 677–700, 1941.spa
dc.relation.referencesDouglas C. Montgomery, Diseño y análisis de experimentos, Segunda. Limusa Wiley, 2004.spa
dc.relation.referencesA. F. Reyes-Florez, Yamid Gonzalo; Cifuentes, “Establecer una metodología para implementación del escaneo óptico 3D como sistema de verificación en el SENA-CMM aplicado en engranajes,” METALNNOVA, vol. 1, no. 1, pp. 5–9, 2018.spa
dc.relation.references“¿Qué es ANOVA? - Minitab.” [Online]. Available: https://support.minitab.com/es-mx/minitab/19/help-and-how-to/modeling-statistics/anova/supporting-topics/basics/what-is-anova/. [Accessed: 23-Jan-2020].spa
dc.relation.referencesX. Sun and K. Cheng, “Micro-/Nano-machining through Mechanical Cutting,” in Micromanufacturing Engineering and Technology: Second Edition, Second Edi., Yi Qin, 2015, pp. 35–59.spa
dc.relation.referencesK. Gupta, N. K. Jain, and R. Laubscher, “Measurement of gear accuracy,” in Advanced Gear Manufacturing and Finishing, pp. 197–218.spa
dc.relation.referencesK. Kawasaki, I. Tsuji, and H. Gunbara, Manufacturing method of double helical gears using multi-axis control and multi-tasking machine tool. Woodhead Publishing Limited, 2015.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc670 - Manufacturaspa
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosasspa
dc.subject.proposalStraight bevel geareng
dc.subject.proposalEngranaje cónico rectospa
dc.subject.proposalMaquinado multiejespa
dc.subject.proposalMulti-axis machiningeng
dc.subject.proposalCutting parameterseng
dc.subject.proposalParámetros de cortespa
dc.subject.proposalÁngulo Leadspa
dc.subject.proposalLead Angleeng
dc.subject.proposalÁngulo Tiltspa
dc.subject.proposalTilt Angleeng
dc.subject.proposalRugosidadspa
dc.subject.proposalRoughnesseng
dc.subject.proposalCNCspa
dc.subject.proposalCNCeng
dc.titleMetodología para obtención de parámetros de corte en alesadora horizontal CNC considerando aspectos de máquina herramienta y su aplicación en el montaje experimentalspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110528713.2020.pdf
Tamaño:
13.35 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: